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Conditional expectation

Theorem 8.1

Let (Ω,A,P) be a probability space. For any sub σ-field F ⊂ A, there
exists an a.s. unique map EF = E[·|F ] from L1(A) to L1(F), such that

E[EF [ξ]1A] = E[ξ1A], ξ ∈ L1(A), A ∈ F .

Sub σ-field?

L1(A) and L1(F)?
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Sub-σ field

Let (Ω,A) be a measurable space.

We say F is a sub-σ field, if F is a σ-field and F ⊂ A.
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L1(A) and L1(F)

Let (Ω,A,P) be a probability space.

Let F be a sub-σ-field of A.

It can be verified that P|F , the restriction of P on F is a
probability measure on the measurable space (Ω,F).

With an abuse of notation, we still write P|F by P.
We say ξ ∈ L1(A) if it is an integrable random variable on
(Ω,A,P).
We say ξ ∈ L1(F) if it is an integrable random variable on
(Ω,F ,P).
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Conditional expectation

Theorem 8.1

Let (Ω,A,P) be a probability space. For any sub σ-field F ⊂ A, there
exists an a.s. unique linear operator EF = E[·|F ] from vector spaces
L1(A) to L1(F), such that

E[EF [ξ]1A] = E[ξ1A], ξ ∈ L1(A), A ∈ F .

Conditional expectation is the expected value of a random variable
given the information of the sub-σ-field.
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Martingale convergence

Theorem 9.19

Let (Xn)
∞
n=1 be an L1-bounded sub-martingale w.r.t. a filtration

(Fn)
∞
n=1. Then (Xn)

∞
n=1 converges in R almost surely.

Filtration.

Sub-martingale/martingale.

L1-bounded.
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Filtration

Let (Ω,A,P) be a probability space.

Supoose that (Fn)n∈N is a sequence of σ-fields.

Suppose that Fn ⊂ Fn+1 ⊂ A for every n ∈ N.
Then we say (Fn)

∞
n=1 is a filtration.
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Sub-martingale

Suppose that (Xn)
∞
n=1 is a stochastic process, i.e. a sequence of

random variables, on a probability space (Ω,A,P) equipped with a
filtration (Fn)

∞
n=1.

Suppose that the process (Xn)
∞
n=1 is adapted to the filtration

(Fn)
∞
n=1. That is to say, σ(Xn) ⊂ Fn for every n ∈ N.

Suppose that for every n ∈ N, almost surely,

E[Xn+1|Fn] ≥ Xn,

Then we say (Xn)
∞
n=1 is a submartingale w.r.t. filtration (Fn)

∞
n=1.
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Super-martingale and martingale

Suppose that (Xn)
∞
n=1 is a stochastic process, adapted to a

filtration (Fn)
∞
n=1.

We say (Xn)
∞
n=1 is a super-martingale if (−Xn)

∞
n=1 is a

sub-martingale.

We say (Xn)
∞
n=1 is a martingale, if it is sub-martingale and a

super-martingale.
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L1-bounded

Suppose that (Xt)t∈T is a family of random variables.

We say (Xt)t∈T is L1-bounded, if

sup
t∈T

XtL1 = sup
t∈T

E[|Xt|] < ∞.

10 / 30



Martingale convergence

Theorem 9.19

Let (Xn)
∞
n=1 be an L1-bounded sub-martingale w.r.t. a filtration

(Fn)
∞
n=1. Then (Xn)

∞
n=1 converges in R almost surely.

Of cause, the result still holds if ‘sub-martingale’ is replaced by
‘super-martingale’ or ‘martingale’.
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Regularization of martingale

Theorem 9.28

Let (Xt)t≥0 be a sub-martingale w.r.t. a filtration (Ft)t≥0 satisfying the
usual hypothesis. Then (Xt)t≥0 has a càdlàg modification iff (E[Xt])t≥0

is right continuous, hence in particular when (Xt)t≥0 is a martingale.

Continuous-time filtration?

Usual hypothesis?

Continuous-time sub-martingale/super-martingale/martingales?

Càdlàg modification?
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Continuous-time filtration

Let (Ω,A,P) be a probability space.

