Topics in probability theory: Martingale

Zhenyao Sun

Beijing Institute of Technology

September 14, 2024

 QQ 1 / 30

画

イロメ イ部メ イミメ イモメー

Theorem 8.1

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. For any sub σ -field $\mathcal{F} \subset \mathcal{A}$, there exists an a.s. unique map $\mathbb{E}^{\mathcal{F}} = \mathbb{E}[\cdot | \mathcal{F}]$ from $L^1(\mathcal{A})$ to $L^1(\mathcal{F})$, such that

$$
\mathbb{E}[\mathbb{E}^{\mathcal{F}}[\xi]\mathbf{1}_A] = \mathbb{E}[\xi\mathbf{1}_A], \quad \xi \in L^1(\mathcal{A}), A \in \mathcal{F}.
$$

- \bullet Sub σ -field?
- $L^1(\mathcal{A})$ and $L^1(\mathcal{F})$?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

- Let (Ω, \mathcal{A}) be a measurable space.
- We say *F* is a sub- σ field, if *F* is a σ -field and $\mathcal{F} \subset \mathcal{A}$.

造

イロト イ部 トイモト イモト

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
- Let *F* be a sub-σ-field of *A*.
- It can be verified that $\mathbb{P}|_{\mathcal{F}}$, the restriction of $\mathbb P$ on $\mathcal F$ is a probability measure on the measurable space (Ω, \mathcal{F}) .
- With an abuse of notation, we still write $\mathbb{P}[\tau]$ by \mathbb{P} .
- We say $\xi \in L^1(\mathcal{A})$ if it is an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P}).$
- We say $\xi \in L^1(\mathcal{F})$ if it is an integrable random variable on $(\Omega, \mathcal{F}, \mathbb{P})$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Theorem 8.1

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. For any sub σ -field $\mathcal{F} \subset \mathcal{A}$, there exists an a.s. unique linear operator $\mathbb{E}^{\mathcal{F}} = \mathbb{E}[\cdot | \mathcal{F}]$ from vector spaces $L^1(\mathcal{A})$ to $L^1(\mathcal{F})$, such that

$$
\mathbb{E}[\mathbb{E}^{\mathcal{F}}[\xi]\mathbf{1}_A] = \mathbb{E}[\xi\mathbf{1}_A], \quad \xi \in L^1(\mathcal{A}), A \in \mathcal{F}.
$$

Conditional expectation is the expected value of a random variable given the information of the sub- σ -field.

メタトメ ミトメ ミト

Theorem 9.19

Let $(X_n)_{n=1}^{\infty}$ be an L^1 -bounded sub-martingale w.r.t. a filtration $(\mathcal{F}_n)_{n=1}^{\infty}$. Then $(X_n)_{n=1}^{\infty}$ converges in R almost surely.

- **•** Filtration.
- Sub-martingale/martingale.
- L^1 -bounded.

メタト メミト メミト

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
- **o** Supoose that $(\mathcal{F}_n)_{n\in\mathbb{N}}$ is a sequence of σ -fields.
- **•** Suppose that $\mathcal{F}_n \subset \mathcal{F}_{n+1} \subset \mathcal{A}$ for every $n \in \mathbb{N}$.
- Then we say $(\mathcal{F}_n)_{n=1}^{\infty}$ is a filtration.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Sub-martingale

- Suppose that $(X_n)_{n=1}^{\infty}$ is a stochastic process, i.e. a sequence of random variables, on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ equipped with a filtration $(\mathcal{F}_n)_{n=1}^{\infty}$.
- Suppose that the process $(X_n)_{n=1}^{\infty}$ is adapted to the filtration $(\mathcal{F}_n)_{n=1}^{\infty}$. That is to say, $\sigma(X_n) \subset \mathcal{F}_n$ for every $n \in \mathbb{N}$.
- Suppose that for every $n \in \mathbb{N}$, almost surely,

$$
\mathbb{E}[X_{n+1}|\mathcal{F}_n] \geq X_n,
$$

Then we say $(X_n)_{n=1}^{\infty}$ is a submartingale w.r.t. filtration $(\mathcal{F}_n)_{n=1}^{\infty}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q Q

