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Restriction of outer measure

Theorem 2.1

Let µ be an outer measure on S, and write S for the class of
µ-measurable sets. Then S is a σ-field. The restriction of µ to S is a
measure.

outer measure?

µ-measurable sets?

σ-field?

measure?
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Outer measure

Let S be a space.

Let 2S be the collection of subsets of S.

Let µ : 2S → [0,∞] be a set function.

We say µ is an outer measure if

µ is non-decreasing: A ⊂ B implies µ(A) ≤ µ(B);
µ is countably sub-additive: µ(∪∞

k=1Ai) ≤
∞

k=1 µ(Ai);
µ(∅) = 0.
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µ-measurable sets

Let µ be an outer measure for a space S.

We say a subset A ⊂ S is µ-measurable if for every B ⊂ S,

µ(B) = µ(B ∩A) + µ(B ∩Ac).
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σ-field

Let S be a given set.

Let 2S := {A : A ⊂ S} the collection of subsets of S.

We say S is a σ-field for S, if

S ⊂ 2S ;
∅ ∈ S;
F is closed under countable unions: A1, A2, · · · ∈ S implies
∪∞
k=1Ak ∈ S;

S is closed under countable intersection: A1, A2, · · · ∈ S implies
∩∞
k=1Ak ∈ S.

S is closed under complementation: A ∈ S implies Ac ∈ S.
We say (S,S) is a measurable space if S is a σ-field of S.
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Measure

Let S be a σ-field of a space S.

Let µ be a function from S to [0,∞].

We say µ is a measure on (S,S) if
µ(∅) = 0;
µ is countably additive: Let A1, A2, · · · ∈ S be disjoint, then
µ(∪∞

k=1Ak) =
∞

k=1 Ak.

We say (S,S, µ) is a measure space if (S,S) is a measurable space
and µ is a measure on (S,S).
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Restriction of outer measure

Theorem 2.1

Let µ be an outer measure on S, and write S for the class of
µ-measurable sets. Then S is a σ-field. The restriction of µ to S is a
measure.

The theorem above is one of the main reason why we need the
concept of σ-field.

It is a powerful tool to construct measures like Lebesgue’s measure
and Hausdorff measure.
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Monotone-class theorem

Theorem 1.1

For any π-system C and λ-system D in a space S, we have

C ⊂ D =⇒ σ(C) ⊂ D

π-system?

λ-system?

What is σ(C), the σ-field generated by C?
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π-system

Let S be a given set.

Let 2S := {A : A ⊂ S} be the collection of subsets of S.

We say C is a π-system w.r.t. S, if

C ⊂ 2S and
C is closed under intersection: A,B ∈ C implies A ∩B ∈ C.
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λ-system

Let S be a given set.

Let 2S := {A : A ⊂ S} be the collection of subsets of S.

We say D is a λ-system w.r.t. S, if

D ⊂ 2S ;
S ∈ D;
D is closed under proper difference: A,B ∈ D and A ⊂ B implies
B \A ∈ D;
D is closed under increasing limits: A1, A2, · · · ∈ D with Ak ⊂ Ak+1

for every k ∈ N implies A∞ := ∪∞
k=1Ak ∈ D.
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Generated σ-field

Let S be a given set.

Let 2S := {A : A ⊂ S} be the collection of subsets of S.

Let C ⊂ 2S be non-empty.

Define
σ(C) :=



A is a σ-field of S; C ⊂ A
A.

It is known that σ(C) is a σ-field.

σ(C) is called the σ-field generated by C.
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Monotone-class theorem

Theorem 1.1

For any π-system C and λ-system D in a space S, we have

C ⊂ D =⇒ σ(C) ⊂ D

It can be used to prove many useful result like:

If two measures agrees on a π-system C then they agrees on σ(C).
If the sets from two π-systems C1 and C2 are independent under a
given probability measure, then the sets from σ(C1) and σ(C2) are
independent.
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Polish and Borel spaces

Theorem 1.8

Any uncountable Polish space S is Borel isomorphic to R.

Polish space?

Borel sets?

Borel isomorphic?
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Topological space

Let S be a space.

Let S ⊂ 2S .

We say (S,S) is a topological space if

∅ ∈ S, S ∈ S;
S is closed under arbitrary union: {Aλ : λ ∈ Λ} ⊂ S implies
∪λ∈ΛAλ ∈ S;
S is closed under finite intersection: A1, . . . , An ∈ S implies
∩n
k=1Ak ∈ S.

If (S,S) is a topological space, then the elements in S are called
open sets.
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Separable

Let S = (S,S) be a topological space.

We say a countable subset {xn : n ∈ N} of S is dense if for any
nonempty open set A ∈ S, there exists an m ∈ N such that
xm ∈ A.

We say the topological space S is separable, if there exists a
countable dense subset.
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Complete metric space

Let S be a space.

Let d : S2 → [0,∞) be a metric on S, i.e.

d(x, x) = 0 for all x ∈ S;
d(x, y) > 0 for all x ∕= y in S;
d(x, y) = d(y, x) for all x, y in S;
d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in S.

