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Borel-Cantelli Lemma

Theorem 4.8

Let (2, A,P) be a probability space. For any A, Ag, - -

o0

> P(An) < 00 = P(4, i0.) =0,
n=1

and equivalence holds when (A4,)%° ; are independent.

€A,

@ Probability space?

@ i.o.7

o (A,)%, independent?
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Probability space

@ A measure p on a measurable space (S5,S) is called a probability
measure if p(S) = 1.

e Probability space (€2, A, P) is a measure space with P(2) = 1.
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@ i.0. means infinitely often.
e More precisely,

{Anio} = A

n k>n

«O>» «Fr «=»r < Q>
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Independence

e For a family of events (A¢)ier in A, we say they are independent if
for any distinct t1,...,t, € T,

P([) Aw) = [[ P(As).
k=1 k=1
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Borel-Cantelli Lemma

Theorem 4.8
Let (2, A,P) be a probability space. For any Ay, Ay, -- € A,

> P(An) <00 = P(4, i0.) =0,
n=1

and equivalence holds when (A4,,)2%, are independent.

o Borel-Cantelli Lemma is a basic tool in analyzing limiting theory
in Probability.

o It is used in the proof of law of large numbers.
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Sequence of independent random elements

Theorem 4.19

For any probability measures p1, 2, ... on the Polish spaces
S1,59, ..., there exist some independent random elements £1,&2,... on
a common probability space with distributions 1, o, . . .

@ Random elements?
o Independent random elements?

e Distribution of a given random element?
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Random elements

e Let (2, F,P) be a probability space.

e Let (S,S) be a measurable space. If S is a topological space, then
we require S = Bg.

e If ¢ is a measurable map from (2, F) to (S,S), then we say ¢ is an
S-valued random element.

@ In particular, if S = R, then £ is called a random variable.
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Distribution of a random element

Let £ be a random element from a probability space (2, F,P) to a
measurable space (5,S).

Recall the definition of the measurable map: for every A € S,

YA = {we:Ew) e A} € F.

For every A € S, define u(A) = P(671(A)).
It can be verified that p is a probability measure on (S,S).

We say p is the distribution of €.
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o-field generated by a random element

Let £ be a random element from a probability space (2, F,P) to a
measurable space (5,S).

Define o (&) := {¢71(A) : A € S}.
It can be verified that o(€) is a o-field of the space Q.
We say o(&) is the o-field generated by &.

If (€))xen is a family of random elements. Then we say

o(éx: A€ A) =0 (Ureao(&n))

is the o-field generated by (£))xea-
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Independent random elements

o Let (2, F,P) be a probability space.

e Let T be an arbitrary set (for example T'= {1,2,...,}), and for
every t € T, let X; be a random element taking values in a
measurable space (S;, S;).

e For every t € T, let (&) be the o-field generated by the random
element &;.

o We say (& )ier are independent, if for every family of events
(Bt)ter in F:

B, € 0(Xy),Vt € T = (By)ter are independent.
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Sequence of independent random elements

Theorem 4.19

For any probability measures p1, p2,... on the Polish spaces
51,59, ..., there exist some independent random elements &;1,&o,... on
a common probability space with distributions i, us, . ..

@ This theorem allows us to always construct one more independent
random element.

@ This allows us to study the infinite sequence of random elements.

@ The Polish space condition is important.
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Strong Law of Large numbers

Theorem 5.23

Let &,&1,&2, ... be iid. random variables, put S, =Y ;_; &, and fix a
p € (0,2). Then n~'/PS,, converges a.s. iff these conditions hold,
depending on the value of p:

e for pe (0,1]: £ € LP,
o forpe (1,2): £ € LP and E[¢] = 0.

In the case that n=1/23, converges, the limit equals to E[¢] when p =1
and is otherwise equals to 0.

e iid.?
o Converges a.s.”
@ The expecation E[{]?

e LP space?
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@ i.i.d. means independent and identically distributed.

o Let (&), be a sequence of random variable defined in a
probability space (2, F,P).

o We say (§)$°, are i.i.d. random variable:

o if (§)$°, are independent,
o e, (A) =P(§ € A) =P(&§ € A) = g, (A) for every 4,7 € N and
A € Bg.
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Converges a.s.

e Let (X,,)22 be a sequence of random variable defined in a
probability space (2, F,P).

e For any random variable Z on 2, it can be verified that the
following event is measurable:

{we: nh_}IEO Xn(w) =Z(w)}.

o We say (X,,)72, convergence almost surely (a.s.) if there exists a
random variable Z on €2, such that

P(fweQ: lim X,(w) = Z(w)}) = 1.
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Expectation

Let (2, F,P) be a probability space.
Let £ : 2 — R be a random variable.

Define E[¢] = [ &(w)P(dw) if § is integrable w.r.t. the measure P.
If € is not 1ntegrable, then there are three possibilities:

o E[¢T] < oo but E[§™] = co. In this case, define E[¢] = —oo0.

o E[¢T] = oo but E[§7] < co. In this case, define E[¢] = .

o E[¢T] = 0o and E[¢7] = oo. In this case, we say the expectation of &

does not exist.

