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Borel-Cantelli Lemma

Theorem 4.8

Let (Ω,A,P) be a probability space. For any A1, A2, · · · ∈ A,

∞󰁛

n=1

P(An) < ∞ =⇒ P(An i.o.) = 0,

and equivalence holds when (An)
∞
n=1 are independent.

Probability space?

i.o.?

(An)
∞
n=1 independent?
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Probability space

A measure µ on a measurable space (S,S) is called a probability
measure if µ(S) = 1.

Probability space (Ω,A,P) is a measure space with P(Ω) = 1.
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i.o.?

i.o. means infinitely often.

More precisely,

{An i.o.} :=
󰁟

n

󰁞

k≥n

Ak.
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Independence

For a family of events (At)t∈T in A, we say they are independent if
for any distinct t1, . . . , tn ∈ T ,

P(
n󰁟

k=1

Atk) =

n󰁜

k=1

P(Atk).
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Borel-Cantelli Lemma

Theorem 4.8

Let (Ω,A,P) be a probability space. For any A1, A2, · · · ∈ A,

∞󰁛

n=1

P(An) < ∞ =⇒ P(An i.o.) = 0,

and equivalence holds when (An)
∞
n=1 are independent.

Borel-Cantelli Lemma is a basic tool in analyzing limiting theory
in Probability.

It is used in the proof of law of large numbers.
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Sequence of independent random elements

Theorem 4.19

For any probability measures µ1, µ2, . . . on the Polish spaces
S1, S2, . . . , there exist some independent random elements ξ1, ξ2, . . . on
a common probability space with distributions µ1, µ2, . . .

Random elements?

Independent random elements?

Distribution of a given random element?
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Random elements

Let (Ω,F ,P) be a probability space.

Let (S,S) be a measurable space. If S is a topological space, then
we require S = BS .

If ξ is a measurable map from (Ω,F) to (S,S), then we say ξ is an
S-valued random element.

In particular, if S = R, then ξ is called a random variable.
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Distribution of a random element

Let ξ be a random element from a probability space (Ω,F ,P) to a
measurable space (S,S).
Recall the definition of the measurable map: for every A ∈ S,

ξ−1(A) := {ω ∈ Ω : ξ(ω) ∈ A} ∈ F .

For every A ∈ S, define µ(A) = P(ξ−1(A)).

It can be verified that µ is a probability measure on (S,S).
We say µ is the distribution of ξ.
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σ-field generated by a random element

Let ξ be a random element from a probability space (Ω,F ,P) to a
measurable space (S,S).
Define σ(ξ) := {ξ−1(A) : A ∈ S}.
It can be verified that σ(ξ) is a σ-field of the space Ω.

We say σ(ξ) is the σ-field generated by ξ.

If (ξλ)λ∈Λ is a family of random elements. Then we say

σ(ξλ : λ ∈ Λ) = σ (∪λ∈Λσ(ξλ))

is the σ-field generated by (ξλ)λ∈Λ.
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Independent random elements

Let (Ω,F ,P) be a probability space.

Let T be an arbitrary set (for example T = {1, 2, . . . , }), and for
every t ∈ T , let Xt be a random element taking values in a
measurable space (St,St).

For every t ∈ T , let σ(ξt) be the σ-field generated by the random
element ξt.

We say (ξt)t∈T are independent, if for every family of events
(Bt)t∈T in F :

Bt ∈ σ(Xt), ∀t ∈ T =⇒ (Bt)t∈T are independent.
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Sequence of independent random elements

Theorem 4.19

For any probability measures µ1, µ2, . . . on the Polish spaces
S1, S2, . . . , there exist some independent random elements ξ1, ξ2, . . . on
a common probability space with distributions µ1, µ2, . . .

This theorem allows us to always construct one more independent
random element.

This allows us to study the infinite sequence of random elements.