We say a sequence (xi)
∞
i=1 is Cauchy if ∀ > 0, ∃N ∈ N,

∀m,n > N , d(xm, xn) ≤ .

We say a metric space (S, d) is complete, if for every Cauchy
sequence (xi)

∞
i=1, there exists an x ∈ S such that

lim
n→∞

d(xn, x) = 0.
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Completely metrizable

Let (S, d) be a metric space.

We say A ⊂ S is open w.r.t. d if ∀x ∈ A, ∃ > 0 such that

{y ∈ S : d(x, y) < } ⊂ A.

Denote by S the collection of all open set w.r.t. d. Then, (S,S) is
a topological space.

We say S is the topology induced by the metric d.

A topology is called completely metrizable, if it can be induced by
some compelete metric.
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Polish space

Let (S,S) be a topological space.

We say (S,S) is Polish if

it is separable; and
it is completely metrizable.
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Borel sets

Let (S,S) be a topological space.

Let BS = σ(S) be the σ-field generated by S.
We call BS the Borel σ-field w.r.t. (S,S).
Elements in BS are called Borel sets.
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Measurable map

Let (X,X ) and (Y,Y) be two measurable spaces.

We say a map f : X → Y is measurable map from (X,X ) to (Y,Y)
if for every B ∈ Y,

f−1(B) := {x ∈ X : f(x) ∈ B} ∈ X .

In particular, if (Y,Y) = (R,BR), then f is called a measurable
function.
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Borel isomorphic

Let (S,S) and (T, T ) be two topological spaces.

Let BS and BT be the Borel σ-fields generated by S and T
respectively.

We say the topological space (S,S) is Borel isomorphic to (T, T ),
if there exists a bijection f : S → T such that

f is a measurable map from (S,BS) to (T,BT ); and
f−1 is a measurable map from (T,BT ) to (S,BS).
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Polish and Borel spaces

Theorem 1.8

Any uncountable Polish space S is Borel isomorphic to R.

This is a powerful tool when handling measure theory on Polish
space.

Many important state spaces for random elements are Polish, for
example, the Wiener space C([0, 1],R) equipped with the
supremum norm.
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Monotone convergence

Theorem 1.21

For any non-negative measurable functions f, f1, f2, . . . on a measure
space (S,S, µ), we have

0 ≤ fn ↑ f =⇒ µ(fn) ↑ µ(f).

0 ≤ fn ↑ f means that for every s ∈ S, 0 ≤ fn(s) ↑ f(s).

Integral µ(fn) and µ(f)?
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Integral for simple functions

We will define the integral

µ(f) =


fdµ =


f(ω)µ(dω).

We say a measurable function φ on a measure space (S,S, µ) is
simple if ∃n ∈ Z+, c1, . . . , cn ∈ [0,∞) and A1, . . . , An ∈ S such that

φ = c11A1 + · · ·+ cn1An ,

and in this case,

µ(φ) := c1µ(A1) + . . . cnµ(An).
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Integral for non-negative measurable functions

Let f be a non-negative measurable function on a measure space
(S,S, µ).
It can be shown that there exists a sequence of simple measurable
functions f1, f2, . . . such that 0 ≤ fn ↑ f .

It can be verified that µ(fn) is non-decreasing.

Define µ(f) := limn→∞ µ(fn) ∈ [0,∞].

We say f is integrable if µ(f) < ∞.
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Integral for integrable functions

Let f be a measurable function on a measure space (S,S, µ).
Define f+ = max{f, 0} and f− = (−f)+. Then f = f+ − f−.

We say f is integrable if f+ and f− are integrable.

If f is integrable, define µ(f) := µ(f+)− µ(f−).
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Monotone convergence

Theorem 1.21

For any non-negative measurable functions f, f1, f2, . . . on a measure
space (S,S, µ), we have

0 ≤ fn ↑ f =⇒ µ(fn) ↑ µ(f).

A powerful tool to exchange order between expectation and limits.

Some times is used to construct random objects.
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Product measure

Theorem 1.29

For any σ-finite measure spaces (S,S, µ) and (T, T , ν), there exists a
unique measure µ⊗ ν on (S × T,S ⊗ T ), such that

(µ⊗ ν)(B × C) = µ(B)× ν(C), B ∈ S, C ∈ T .

We say a measure space (S,S, µ) is σ-finite if there exists
S1, S2, . . . in S such that S =

∞
k=1 Sk and µ(Sk) < ∞ for every

k ∈ N.
For given sets A and B, the product space
A×B := {(a, b) : a ∈ A, b ∈ B}.
S ⊗ T := σ(S × T ).
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Fubini’s theorem

Theorem 1.29

For any σ-finite measure spaces (S,S, µ) and (T, T , ν), and any
measurable function f : S × T → R integrable against µ⊗ ν, we have

(µ⊗ ν)(f) =



S



T
f(s, t)ν(dt)


µ(ds)

=



T



S
f(s, t)µ(ds)


ν(dt).

Fubini’s theorem is a powerful tool to exchange the order of
integrals.
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Thanks!
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