Topics in probability theory: Independence

Zhenyao Sun

Beijing Institute of Technology

September 11, 2024

1 / 30

イロト 不得 トイヨト イヨト

Borel-Cantelli Lemma

Theorem 4.8

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. For any $A_1, A_2, \dots \in \mathcal{A}$,

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A_n \text{ i.o.}) = 0,$$

and equivalence holds when $(A_n)_{n=1}^{\infty}$ are independent.

- Probability space?
- i.o.?
- $(A_n)_{n=1}^{\infty}$ independent?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A measure μ on a measurable space (S, S) is called a probability measure if μ(S) = 1.
- Probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is a measure space with $\mathbb{P}(\Omega) = 1$.

- i.o. means infinitely often.
- More precisely,

$$\{A_n \ i.o.\} := \bigcap_n \bigcup_{k \ge n} A_k.$$

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• For a family of events $(A_t)_{t \in T}$ in \mathcal{A} , we say they are independent if for any distinct $t_1, \ldots, t_n \in T$,

$$\mathbb{P}(\bigcap_{k=1}^{n} A_{t_k}) = \prod_{k=1}^{n} \mathbb{P}(A_{t_k}).$$

크

イロト イヨト イヨト イヨト

Borel-Cantelli Lemma

Theorem 4.8

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. For any $A_1, A_2, \dots \in \mathcal{A}$,

$$\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty \implies \mathbb{P}(A_n \text{ i.o.}) = 0,$$

and equivalence holds when $(A_n)_{n=1}^{\infty}$ are independent.

- Borel-Cantelli Lemma is a basic tool in analyzing limiting theory in Probability.
- It is used in the proof of law of large numbers.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □ 三 ののの

Sequence of independent random elements

Theorem 4.19

For any probability measures μ_1, μ_2, \ldots on the Polish spaces S_1, S_2, \ldots , there exist some independent random elements ξ_1, ξ_2, \ldots on a common probability space with distributions μ_1, μ_2, \ldots

- Random elements?
- Independent random elements?
- Distribution of a given random element?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
- Let (S, \mathcal{S}) be a measurable space. If S is a topological space, then we require $\mathcal{S} = \mathcal{B}_S$.
- If ξ is a measurable map from (Ω, \mathcal{F}) to (S, \mathcal{S}) , then we say ξ is an *S*-valued random element.
- In particular, if $S = \mathbb{R}$, then ξ is called a random variable.

- Let ξ be a random element from a probability space (Ω, F, P) to a measurable space (S, S).
- Recall the definition of the measurable map: for every $A \in \mathcal{S}$,

$$\xi^{-1}(A) := \{ \omega \in \Omega : \xi(\omega) \in A \} \in \mathcal{F}.$$

- For every $A \in \mathcal{S}$, define $\mu(A) = \mathbb{P}(\xi^{-1}(A))$.
- It can be verified that μ is a probability measure on (S, \mathcal{S}) .
- We say μ is the distribution of ξ .

σ -field generated by a random element

- Let ξ be a random element from a probability space (Ω, F, P) to a measurable space (S, S).
- Define $\sigma(\xi) := \{\xi^{-1}(A) : A \in \mathcal{S}\}.$
- It can be verified that $\sigma(\xi)$ is a σ -field of the space Ω .
- We say $\sigma(\xi)$ is the σ -field generated by ξ .
- If $(\xi_{\lambda})_{\lambda \in \Lambda}$ is a family of random elements. Then we say

$$\sigma(\xi_{\lambda}:\lambda\in\Lambda)=\sigma\left(\cup_{\lambda\in\Lambda}\sigma(\xi_{\lambda})\right)$$

is the σ -field generated by $(\xi_{\lambda})_{\lambda \in \Lambda}$.

・ロト ・ 四ト ・ ヨト ・ ヨ

Independent random elements

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
- Let T be an arbitrary set (for example $T = \{1, 2, ..., \}$), and for every $t \in T$, let X_t be a random element taking values in a measurable space (S_t, S_t) .
- For every $t \in T$, let $\sigma(\xi_t)$ be the σ -field generated by the random element ξ_t .
- We say $(\xi_t)_{t\in T}$ are independent, if for every family of events $(B_t)_{t\in T}$ in \mathcal{F} :

$$B_t \in \sigma(X_t), \forall t \in T \implies (B_t)_{t \in T}$$
 are independent.

(日)

Sequence of independent random elements

Theorem 4.19

For any probability measures μ_1, μ_2, \ldots on the Polish spaces S_1, S_2, \ldots , there exist some independent random elements ξ_1, ξ_2, \ldots on a common probability space with distributions μ_1, μ_2, \ldots

- This theorem allows us to always construct one more independent random element.
- This allows us to study the infinite sequence of random elements.
- The Polish space condition is important.