Super-martingale and martingale

- Suppose that $(X_n)_{n=1}^{\infty}$ is a stochastic process, adapted to a filtration $(\mathcal{F}_n)_{n=1}^{\infty}$.
- We say $(X_n)_{n=1}^{\infty}$ is a super-martingale if $(-X_n)_{n=1}^{\infty}$ is a sub-martingale.
- We say $(X_n)_{n=1}^{\infty}$ is a martingale, if it is sub-martingale and a super-martingale.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

- Suppose that $(X_t)_{t \in T}$ is a family of random variables.
- We say $(X_t)_{t \in T}$ is L^1 -bounded, if

$$
\sup_{t \in T} \|X_t\|_{L^1} = \sup_{t \in T} \mathbb{E}[|X_t|] < \infty.
$$

イロト イ部 トイ君 トイ君 トッ君

Theorem 9.19

Let $(X_n)_{n=1}^{\infty}$ be an L^1 -bounded sub-martingale w.r.t. a filtration $(\mathcal{F}_n)_{n=1}^{\infty}$. Then $(X_n)_{n=1}^{\infty}$ converges in R almost surely.

Of cause, the result still holds if 'sub-martingale' is replaced by 'super-martingale' or 'martingale'.

イロト イ部 トメ ヨ トメ ヨ トー

Theorem 9.28

Let $(X_t)_{t>0}$ be a sub-martingale w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$ satisfying the usual hypothesis. Then $(X_t)_{t>0}$ has a càdlàg modification iff $(\mathbb{E}[X_t])_{t>0}$ is right continuous, hence in particular when $(X_t)_{t>0}$ is a martingale.

- Continuous-time filtration?
- Usual hypothesis?
- Continuous-time sub-martingale/super-martingale/martingales?
- Càdlàg modification?

イロト イ部 トメ ヨ トメ ヨ トー

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
- Let $(\mathcal{F}_t)_{t>0}$ be a family of σ -fields of Ω .
- \bullet We say $(\mathcal{F}_t)_{t>0}$ is a (continuous-time) filtration, if $\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{A}$ for every $s \leq t$.

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ is a probability space.
- We say $U \in \mathcal{A}$ is a null set, if $\mathbb{P}(U) = 0$. The collection of all null sets are denoted by *N* .
- We say a filtration $(\mathcal{F}_t)_{t>0}$ satisfies the usual hypothesis, if the following condition holds:
	- The probability space $(\Omega, \mathcal{A}, \mathbb{P})$ is complete. That is to say if $V \subset U$ and $U \in \mathcal{N}$, then $V \in \mathcal{N}$.
	- The filtration is right-continuous. That is to say $\mathcal{F}_s = \bigcap_{t>s} \mathcal{F}_t$ for every $s > 0$.
	- \bullet *N* ⊂ \mathcal{F}_0 .

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 9 Q Q

Continuous sub-martingales

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space equipped with a filtration $(\mathcal{F}_t)_{t>0}$.
- \bullet Let $(X_t)_{t>0}$ be a real-valued stochastic process, i.e. a family of random variables indexed by $[0, \infty)$.
- Let $(X_t)_{t>0}$ be adapted. That is to say, $\sigma(X_t) \subset \mathcal{F}_t$ for every $t \geq 0$.
- We say $(X_t)_{t>0}$ is a sub-martingal, if $\mathbb{E}[X_t|\mathcal{F}_s] \geq X_s$ almost surely for every $s \leq t$.
- We say $(X_t)_{t>0}$ is a super-martingal, if $(-X_t)_{t>0}$ is a sub-martingale.
- \bullet We say $(X_t)_{t>0}$ is a martingal, if $(X_t)_{t>0}$ is a sub-martingale and a super-martingale.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 9 Q Q

Càdlàg version

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
- Let $(X_t)_{t>0}$ and $(\tilde{X}_t)_{t>0}$ be two stochastic processes on Ω . • We say $(\tilde{X}_t)_{t>0}$ is a version of $(X_t)_{t>0}$ if

$$
\mathbb{P}(X_t = \tilde{X}_t) = 1, \forall t \ge 0.
$$

• We say $(\tilde{X}_t)_{t>0}$ is càdlàg, if

$$
\mathbb{P}(X_{t-}, X_{t+} \in \mathbb{R}, X_t = X_{t+}, \forall t \ge 0) = 1
$$

where $X_{t-} := \lim_{s \uparrow t} X_s$ and $X_{t+} := \lim_{s \uparrow t} X_s$.

