Topics in probability theory: Measure theory

Zhenyao Sun

Beijing Institute of Technology

September 9, 2024

1 / 30

Restriction of outer measure

Theorem 2.1

Let μ be an outer measure on S, and write S for the class of μ -measurable sets. Then S is a σ -field. The restriction of μ to S is a measure.

- outer measure?
- μ -measurable sets?
- σ -field?
- measure?

- Let S be a space.
- Let 2^S be the collection of subsets of S.
- Let $\mu: 2^S \to [0,\infty]$ be a set function.
- We say μ is an outer measure if
 - μ is non-decreasing: $A \subset B$ implies $\mu(A) \leq \mu(B)$;
 - μ is countably sub-additive: $\mu(\bigcup_{k=1}^{\infty} A_i) \leq \sum_{k=1}^{\infty} \mu(A_i);$
 - $\mu(\emptyset) = 0.$

- 4 回 ト - 4 回 ト

- Let μ be an outer measure for a space S.
- We say a subset $A \subset S$ is μ -measurable if for every $B \subset S$,

$$\mu(B) = \mu(B \cap A) + \mu(B \cap A^c).$$

σ -field

- Let S be a given set.
- Let $2^S := \{A : A \subset S\}$ the collection of subsets of S.
- We say S is a σ -field for S, if
 - $\mathcal{S} \subset 2^S;$
 - $\emptyset \in \mathcal{S};$
 - \mathcal{F} is closed under countable unions: $A_1, A_2, \dots \in \mathcal{S}$ implies $\cup_{k=1}^{\infty} A_k \in \mathcal{S};$
 - S is closed under countable intersection: $A_1, A_2, \dots \in S$ implies $\bigcap_{k=1}^{\infty} A_k \in S$.
 - S is closed under complementation: $A \in S$ implies $A^c \in S$.

• We say (S, \mathcal{S}) is a measurable space if \mathcal{S} is a σ -field of S.

- Let S be a σ -field of a space S.
- Let μ be a function from S to $[0, \infty]$.
- We say μ is a measure on (S, \mathcal{S}) if
 - $\mu(\emptyset) = 0;$
 - μ is countably additive: Let $A_1, A_2, \dots \in S$ be disjoint, then $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} A_k.$
- We say (S, S, μ) is a measure space if (S, S) is a measurable space and μ is a measure on (S, S).

Restriction of outer measure

Theorem 2.1

Let μ be an outer measure on S, and write S for the class of μ -measurable sets. Then S is a σ -field. The restriction of μ to S is a measure.

- The theorem above is one of the main reason why we need the concept of σ -field.
- It is a powerful tool to construct measures like Lebesgue's measure and Hausdorff measure.

For any π -system C and λ -system D in a space S, we have

$$\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}$$

- π -system?
- λ -system?
- What is $\sigma(\mathcal{C})$, the σ -field generated by \mathcal{C} ?

- Let S be a given set.
- Let $2^S := \{A : A \subset S\}$ be the collection of subsets of S.
- We say C is a π -system w.r.t. S, if
 - $\mathcal{C} \subset 2^S$ and
 - \mathcal{C} is closed under intersection: $A, B \in \mathcal{C}$ implies $A \cap B \in \mathcal{C}$.

イロト イボト イヨト イヨト

- Let S be a given set.
- Let $2^S := \{A : A \subset S\}$ be the collection of subsets of S.
- We say \mathcal{D} is a λ -system w.r.t. S, if
 - $\mathcal{D} \subset 2^S;$
 - $S \in \mathcal{D};$
 - \mathcal{D} is closed under proper difference: $A, B \in \mathcal{D}$ and $A \subset B$ implies $B \setminus A \in \mathcal{D}$;
 - \mathcal{D} is closed under increasing limits: $A_1, A_2, \dots \in \mathcal{D}$ with $A_k \subset A_{k+1}$ for every $k \in \mathbb{N}$ implies $A_{\infty} := \bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let S be a given set.
- Let $2^S := \{A : A \subset S\}$ be the collection of subsets of S.
- Let $\mathcal{C} \subset 2^S$ be non-empty.
- Define

$$\sigma(\mathcal{C}) := \bigcap_{\mathcal{A} \text{ is a } \sigma\text{-field of } S; \ \mathcal{C} \subset \mathcal{A}} \mathcal{A}.$$

- It is known that $\sigma(\mathcal{C})$ is a σ -field.
- $\sigma(\mathcal{C})$ is called the σ -field generated by \mathcal{C} .

