Topics in probability theory: Measure theory

Zhenyao Sun

Beijing Institute of Technology

September 9, 2024

 QQ 1 / 30

 $A\oplus A\rightarrow A\oplus A\rightarrow A\oplus A\quad .$

4 0 F

Restriction of outer measure

Theorem 2.1

Let μ be an outer measure on *S*, and write *S* for the class of μ -measurable sets. Then *S* is a σ -field. The restriction of μ to *S* is a measure.

- **o** outer measure?
- *µ*-measurable sets?
- \bullet σ -field?
- **o** measure?

→ 何 ▶ → ヨ ▶ → ヨ ▶

- Let S be a space.
- Let 2*^S* be the collection of subsets of *S*.
- Let $\mu: 2^S \to [0, \infty]$ be a set function.
- \bullet We say μ is an outer measure if
	- \bullet *μ* is non-decreasing: *A* ⊂ *B* implies $\mu(A) \leq \mu(B)$;
	- μ is countably sub-additive: $\mu(\bigcup_{k=1}^{\infty} A_i) \leq \sum_{k=1}^{\infty} \mu(A_i);$
	- $\bullet \ \mu(\emptyset) = 0.$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

- \bullet Let μ be an outer measure for a space *S*.
- \bullet We say a subset *A* ⊂ *S* is *µ*-measurable if for every *B* ⊂ *S*,

$$
\mu(B) = \mu(B \cap A) + \mu(B \cap A^c).
$$

∍

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

σ -field

- Let *S* be a given set.
- Let $2^S := \{A : A \subset S\}$ the collection of subsets of *S*.
- We say S is a σ -field for S , if
	- \bullet *S* ∈ 2^S ;
	- $\bullet \emptyset \in \mathcal{S}$;
	- *F* is closed under countable unions: $A_1, A_2, \dots \in \mathcal{S}$ implies $\cup_{k=1}^{\infty} A_k \in \mathcal{S};$
	- *S* is closed under countable intersection: $A_1, A_2, \cdots \in S$ implies $\bigcap_{k=1}^{\infty} A_k \in \mathcal{S}.$
	- **•** *S* is closed under complementation: *A* ∈ *S* implies A^c ∈ *S*.

• We say (S, \mathcal{S}) is a measurable space if \mathcal{S} is a σ -field of S .

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 9 Q Q

- Let *S* be a σ-field of a space *S*.
- Let μ be a function from $\mathcal S$ to $[0,\infty]$.
- \bullet We say μ is a measure on (S, \mathcal{S}) if
	- $\bullet \ \mu(\emptyset) = 0;$
	- μ is countably additive: Let $A_1, A_2, \dots \in S$ be disjoint, then $\mu(\cup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} A_k.$
- \bullet We say (S, \mathcal{S}, μ) is a measure space if (S, \mathcal{S}) is a measurable space and μ is a measure on (S, \mathcal{S}) .

←ロ ▶ → 何 ▶ → ヨ ▶ → ヨ ▶

Restriction of outer measure

Theorem 2.1

Let μ be an outer measure on *S*, and write *S* for the class of μ -measurable sets. Then *S* is a σ -field. The restriction of μ to *S* is a measure.

- The theorem above is one of the main reason why we need the concept of σ -field.
- It is a powerful tool to construct measures like Lebesgue's measure and Hausdorff measure.

For any π -system $\mathcal C$ and λ -system $\mathcal D$ in a space S , we have

$$
\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}
$$

- \bullet π -system?
- \bullet λ -system?
- What is $\sigma(\mathcal{C})$, the σ -field generated by \mathcal{C} ?

メタト メミト メミト

4 0 8

- Let *S* be a given set.
- Let $2^S := \{A : A \subset S\}$ be the collection of subsets of *S*.
- We say C is a π -system w.r.t. S , if
	- **e** $C \subset 2^S$ and
	- \bullet *C* is closed under intersection: *A, B* ∈ *C* implies *A* ∩ *B* ∈ *C*.

4 ロ ト イ何 ト イヨ ト イヨ ト

- Let *S* be a given set.
- Let $2^S := \{A : A \subset S\}$ be the collection of subsets of *S*.
- We say $\mathcal D$ is a λ -system w.r.t. *S*, if
	- \bullet *D* \subset 2^{*S*};
	- $S \in \mathcal{D}$;
	- *D* is closed under proper difference: $A, B \in \mathcal{D}$ and $A \subset B$ implies $B \setminus A \in \mathcal{D}$;
	- D is closed under increasing limits: $A_1, A_2, \cdots \in D$ with $A_k \subset A_{k+1}$ for every $k \in \mathbb{N}$ implies $A_{\infty} := \bigcup_{k=1}^{\infty} A_k \in \mathcal{D}$.