The Polish space condition is important.
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Strong Law of Large numbers

Theorem 5.23

Let ξ, ξ1, ξ2, . . . be i.i.d. random variables, put Sn =
󰁓n

k=1 ξk, and fix a
p ∈ (0, 2). Then n−1/pSn converges a.s. iff these conditions hold,
depending on the value of p:

for p ∈ (0, 1]: ξ ∈ Lp,

for p ∈ (1, 2) : ξ ∈ Lp and E[ξ] = 0.

In the case that n−1/pSn converges, the limit equals to E[ξ] when p = 1
and is otherwise equals to 0.

i.i.d.?

Converges a.s.?

The expecation E[ξ]?
Lp space?

13 / 30



i.i.d.

i.i.d. means independent and identically distributed.

Let (ξi)
∞
i=1 be a sequence of random variable defined in a

probability space (Ω,F ,P).
We say (ξi)

∞
i=1 are i.i.d. random variable:

if (ξi)
∞
i=1 are independent,

µξi(A) = P(ξi ∈ A) = P(ξj ∈ A) = µξj (A) for every i, j ∈ N and
A ∈ BR.
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Converges a.s.

Let (Xn)
∞
n=1 be a sequence of random variable defined in a

probability space (Ω,F ,P).
For any random variable Z on Ω, it can be verified that the
following event is measurable:

{ω ∈ Ω : lim
n→∞

Xn(ω) = Z(ω)}.

We say (Xn)
∞
n=1 convergence almost surely (a.s.) if there exists a

random variable Z on Ω, such that

P({ω ∈ Ω : lim
n→∞

Xn(ω) = Z(ω)}) = 1.

15 / 30



Expectation

Let (Ω,F ,P) be a probability space.

Let ξ : Ω → R be a random variable.

Define E[ξ] =
󰁕
ξ(ω)P(dω) if ξ is integrable w.r.t. the measure P.

If ξ is not integrable, then there are three possibilities:

E[ξ+] < ∞ but E[ξ−] = ∞. In this case, define E[ξ] = −∞.
E[ξ+] = ∞ but E[ξ−] < ∞. In this case, define E[ξ] = ∞.
E[ξ+] = ∞ and E[ξ−] = ∞. In this case, we say the expectation of ξ
does not exist.

Here, ξ+ := max{ξ, 0} and ξ− := (−ξ)+.

(Question: Why not define the expectation of the symmetric
Cauchy distribution as 0?)
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Lp space

Let (Ω,F ,P) be a probability space.

Let ξ : Ω → R be a random variable.

Let p ∈ (0,∞). Define

󰀂ξ󰀂p := (E[|ξ|p])1/p.

Define Lp := {random variable ξ : 󰀂ξ󰀂p < ∞}.
(Warning: when p < 1, Lp is not a Banach space.)
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Strong Law of Large numbers

Theorem 5.23

Let ξ, ξ1, ξ2, . . . be i.i.d. random variables, put Sn =
󰁓n

k=1 ξk, and fix a
p ∈ (0, 2). Then n−1/pSn converges a.s. iff these conditions hold,
depending on the value of p:

for p ∈ (0, 1]: ξ ∈ Lp,

for p ∈ (1, 2) : ξ ∈ Lp and E[ξ] = 0.

In the case that n−1/pSn converges, the limit equals to E[ξ] when p = 1
and is otherwise equals to 0.

Law of large number is the foundation of Statistics.

When p = 2, the result does not hold.
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Central limit theorem

Theorem 6.18

Let ξ, ξ1, ξ2, . . . be i.i.d., non-degenerate random variables, and let ζ be
a standard normal distribution N(0,1). Then,

1√
n

n󰁛

k=1

ξk
d−→ ζ ⇐⇒ E[ξ] = 0,E[ξ2] = 1.

non-degenerate?

standard normal distribution?
d−→, convergence in distribution?
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Non-degenerate random variable

We say a random variable ξ is non-degenerate, if it is not a
constant.

In other word, P(ξ = c) < 1 for any c ∈ R.
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Standard normal distribution

We say a probability measure µ on R is a standard Gaussian
distribution, if

µ(dx) = ce−
1
2
x2
dx

where c is a constant such that µ is a probtbiliay measure.