Here, ¢1 := max{¢,0} and £~ := (=¢)™.
(Question: Why not define the expectation of the symmetric
Cauchy distribution as 07)
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LP space

Let (2, F,P) be a probability space.
Let £ : Q — R be a random variable.
Let p € (0,00). Define

1€l = (E[EP)?.

Define LP := {random variable ¢ : ||{||, < oco}.
(Warning: when p < 1, L is not a Banach space.)
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Strong Law of Large numbers

Theorem 5.23

Let &, &1,62, ... be ii.d. random variables, put S, = Y ;_; &, and fix a

p € (0,2). Then n='/7S,, converges a.s. iff these conditions hold,
depending on the value of p:

e for pe (0,1]: £ € LP,
o forpe (1,2): £ € LP and E[¢] = 0.

In the case that n=1/2G, converges, the limit equals to E[¢] when p =1
and is otherwise equals to 0.

o Law of large number is the foundation of Statistics.

@ When p = 2, the result does not hold.
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Central limit theorem

Theorem 6.18

Let &,&1,&5, ... beii.d., non-degenerate random variables, and let ¢ be
a standard normal distribution N(0,1). Then,

1 n
ﬁ;fk %¢ < E[=0E[]=1

@ non-degenerate?
@ standard normal distribution?

d e e
@ —», convergence in distribution?
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Non-degenerate random variable

@ We say a random variable £ is non-degenerate, if it is not a
constant.

@ In other word, P({ = ¢) < 1 for any ¢ € R.
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Standard normal distribution

o We say a probability measure i on R is a standard Gaussian
distribution, if
1
u(de) = ce 2% dx

where c is a constant such that p is a probtbiliay measure.

_ 1
o Actually, c = s

e We say a random variable ( is standard normal N(0,1) if its
distribution is given by the standard Gaussian distribution.
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Convergence in distribution

@ Suppose that S is Polish space.
o Let p and puq, po ... be probability measures on S.

e We say u, converges weakly to p if for every continuous bounded
function f, p,(f) converges to pu(f).

o Let £,£1,& ... be random elements taking values in S.

o We say &, converges in distribution to &, if the distributions of &,
converges weakly to the distribution of &.

o If 1 is the distribution of &, then it is known that u(f) = E[f(£)]
for any bounded measurable f.

@ Therefore, equivalently speaking, we say &, converges in
distribution to &, if for every continuous bounded function f on S,

E[f(&n)] converges to E[f()].
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Central limit theorem

Theorem 6.18

Let &,&1,&5, ... beii.d., non-degenerate random variables, and let ¢ be
a standard normal distribution N(0,1). Then,

1 n
\/ﬁ;fk 4¢ < E=0E}=1

o CLT is one of the cornerstone results in probability theory and
statistics.

e It emphasis the importance of Gaussian/Normal distributions.
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Domain of attraction of Gaussian

Theorem 6.18

Let &,&1,&3, ... beii.d., non-degenerate random variables, and let ¢ be
a standard normal distribution N(0,1). Then these conditions are
equivalent:

© there exist some constants a,, and m,,, such that

n

an > (& —ma) S ¢,

k=1

© the function L(z) = E[£*1¢<,] varies slowly at oo.

o Slowly varying function?
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Slowly varying

@ Let L be a non-decreasing and non-negative function on [0, co).
e We say L is vary slowly at oo, if sup,, L(x) > 0 and for each ¢ > 0,

lim Llcx)

=1.
00 L(x)

o In particular, if L is bounded then it is slowly varing.

o L(z) =log(z + 1) is also slowly varing.
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Domain of attraction of Gaussian

Theorem 6.18

Let €,&1,&3, ... beii.d., non-degenerate random variables, and let ¢ be

a standard normal distribution N(0,1). Then these conditions are
equivalent:

@ there exist some constants a, and m,,, such that

n

an 3 (& —ma) B¢,

k=1

@ the function L(z) = E[£*1¢<,] varies slowly at oo.

e Given (2), (1) holds with

1
n = E|£]; n = .
" St 1Vsup{z > 0:nL(z) > 22}
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Levy’s continuity theorem

Theorem 6.23

Let pu1, pt2, ... be probability measures on R¢ with characteristics
functions fi,. Then these conditions are equivalent:

Q /i,(t) = ¢(t),t € R? for a function ¢ which is continuous at 0,

© /1, — p weakly for a probability measure 1 on R

In that case, pu has characteristic function .

@ Characteristic functions?
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Characteristic function

o Let i be a probability measure on R

o Define a function /i on R¢ such that

lt) = /R e ar)

where
d

(t,x) = th‘ﬂ% t,x € R

k=1
@ We call ji the characteristic function of p.

o As the name suggested, i = U implies y = v.

28 / 30



Levy’s continuity theorem

Theorem 6.23
Let p1, fi2, ... be probability measures on R? with characteristics
functions fi,. Then these conditions are equivalent:
@ /i,(t) = ¢(t),t € RY for a function ¢ which is continuous at 0,
© 1, — p weakly for a probability measure p on R?.
In that case, u has characteristic function .

@ Levy’s continuity theorem is a powerful tool while establishing
CLT.

@ The characteristic function of standard Gaussian p is i(t) = et
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