 \bullet We say $(X_t)_{t>0}$ has a càdlàg modification if it has a version which is càdlàg.

K ロ K K 마 X X X X X X X X X X X X

Regularization of martingale

Theorem 9.28

Let $(X_t)_{t>0}$ be a sub-martingale w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$ satisfying the usual hypothesis. Then (X_t) has a càdlàg version iff $(\mathbb{E}[X_t])_{t>0}$ is right continuous, hence in particular when (X_t) is a martingale.

- In the rest of this course, any filtered probability space, i.e. a probability space equipped with a (continuous time) filtration, will be assumed to satisfy the usual hypothesis, unless stated otherwise.
- Any (continuous time) sub-martingale/ super-martingale/ martingale will be assumed to be càdlàg, unless stated otherwise.

K ロ K K 마 X X X X X X X X X X X X

Optional sampling

Theorem 9.30

Let $(X_t)_{t>0}$ be a martingale w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$. Consider optional times σ and τ , where τ is bounded. Then X_{τ} is integrable, and almost surely

$$
X_{\sigma \wedge \tau} = \mathbb{E}[X_{\tau}|\mathcal{F}_{\sigma}].
$$

• Optional time?

 \bullet Sigma filed \mathcal{F}_{σ} ?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

- **•** Suppose that τ is a random variable taking values in $[0, \infty)$ in a filtered probability space $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- We say τ is an optional time, if $\{\tau \leq t\} \in \mathcal{F}_t$ for every $t \geq 0$.

イロメ イ部メ イミメ イモメー

Sigma field associated with an optional time

- Suppose that τ is an optional time w.r.t. a filtered probability space $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- Define a sub- σ -field

$$
\mathcal{F}_{\tau} := \{ A \in \mathcal{A} : A \cap \{ \tau \leq t \} \in \mathcal{F}_t, \forall t \geq 0 \}.
$$

• We say \mathcal{F}_{τ} is the sigma-field associated with the optional time τ .

K ロ K K @ X K 경 X K 경 X 시 경

Optional sampling

Theorem 9.30

Let $(X_t)_{t>0}$ be a martingale w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$. Consider optional times σ and τ , where τ is bounded. Then X_{τ} is integrable, and almost surely

$$
X_{\sigma \wedge \tau} = \mathbb{E}[X_{\tau} | \mathcal{F}_{\sigma}].
$$

- In the context of gambling and financial mathematics, the OST ensures that if a gambler follows a fair game (modeled by a martingale) and stops playing at a bounded random time, their expected wealth at the stopping time equals their initial wealth.
- This result is important for understanding the behavior of fair games and in the pricing of financial derivatives.

Theorem 9.7

Let the set $A \subset \mathbb{R}_+ \times \Omega$ be progressive w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$. Then the first entry time $\tau(\omega) := \inf\{t \geq 0 : (t, \omega) \in A\}$ of *A* is optional w.r.t. $(\mathcal{F}_t)_{t>0}$.

• Progressive?

→ イ何 ト → ヨ ト → ヨ ト

- Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space.
- Let $A \subset \Omega \times [0, \infty)$.
- We say *A* is progressive if $A_t := A \cap (\Omega \times [0,t])$ is a measurable subset of the product space $(\Omega \times [0, t], \mathcal{F}_t \otimes \mathcal{B}_{[0, t]})$ for every $t \geq 0$.
- The collection of all progressive subset of $\Omega \times [0,\infty)$ is denoted by *P*.
- **•** It can be verified that P is a σ -field.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Theorem 9.7

Let the set $A \subset \mathbb{R}_+ \times \Omega$ be progressive w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$. Then the first entry time $\tau(\omega) := \inf\{t \geq 0 : (t, \omega) \in A\}$ of A is optional w.r.t. $(\mathcal{F}_t)_{t>0}$.