Let (Ft)t≥0 be a family of σ-fields of Ω.

We say (Ft)t≥0 is a (continuous-time) filtration, if Fs ⊂ Ft ⊂ A for
every s ≤ t.
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Usual hypothesis

Let (Ω,A,P) is a probability space.

We say U ∈ A is a null set, if P(U) = 0. The collection of all null
sets are denoted by N .

We say a filtration (Ft)t≥0 satisfies the usual hypothesis, if the
following condition holds:

The probability space (Ω,A,P) is complete. That is to say if V ⊂ U
and U ∈ N , then V ∈ N .
The filtration is right-continuous. That is to say Fs = ∩t>sFt for
every s ≥ 0.
N ⊂ F0.
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Continuous sub-martingales

Let (Ω,A,P) be a probability space equipped with a filtration
(Ft)t≥0.

Let (Xt)t≥0 be a real-valued stochastic process, i.e. a family of
random variables indexed by [0,∞).

Let (Xt)t≥0 be adapted. That is to say, σ(Xt) ⊂ Ft for every t ≥ 0.

We say (Xt)t≥0 is a sub-martingal, if E[Xt|Fs] ≥ Xs almost surely
for every s ≤ t.

We say (Xt)t≥0 is a super-martingal, if (−Xt)t≥0 is a
sub-martingale.

We say (Xt)t≥0 is a martingal, if (Xt)t≥0 is a sub-martingale and a
super-martingale.
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Càdlàg version

Let (Ω,A,P) be a probability space.

Let (Xt)t≥0 and (X̃t)t≥0 be two stochastic processes on Ω.

We say (X̃t)t≥0 is a version of (Xt)t≥0 if

P(Xt = X̃t) = 1, ∀t ≥ 0.

We say (X̃t)t≥0 is càdlàg, if

P(Xt−, Xt+ ∈ R, Xt = Xt+, ∀t ≥ 0) = 1

where Xt− := lims↑tXs and Xt+ := lims↓tXs.

We say (Xt)t≥0 has a càdlàg modification if it has a version which
is càdlàg.
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Regularization of martingale

Theorem 9.28

Let (Xt)t≥0 be a sub-martingale w.r.t. a filtration (Ft)t≥0 satisfying the
usual hypothesis. Then (Xt) has a càdlàg version iff (E[Xt])t≥0 is right
continuous, hence in particular when (Xt) is a martingale.

In the rest of this course, any filtered probability space, i.e. a
probability space equipped with a (continuous time) filtration, will
be assumed to satisfy the usual hypothesis, unless stated
otherwise.

Any (continuous time) sub-martingale/ super-martingale/
martingale will be assumed to be càdlàg, unless stated otherwise.
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Optional sampling

Theorem 9.30

Let (Xt)t≥0 be a martingale w.r.t. a filtration (Ft)t≥0. Consider
optional times σ and τ , where τ is bounded. Then Xτ is integrable,
and almost surely

Xσ∧τ = E[Xτ |Fσ].

Optional time?

Sigma filed Fσ?
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Optional time

Suppose that τ is a random variable taking values in [0,∞) in a
filtered probability space (Ω,A, (Ft)t≥0,P).
We say τ is an optional time, if {τ ≤ t} ∈ Ft for every t ≥ 0.
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Sigma field associated with an optional time

Suppose that τ is an optional time w.r.t. a filtered probability
space (Ω,A, (Ft)t≥0,P).
Define a sub-σ-field

Fτ := {A ∈ A : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0}.

We say Fτ is the sigma-field associated with the optional time τ .
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Optional sampling

Theorem 9.30

Let (Xt)t≥0 be a martingale w.r.t. a filtration (Ft)t≥0. Consider
optional times σ and τ , where τ is bounded. Then Xτ is integrable,
and almost surely

Xσ∧τ = E[Xτ |Fσ].

In the context of gambling and financial mathematics, the OST
ensures that if a gambler follows a fair game (modeled by a
martingale) and stops playing at a bounded random time, their
expected wealth at the stopping time equals their initial wealth.