・ロト ・四ト ・ヨト ・ヨト

Strong Law of Large numbers

Theorem 5.23

Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d. random variables, put $S_n = \sum_{k=1}^n \xi_k$, and fix a $p \in (0, 2)$. Then $n^{-1/p}S_n$ converges a.s. iff these conditions hold, depending on the value of p:

• for $p \in (0, 1]$: $\xi \in L^p$,

• for
$$p \in (1,2)$$
: $\xi \in L^p$ and $\mathbb{E}[\xi] = 0$.

In the case that $n^{-1/p}S_n$ converges, the limit equals to $\mathbb{E}[\xi]$ when p = 1 and is otherwise equals to 0.

- i.i.d.?
- Converges a.s.?
- The expectation $\mathbb{E}[\xi]$?
- L^p space?

・日・ ・ヨ・ ・ヨ・

- i.i.d. means independent and identically distributed.
- Let $(\xi_i)_{i=1}^{\infty}$ be a sequence of random variable defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- We say $(\xi_i)_{i=1}^{\infty}$ are i.i.d. random variable:
 - if $(\xi_i)_{i=1}^{\infty}$ are independent,
 - $\mu_{\xi_i}(A) = \mathbb{P}(\xi_i \in A) = \mathbb{P}(\xi_j \in A) = \mu_{\xi_j}(A)$ for every $i, j \in \mathbb{N}$ and $A \in \mathcal{B}_{\mathbb{R}}$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

- Let $(X_n)_{n=1}^{\infty}$ be a sequence of random variable defined in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- For any random variable Z on Ω , it can be verified that the following event is measurable:

$$\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = Z(\omega)\}.$$

• We say $(X_n)_{n=1}^{\infty}$ convergence almost surely (a.s.) if there exists a random variable Z on Ω , such that

$$\mathbb{P}(\{\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = Z(\omega)\}) = 1.$$

・ロト ・四ト ・ヨト ・ヨト

Expectation

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
- Let $\xi : \Omega \to \mathbb{R}$ be a random variable.
- Define $\mathbb{E}[\xi] = \int \xi(\omega) \mathbb{P}(d\omega)$ if ξ is integrable w.r.t. the measure \mathbb{P} .
- If ξ is not integrable, then there are three possibilities:
 - $\mathbb{E}[\xi^+] < \infty$ but $\mathbb{E}[\xi^-] = \infty$. In this case, define $\mathbb{E}[\xi] = -\infty$.
 - $\mathbb{E}[\xi^+] = \infty$ but $\mathbb{E}[\xi^-] < \infty$. In this case, define $\mathbb{E}[\xi] = \infty$.
- Here, $\xi^+ := \max{\{\xi, 0\}}$ and $\xi^- := (-\xi)^+$.
- (Question: Why not define the expectation of the symmetric Cauchy distribution as 0?)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへの

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
- Let $\xi : \Omega \to \mathbb{R}$ be a random variable.
- Let $p \in (0, \infty)$. Define

$$\|\xi\|_p := (\mathbb{E}[|\xi|^p])^{1/p}.$$

- Define $L^p := \{ \text{random variable } \xi : \|\xi\|_p < \infty \}.$
- (Warning: when p < 1, L^p is not a Banach space.)

イロト イヨト イヨト イヨト

Strong Law of Large numbers

Theorem 5.23

Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d. random variables, put $S_n = \sum_{k=1}^n \xi_k$, and fix a $p \in (0, 2)$. Then $n^{-1/p}S_n$ converges a.s. iff these conditions hold, depending on the value of p:

- for $p \in (0,1]$: $\xi \in L^p$,
- for $p \in (1,2)$: $\xi \in L^p$ and $\mathbb{E}[\xi] = 0$.

In the case that $n^{-1/p}S_n$ converges, the limit equals to $\mathbb{E}[\xi]$ when p = 1and is otherwise equals to 0.

- Law of large number is the foundation of Statistics.
- When p = 2, the result does not hold.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem 6.18

Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d., non-degenerate random variables, and let ζ be a standard normal distribution N(0,1). Then,

$$\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\xi_{k} \xrightarrow{d} \zeta \quad \Longleftrightarrow \quad \mathbb{E}[\xi] = 0, \mathbb{E}[\xi^{2}] = 1.$$

- non-degenerate?
- standard normal distribution?
- \xrightarrow{d} , convergence in distribution?

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-degenerate random variable

- We say a random variable ξ is non-degenerate, if it is not a constant.
- In other word, $\mathbb{P}(\xi = c) < 1$ for any $c \in \mathbb{R}$.

イロト イヨト イヨト イヨト

• We say a probability measure μ on $\mathbb R$ is a standard Gaussian distribution, if

$$\mu(\mathrm{d}x) = c e^{-\frac{1}{2}x^2} \mathrm{d}x$$

where c is a constant such that μ is a probability measure.

- Actually, $c = \frac{1}{\sqrt{2\pi}}$.
- We say a random variable ζ is standard normal N(0,1) if its distribution is given by the standard Gaussian distribution.