Actually, c = 1√
2π
.

We say a random variable ζ is standard normal N(0,1) if its
distribution is given by the standard Gaussian distribution.
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Convergence in distribution

Suppose that S is Polish space.

Let µ and µ1, µ2 . . . be probability measures on S.

We say µn converges weakly to µ if for every continuous bounded
function f , µn(f) converges to µ(f).

Let ξ, ξ1, ξ2 . . . be random elements taking values in S.

We say ξn converges in distribution to ξ, if the distributions of ξn
converges weakly to the distribution of ξ.

If µ is the distribution of ξ, then it is known that µ(f) = E[f(ξ)]
for any bounded measurable f .

Therefore, equivalently speaking, we say ξn converges in
distribution to ξ, if for every continuous bounded function f on S,
E[f(ξn)] converges to E[f(ξ)].
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Central limit theorem

Theorem 6.18

Let ξ, ξ1, ξ2, . . . be i.i.d., non-degenerate random variables, and let ζ be
a standard normal distribution N(0,1). Then,

1√
n

n󰁛

k=1

ξk
d−→ ζ ⇐⇒ E[ξ] = 0,E[ξ2] = 1.

CLT is one of the cornerstone results in probability theory and
statistics.

It emphasis the importance of Gaussian/Normal distributions.
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Domain of attraction of Gaussian

Theorem 6.18

Let ξ, ξ1, ξ2, . . . be i.i.d., non-degenerate random variables, and let ζ be
a standard normal distribution N(0,1). Then these conditions are
equivalent:

there exist some constants an and mn, such that

an

n󰁛

k=1

(ξk −mn)
d−→ ζ,

the function L(x) = E[ξ21|ξ|≤x] varies slowly at ∞.

Slowly varying function?
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Slowly varying

Let L be a non-decreasing and non-negative function on [0,∞).

We say L is vary slowly at ∞, if supx L(x) > 0 and for each c > 0,

lim
x→∞

L(cx)

L(x)
= 1.

In particular, if L is bounded then it is slowly varing.

L(x) = log(x+ 1) is also slowly varing.
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Domain of attraction of Gaussian

Theorem 6.18

Let ξ, ξ1, ξ2, . . . be i.i.d., non-degenerate random variables, and let ζ be
a standard normal distribution N(0,1). Then these conditions are
equivalent:

there exist some constants an and mn, such that

an

n󰁛

k=1

(ξk −mn)
d−→ ζ,

the function L(x) = E[ξ21|ξ|≤x] varies slowly at ∞.

Given (2), (1) holds with

mn := E[ξ]; an :=
1

1 ∨ sup{x > 0 : nL(x) ≥ x2} .
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Levy’s continuity theorem

Theorem 6.23

Let µ1, µ2, . . . be probability measures on Rd with characteristics
functions µ̂n. Then these conditions are equivalent:

µ̂n(t) → ϕ(t), t ∈ Rd for a function ϕ which is continuous at 0,

µn → µ weakly for a probability measure µ on Rd.

In that case, µ has characteristic function ϕ.

Characteristic functions?

27 / 30



Characteristic function

Let µ be a probability measure on Rd.

Define a function µ̂ on Rd such that

µ̂(t) =

󰁝

Rd

ei〈t,x〉µ(dx)

where

〈t, x〉 :=
d󰁛

k=1

tixi, t, x ∈ Rd.

We call µ̂ the characteristic function of µ.

As the name suggested, µ̂ = ν̂ implies µ = ν.
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Levy’s continuity theorem

Theorem 6.23

Let µ1, µ2, . . . be probability measures on Rd with characteristics
functions µ̂n. Then these conditions are equivalent:

µ̂n(t) → ϕ(t), t ∈ Rd for a function ϕ which is continuous at 0,

µn → µ weakly for a probability measure µ on Rd.

In that case, µ has characteristic function ϕ.

Levy’s continuity theorem is a powerful tool while establishing
CLT.

The characteristic function of standard Gaussian µ is µ̂(t) = e−
1
2
t2 .
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Thanks!
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