イロト イ部 トイ君 トイ君 トッ君

Generated σ-field

- Let *S* be a given set.
- Let $2^S := \{A : A \subset S\}$ be the collection of subsets of *S*.
- Let $C \subset 2^S$ be non-empty.
- Define

$$
\sigma(\mathcal{C}) := \bigcap_{\mathcal{A} \text{ is a } \sigma\text{-field of } S; \, \mathcal{C} \subset \mathcal{A}} \mathcal{A}.
$$

- **•** It is known that $\sigma(\mathcal{C})$ is a σ -field.
- \bullet $\sigma(\mathcal{C})$ is called the σ -field generated by \mathcal{C} .

メタトメ ミトメ ミト

For any π -system $\mathcal C$ and λ -system $\mathcal D$ in a space S , we have

 $\mathcal{C} \subset \mathcal{D} \implies \sigma(\mathcal{C}) \subset \mathcal{D}$

- It can be used to prove many useful result like:
	- **If** two measures agrees on a π -system *C* then they agrees on $\sigma(\mathcal{C})$.
	- **If** the sets from two π -systems C_1 and C_2 are independent under a given probability measure, then the sets from $\sigma(\mathcal{C}_1)$ and $\sigma(\mathcal{C}_2)$ are independent.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Any uncountable Polish space *S* is Borel isomorphic to R.

- Polish space?
- Borel sets?
- Borel isomorphic?

同下 イミト イミト

4 0 8

Topological space

- Let S be a space.
- Let *^S* [⊂] ²*S*.
- \bullet We say (S, \mathcal{S}) is a topological space if
	- $\bullet \emptyset \in \mathcal{S}, S \in \mathcal{S}$;
	- *S* is closed under arbitrary union: $\{A_\lambda : \lambda \in \Lambda\} \subset S$ implies ∪^λ∈^Λ*A*^λ ∈ *S*;
	- *S* is closed under finite intersection: A_1, \ldots, A_n ∈ *S* implies $\bigcap_{k=1}^{n} A_k \in \mathcal{S}.$
- \bullet If (S, \mathcal{S}) is a topological space, then the elements in \mathcal{S} are called open sets.

K ロ K K B K K B K X B K T B K

- Let $S = (S, \mathcal{S})$ be a topological space.
- We say a countable subset $\{x_n : n \in \mathbb{N}\}\$ of *S* is dense if for any nonempty open set $A \in \mathcal{S}$, there exists an $m \in \mathbb{N}$ such that $x_m \in A$.
- We say the topological space *S* is separable, if there exists a countable dense subset.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Complete metric space

• Let S be a space. • Let $d: S^2 \to [0, \infty)$ be a metric on *S*, i.e. $d(x, x) = 0$ for all $x \in S$; • $d(x, y) > 0$ for all $x \neq y$ in *S*; $d(x, y) = d(y, x)$ for all x, y in *S*; • $d(x, z) \leq d(x, y) + d(y, z)$ for all x, y, z in *S*.

- We say a sequence $(x_i)_{i=1}^{\infty}$ is Cauchy if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, $\forall m, n > N, d(x_m, x_n) \leq \epsilon.$
- We say a metric space (*S, d*) is complete, if for every Cauchy sequence $(x_i)_{i=1}^{\infty}$, there exists an $x \in S$ such that

$$
\lim_{n \to \infty} d(x_n, x) = 0.
$$

K ロ K K 個 K K 差 K K 差 K … 差

- \bullet Let (S, d) be a metric space.
- We say $A \subset S$ is open w.r.t. *d* if $\forall x \in A$, $\exists \epsilon > 0$ such that

$$
\{y \in S : d(x, y) < \epsilon\} \subset A.
$$

- Denote by S the collection of all open set w.r.t. *d*. Then, (S, S) is a topological space.
- We say *S* is the topology induced by the metric *d*.
- A topology is called completely metrizable, if it can be induced by some compelete metric.

イロト イ押ト イヨト イヨト

- \bullet Let (S, \mathcal{S}) be a topological space.
- \bullet We say (S, \mathcal{S}) is Polish if
	- it is separable; and
	- it is completely metrizable.

∍

イロト イ押ト イヨト イヨト

- \bullet Let (S, \mathcal{S}) be a topological space.
- Let $\mathcal{B}_S = \sigma(\mathcal{S})$ be the σ -field generated by \mathcal{S} .
- We call \mathcal{B}_S the Borel σ -field w.r.t. (S, \mathcal{S}) .
- Elements in \mathcal{B}_S are called Borel sets.

œ.

イロト イ押ト イヨト イヨトー

- Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be two measurable spaces.
- We say a map $f: X \to Y$ is measurable map from (X, \mathcal{X}) to (Y, \mathcal{Y}) if for every $B \in \mathcal{Y}$,

$$
f^{-1}(B) := \{ x \in X : f(x) \in B \} \in \mathcal{X}.
$$

• In particular, if $(Y, Y) = (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, then *f* is called a measurable function.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

- \bullet Let (S, \mathcal{S}) and (T, \mathcal{T}) be two topological spaces.
- Let \mathcal{B}_S and \mathcal{B}_T be the Borel σ -fields generated by $\mathcal S$ and $\mathcal T$ respectively.
- \bullet We say the topological space (S, \mathcal{S}) is Borel isomorphic to (T, \mathcal{T}) , if there exists a bijection $f : S \to T$ such that
	- *f* is a measurable map from (S, \mathcal{B}_S) to (T, \mathcal{B}_T) ; and
	- \bullet f^{-1} is a measurable map from (T, \mathcal{B}_T) to (S, \mathcal{B}_S) .