A (10) × (10) × (10) ×

For any π -system C and λ -system D in a space S, we have

 $\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}$

- It can be used to prove many useful result like:
 - If two measures agrees on a π -system \mathcal{C} then they agrees on $\sigma(\mathcal{C})$.
 - If the sets from two π -systems C_1 and C_2 are independent under a given probability measure, then the sets from $\sigma(C_1)$ and $\sigma(C_2)$ are independent.

イロト 不得下 イヨト イヨト

Any uncountable Polish space S is Borel isomorphic to \mathbb{R} .

- Polish space?
- Borel sets?
- Borel isomorphic?

• • = • • = •

Topological space

- Let S be a space.
- Let $\mathcal{S} \subset 2^S$.
- We say (S, \mathcal{S}) is a topological space if
 - $\emptyset \in \mathcal{S}, S \in \mathcal{S};$
 - S is closed under arbitrary union: $\{A_{\lambda} : \lambda \in \Lambda\} \subset S$ implies $\cup_{\lambda \in \Lambda} A_{\lambda} \in S$;
 - S is closed under finite intersection: $A_1, \ldots, A_n \in S$ implies $\bigcap_{k=1}^n A_k \in S$.
- If (S, S) is a topological space, then the elements in S are called open sets.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Let S = (S, S) be a topological space.
- We say a countable subset $\{x_n : n \in \mathbb{N}\}$ of S is dense if for any nonempty open set $A \in S$, there exists an $m \in \mathbb{N}$ such that $x_m \in A$.
- We say the topological space S is separable, if there exists a countable dense subset.

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Complete metric space

• Let S be a space.

• Let $d: S^2 \to [0,\infty)$ be a metric on S, i.e.

•
$$d(x, x) = 0$$
 for all $x \in S$;

•
$$d(x, y) > 0$$
 for all $x \neq y$ in S;

•
$$d(x,y) = d(y,x)$$
 for all x, y in S ;

•
$$d(x,z) \le d(x,y) + d(y,z)$$
 for all x, y, z in S.

- We say a sequence $(x_i)_{i=1}^{\infty}$ is Cauchy if $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n > N, d(x_m, x_n) \leq \epsilon.$
- We say a metric space (S, d) is complete, if for every Cauchy sequence $(x_i)_{i=1}^{\infty}$, there exists an $x \in S$ such that

$$\lim_{n \to \infty} d(x_n, x) = 0.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Let (S, d) be a metric space.
- We say $A \subset S$ is open w.r.t. d if $\forall x \in A, \exists \epsilon > 0$ such that

$$\{y\in S: d(x,y)<\epsilon\}\subset A.$$

- Denote by S the collection of all open set w.r.t. d. Then, (S, S) is a topological space.
- We say S is the topology induced by the metric d.
- A topology is called completely metrizable, if it can be induced by some compelete metric.

- Let (S, \mathcal{S}) be a topological space.
- We say (S, \mathcal{S}) is Polish if
 - it is separable; and
 - it is completely metrizable.

- Let (S, \mathcal{S}) be a topological space.
- Let $\mathcal{B}_S = \sigma(\mathcal{S})$ be the σ -field generated by \mathcal{S} .
- We call \mathcal{B}_S the Borel σ -field w.r.t. (S, \mathcal{S}) .
- Elements in \mathcal{B}_S are called Borel sets.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be two measurable spaces.
- We say a map $f: X \to Y$ is measurable map from (X, \mathcal{X}) to (Y, \mathcal{Y}) if for every $B \in \mathcal{Y}$,

$$f^{-1}(B) := \{ x \in X : f(x) \in B \} \in \mathcal{X}.$$

• In particular, if $(Y, \mathcal{Y}) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, then f is called a measurable function.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let (S, \mathcal{S}) and (T, \mathcal{T}) be two topological spaces.
- Let \mathcal{B}_S and \mathcal{B}_T be the Borel σ -fields generated by \mathcal{S} and \mathcal{T} respectively.
- We say the topological space (S, \mathcal{S}) is Borel isomorphic to (T, \mathcal{T}) , if there exists a bijection $f: S \to T$ such that
 - f is a measurable map from (S, \mathcal{B}_S) to (T, \mathcal{B}_T) ; and
 - f^{-1} is a measurable map from (T, \mathcal{B}_T) to (S, \mathcal{B}_S) .