・ロト ・四ト ・ヨト ・ヨト

Convergence in distribution

- Suppose that S is Polish space.
- Let μ and $\mu_1, \mu_2...$ be probability measures on S.
- We say μ_n converges weakly to μ if for every continuous bounded function f, $\mu_n(f)$ converges to $\mu(f)$.
- Let $\xi, \xi_1, \xi_2...$ be random elements taking values in S.
- We say ξ_n converges in distribution to ξ, if the distributions of ξ_n converges weakly to the distribution of ξ.
- If μ is the distribution of ξ , then it is known that $\mu(f) = \mathbb{E}[f(\xi)]$ for any bounded measurable f.
- Therefore, equivalently speaking, we say ξ_n converges in distribution to ξ , if for every continuous bounded function f on S, $\mathbb{E}[f(\xi_n)]$ converges to $\mathbb{E}[f(\xi)]$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 6.18

Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d., non-degenerate random variables, and let ζ be a standard normal distribution N(0,1). Then,

$$\frac{1}{\sqrt{n}}\sum_{k=1}^{n}\xi_{k} \xrightarrow{d} \zeta \quad \iff \quad \mathbb{E}[\xi] = 0, \mathbb{E}[\xi^{2}] = 1.$$

- CLT is one of the cornerstone results in probability theory and statistics.
- It emphasis the importance of Gaussian/Normal distributions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Domain of attraction of Gaussian

Theorem 6.18

Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d., non-degenerate random variables, and let ζ be a standard normal distribution N(0,1). Then these conditions are equivalent:

① there exist some constants a_n and m_n , such that

$$a_n \sum_{k=1}^n (\xi_k - m_n) \xrightarrow{d} \zeta,$$

2 the function $L(x) = \mathbb{E}[\xi^2 \mathbf{1}_{|\xi| \le x}]$ varies slowly at ∞ .

• Slowly varying function?

《曰》《圖》《臣》《臣》

- Let L be a non-decreasing and non-negative function on $[0,\infty)$.
- We say L is vary slowly at ∞ , if $\sup_x L(x) > 0$ and for each c > 0,

$$\lim_{x \to \infty} \frac{L(cx)}{L(x)} = 1.$$

- In particular, if L is bounded then it is slowly varing.
- $L(x) = \log(x+1)$ is also slowly varing.

・ロト ・ 四ト ・ ヨト ・ ヨ

Domain of attraction of Gaussian

Theorem 6.18

Let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d., non-degenerate random variables, and let ζ be a standard normal distribution N(0,1). Then these conditions are equivalent:

Q there exist some constants a_n and m_n , such that

$$a_n \sum_{k=1}^n (\xi_k - m_n) \xrightarrow{d} \zeta,$$

2 the function $L(x) = \mathbb{E}[\xi^2 \mathbf{1}_{|\xi| \le x}]$ varies slowly at ∞ .

• Given (2), (1) holds with

$$m_n := \mathbb{E}[\xi]; \quad a_n := \frac{1}{1 \vee \sup\{x > 0 : nL(x) \ge x^2\}}.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Theorem 6.23

Let μ_1, μ_2, \ldots be probability measures on \mathbb{R}^d with characteristics functions $\hat{\mu}_n$. Then these conditions are equivalent:

 $\ \, {\hat \mu}_n(t) \to \varphi(t), t \in {\mathbb R}^d \text{ for a function } \varphi \text{ which is continuous at } 0,$

2 $\mu_n \to \mu$ weakly for a probability measure μ on \mathbb{R}^d .

In that case, μ has characteristic function φ .

• Characteristic functions?

・ 同 ト ・ ヨ ト ・ ヨ ト

Characteristic function

- Let μ be a probability measure on \mathbb{R}^d .
- Define a function $\hat{\mu}$ on \mathbb{R}^d such that

$$\hat{\mu}(t) = \int_{\mathbb{R}^d} e^{i \langle t, x \rangle} \mu(\mathrm{d}x)$$

where

$$\langle t, x \rangle := \sum_{k=1}^{d} t_i x_i, \quad t, x \in \mathbb{R}^d.$$

- We call $\hat{\mu}$ the characteristic function of μ .
- As the name suggested, $\hat{\mu} = \hat{\nu}$ implies $\mu = \nu$.

Theorem 6.23

Let μ_1, μ_2, \ldots be probability measures on \mathbb{R}^d with characteristics functions $\hat{\mu}_n$. Then these conditions are equivalent:

 $\ \ \, {\hat \mu}_n(t) \rightarrow \varphi(t), t \in {\mathbb R}^d \ \, \text{for a function } \varphi \ \, \text{which is continuous at } 0,$

In that case, μ has characteristic function φ .

- Levy's continuity theorem is a powerful tool while establishing CLT.
- The characteristic function of standard Gaussian μ is $\hat{\mu}(t) = e^{-\frac{1}{2}t^2}$.

- ロト - (四ト - (日下 - (日下 -)))

Thanks!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?