(ロ) (個) (星) (星) (

Any uncountable Polish space *S* is Borel isomorphic to R.

- This is a powerful tool when handling measure theory on Polish space.
- Many important state spaces for random elements are Polish, for example, the Wiener space $C([0, 1], \mathbb{R})$ equipped with the supremum norm.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

For any non-negative measurable functions f, f_1, f_2, \ldots on a measure space (S, \mathcal{S}, μ) , we have

$$
0 \le f_n \uparrow f \implies \mu(f_n) \uparrow \mu(f).
$$

 \bullet $0 \leq f_n \uparrow f$ means that for every $s \in S$, $0 \leq f_n(s) \uparrow f(s)$. • Integral $\mu(f_n)$ and $\mu(f)$?

K ロ K K 個 K K 差 K K 差 K … 差

Integral for simple functions

We will define the integral

$$
\mu(f) = \int f d\mu = \int f(\omega) \mu(d\omega).
$$

• We say a measurable function ϕ on a measure space (S, \mathcal{S}, μ) is simple if $\exists n \in \mathbb{Z}_+$, $c_1, \ldots, c_n \in [0, \infty)$ and $A_1, \ldots, A_n \in \mathcal{S}$ such that

$$
\phi = c_1 \mathbf{1}_{A_1} + \cdots + c_n \mathbf{1}_{A_n},
$$

and in this case,

$$
\mu(\phi) := c_1 \mu(A_1) + \dots c_n \mu(A_n).
$$

イロメ イ部メ イ君メ イ君メー

Integral for non-negative measurable functions

- Let *f* be a non-negative measurable function on a measure space $(S, \mathcal{S}, \mu).$
- It can be shown that there exists a sequence of simple measurable functions f_1, f_2, \ldots such that $0 \leq f_n \uparrow f$.
- It can be verified that $\mu(f_n)$ is non-decreasing.
- \bullet Define $\mu(f) := \lim_{n \to \infty} \mu(f_n) \in [0, \infty].$
- We say *f* is integrable if $\mu(f) < \infty$.

K ロ K K 個 K K 差 K K 差 K … 差

- Let *f* be a measurable function on a measure space (S, \mathcal{S}, μ) .
- Define $f^+ = \max\{f, 0\}$ and $f^- = (-f)^+$. Then $f = f^+ f^-$.
- We say *f* is integrable if f^+ and f^- are integrable.
- \bullet If *f* is integrable, define $\mu(f) := \mu(f^+) \mu(f^-)$.

K ロ K K B K K B K X B K T B K

For any non-negative measurable functions f, f_1, f_2, \ldots on a measure space (S, \mathcal{S}, μ) , we have

$$
0 \le f_n \uparrow f \implies \mu(f_n) \uparrow \mu(f).
$$

- A powerful tool to exchange order between expectation and limits.
- Some times is used to construct random objects.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Product measure

Theorem 1.29

For any σ -finite measure spaces (S, \mathcal{S}, μ) and (T, \mathcal{T}, ν) , there exists a unique measure $\mu \otimes \nu$ on $(S \times T, S \otimes T)$, such that

$$
(\mu \otimes \nu)(B \times C) = \mu(B) \times \nu(C), \quad B \in \mathcal{S}, C \in \mathcal{T}.
$$

- We say a measure space (S, \mathcal{S}, μ) is σ -finite if there exists S_1, S_2, \ldots in *S* such that $S = \bigcup_{k=1}^{\infty} S_k$ and $\mu(S_k) < \infty$ for every $k \in \mathbb{N}$.
- For given sets *A* and *B*, the product space $A \times B := \{(a, b) : a \in A, b \in B\}.$
- \bullet *S* \otimes *T* := σ (*S* \times *T*).

→ 何 ト → ヨ ト → ヨ ト

Fubini's theorem

Theorem 1.29

For any σ -finite measure spaces (S, \mathcal{S}, μ) and (T, \mathcal{T}, ν) , and any measurable function $f : S \times T \to \mathbb{R}$ integrable against $\mu \otimes \nu$, we have

$$
(\mu \otimes \nu)(f) = \int_{S} \left(\int_{T} f(s, t) \nu(\mathrm{d}t) \right) \mu(\mathrm{d}s)
$$

=
$$
\int_{T} \left(\int_{S} f(s, t) \mu(\mathrm{d}s) \right) \nu(\mathrm{d}t).
$$

Fubini's theorem is a powerful tool to exchange the order of integrals.

イロメ イ部メ イヨメ イヨメ

Thanks!

K ロ K イ団 K K モ X K モ X モ ヨー イコ X K C