Any uncountable Polish space S is Borel isomorphic to \mathbb{R} .

- This is a powerful tool when handling measure theory on Polish space.
- Many important state spaces for random elements are Polish, for example, the Wiener space $C([0, 1], \mathbb{R})$ equipped with the supremum norm.

For any non-negative measurable functions f, f_1, f_2, \ldots on a measure space (S, S, μ) , we have

$$0 \le f_n \uparrow f \implies \mu(f_n) \uparrow \mu(f).$$

0 ≤ f_n ↑ f means that for every s ∈ S, 0 ≤ f_n(s) ↑ f(s).
Integral μ(f_n) and μ(f)?

(人間) システン イヨン

Integral for simple functions

• We will define the integral

$$\mu(f) = \int f \mathrm{d}\mu = \int f(\omega) \mu(\mathrm{d}\omega).$$

• We say a measurable function ϕ on a measure space (S, \mathcal{S}, μ) is simple if $\exists n \in \mathbb{Z}_+, c_1, \ldots, c_n \in [0, \infty)$ and $A_1, \ldots, A_n \in \mathcal{S}$ such that

$$\phi = c_1 \mathbf{1}_{A_1} + \dots + c_n \mathbf{1}_{A_n},$$

and in this case,

$$\mu(\phi) := c_1 \mu(A_1) + \dots c_n \mu(A_n).$$

イロト イヨト イヨト イヨト

Integral for non-negative measurable functions

- Let f be a non-negative measurable function on a measure space (S, \mathcal{S}, μ) .
- It can be shown that there exists a sequence of simple measurable functions f_1, f_2, \ldots such that $0 \le f_n \uparrow f$.
- It can be verified that $\mu(f_n)$ is non-decreasing.
- Define $\mu(f) := \lim_{n \to \infty} \mu(f_n) \in [0, \infty].$
- We say f is integrable if $\mu(f) < \infty$.

イロト イヨト イヨト イヨト 二日

- Let f be a measurable function on a measure space (S, \mathcal{S}, μ) .
- Define $f^+ = \max\{f, 0\}$ and $f^- = (-f)^+$. Then $f = f^+ f^-$.
- We say f is integrable if f^+ and f^- are integrable.
- If f is integrable, define $\mu(f) := \mu(f^+) \mu(f^-)$.

For any non-negative measurable functions f, f_1, f_2, \ldots on a measure space (S, \mathcal{S}, μ) , we have

$$0 \le f_n \uparrow f \implies \mu(f_n) \uparrow \mu(f).$$

- A powerful tool to exchange order between expectation and limits.
- Some times is used to construct random objects.

(人間) システン イヨン

Product measure

Theorem 1.29

For any σ -finite measure spaces (S, \mathcal{S}, μ) and (T, \mathcal{T}, ν) , there exists a unique measure $\mu \otimes \nu$ on $(S \times T, \mathcal{S} \otimes \mathcal{T})$, such that

$$(\mu \otimes \nu)(B \times C) = \mu(B) \times \nu(C), \quad B \in \mathcal{S}, C \in \mathcal{T}.$$

- We say a measure space (S, \mathcal{S}, μ) is σ -finite if there exists S_1, S_2, \ldots in \mathcal{S} such that $S = \bigcup_{k=1}^{\infty} S_k$ and $\mu(S_k) < \infty$ for every $k \in \mathbb{N}$.
- For given sets A and B, the product space $A \times B := \{(a, b) : a \in A, b \in B\}.$
- $\mathcal{S} \otimes \mathcal{T} := \sigma(\mathcal{S} \times \mathcal{T}).$

・ 何 ト ・ ヨ ト ・ ヨ ト

Fubini's theorem

Theorem 1.29

For any σ -finite measure spaces (S, \mathcal{S}, μ) and (T, \mathcal{T}, ν) , and any measurable function $f: S \times T \to \mathbb{R}$ integrable against $\mu \otimes \nu$, we have

$$\begin{aligned} (\mu \otimes \nu)(f) &= \int_{S} \left(\int_{T} f(s,t)\nu(\mathrm{d}t) \right) \mu(\mathrm{d}s) \\ &= \int_{T} \left(\int_{S} f(s,t)\mu(\mathrm{d}s) \right) \nu(\mathrm{d}t). \end{aligned}$$

• Fubini's theorem is a powerful tool to exchange the order of integrals.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Thanks!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?