This result is important for understanding the behavior of fair
games and in the pricing of financial derivatives.
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First entry

Theorem 9.7

Let the set A ⊂ R+ × Ω be progressive w.r.t. a filtration (Ft)t≥0. Then
the first entry time τ(ω) := inf{t ≥ 0 : (t,ω) ∈ A} of A is optional
w.r.t. (Ft)t≥0.

Progressive?
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Progressive

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space.

Let A ⊂ Ω× [0,∞).

We say A is progressive if At := A ∩ (Ω× [0, t]) is a measurable
subset of the product space (Ω× [0, t],Ft ⊗ B[0,t]) for every t ≥ 0.

The collection of all progressive subset of Ω× [0,∞) is denoted by
P.

It can be verified that P is a σ-field.
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First entry

Theorem 9.7

Let the set A ⊂ R+ × Ω be progressive w.r.t. a filtration (Ft)t≥0. Then
the first entry time τ(ω) := inf{t ≥ 0 : (t,ω) ∈ A} of A is optional
w.r.t. (Ft)t≥0.

This theorem gives a criteria for optional times.
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Doob-Meyer decomposition

Theorem 10.5

For an adapted càdlàg process (Xt)t≥0 w.r.t. a filtration (Ft)t≥0, these
conditions are equivalent:

(Xt)t≥0 is a local sub-martingale,

Xt = Mt +At for all t ≥ 0 almost surely for a local martingale
(Mt)t≥0 and a locally integrable, non-decreasing, predictable
process (At)t≥0 with A0 = 0.

The process (Mt)t≥0 and (At)t≥0 are then almost surely unique.

Local sub-martingale?

Local martingale?

Locally integrable process?

Predictable process?
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Local sub-martingale

Let (Xt)t≥0 be an adapted càdlàg process w.r.t. a filtration (Ft)t≥0.

Suppose that there exists a sequence of optional times (τn)n∈N
satisfying that

almost surely, τ1 ≤ τ2 ≤ . . . ;
almost surely, τn ↑ ∞;
for every n ∈ N, (Xt∧τn)t≥0 is a sub-martingale.

Then, we say (Xt)t≥0 is a local sub-martingale.

Local martingale and local super-martingale are defined in a
similar way.

26 / 30



Locally integrable non-decreasing process

Let (At)t≥0 be a non-decreasing stochastic process on a filtered
probability space.

We say (At)t≥0 is an integrable non-decreasing process, if
E[A∞] < ∞.

We say (At)t≥0 is a locally integrable non-decreasing process, if
there exists a sequence of optional times (τn)n∈N satisfying that

almost surely, τ1 ≤ τ2 ≤ . . . ;
almost surely, τn ↑ ∞; and
for every n ∈ N, (At∧τn)t≥0 is a integrable non-decreasing process.
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Predictable process

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space.

We say a map X : (ω, t) → X(t,ω), from Ω× [0,∞) to R, is
associated with an adapted continuous process, if

For every t ≥ 0, the map Xt : ω → X(t,ω) is a random variable on
the probability space (Ω,Ft,P); and
for almost surely all ω, the path t → X(t,ω) is continuous.

Denote by O be the σ-field of Ω× [0,∞) generated by all the maps
X which are associated with an adapted continuous processes.

We say a stochastic process (Yt)t≥0 is predictable, if the map
Y : (ω, t) → Yt(ω) is a measurable map from (Ω× [0,∞),O) to R.
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Doob-Meyer decomposition

Theorem 10.5

For an adapted càdlàg process (Xt)t≥0 w.r.t. a filtration (Ft)t≥0

satisfying the usual hypothesis, these conditions are equivalent:

(Xt)t≥0 is a local sub-martingale,

Xt = Mt +At for all t ≥ 0 almost surely for a local martingale
(Mt)t≥0 and a locally integrable, non-decreasing, predictable
process (At)t≥0 with A0 = 0.

The process (Mt)t≥0 and (At)t≥0 are then almost surely unique.

Doob-Meyer decomposition is essential in defining quadratic
variation and covariation of processes, which are fundamental to
understanding the dynamics of continuous-time stochastic
processes.
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Thanks!
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