This theorem gives a criteria for optional times.

メタトメ ミトメモト

Doob-Meyer decomposition

Theorem 10.5

For an adapted càdlàg process $(X_t)_{t>0}$ w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$, these conditions are equivalent:

- \bullet $(X_t)_{t>0}$ is a local sub-martingale,
- $X_t = M_t + A_t$ for all $t \geq 0$ almost surely for a local martingale $(M_t)_{t>0}$ and a locally integrable, non-decreasing, predictable process $(A_t)_{t>0}$ with $A_0 = 0$.

The process $(M_t)_{t>0}$ and $(A_t)_{t>0}$ are then almost surely unique.

- Local sub-martingale?
- Local martingale?
- Locally integrable process?
- Predictable process?

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

- \bullet Let $(X_t)_{t>0}$ be an adapted càdlàg process w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$.
- Suppose that there exists a sequence of optional times $(\tau_n)_{n\in\mathbb{N}}$ satisfying that
	- almost surely, $\tau_1 < \tau_2 < \ldots$;
	- almost surely, $\tau_n \uparrow \infty$;
	- for every $n \in \mathbb{N}$, $(X_{t \wedge \tau_n})_{t \geq 0}$ is a sub-martingale.
- Then, we say $(X_t)_{t>0}$ is a local sub-martingale.
- Local martingale and local super-martingale are defined in a similar way.

Locally integrable non-decreasing process

- Let $(A_t)_{t\geq0}$ be a non-decreasing stochastic process on a filtered probability space.
- \bullet We say $(A_t)_{t>0}$ is an integrable non-decreasing process, if $\mathbb{E}[A_\infty]<\infty$.
- \bullet We say $(A_t)_{t>0}$ is a locally integrable non-decreasing process, if there exists a sequence of optional times $(\tau_n)_{n\in\mathbb{N}}$ satisfying that
	- almost surely, $\tau_1 \leq \tau_2 \leq \ldots$;
	- almost surely, $\tau_n \uparrow \infty$; and
	- for every $n \in \mathbb{N}$, $(A_{t \wedge \tau_n})_{t>0}$ is a integrable non-decreasing process.

Predictable process

- Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space.
- We say a map $X : (\omega, t) \mapsto X(t, \omega)$, from $\Omega \times [0, \infty)$ to R, is associated with an adapted continuous process, if
	- For every $t \geq 0$, the map $X_t : \omega \mapsto X(t, \omega)$ is a random variable on the probability space $(\Omega, \mathcal{F}_t, \mathbb{P})$; and
	- for almost surely all ω , the path $t \mapsto X(t, \omega)$ is continuous.
- Denote by $\mathcal O$ be the σ -field of $\Omega \times [0,\infty)$ generated by all the maps *X* which are associated with an adapted continuous processes.
- We say a stochastic process $(Y_t)_{t>0}$ is predictable, if the map *Y* : $(\omega, t) \mapsto Y_t(\omega)$ is a measurable map from $(\Omega \times [0, \infty), \mathcal{O})$ to R.

Doob-Meyer decomposition

Theorem 10.5

For an adapted càdlàg process $(X_t)_{t>0}$ w.r.t. a filtration $(\mathcal{F}_t)_{t>0}$ satisfying the usual hypothesis, these conditions are equivalent:

- \bullet $(X_t)_{t>0}$ is a local sub-martingale,
- $X_t = M_t + A_t$ for all $t \geq 0$ almost surely for a local martingale $(M_t)_{t>0}$ and a locally integrable, non-decreasing, predictable process $(A_t)_{t>0}$ with $A_0 = 0$.

The process $(M_t)_{t>0}$ and $(A_t)_{t>0}$ are then almost surely unique.

Doob-Meyer decomposition is essential in defining quadratic variation and covariation of processes, which are fundamental to understanding the dynamics of continuous-time stochastic processes.

Thanks!

K ロ K イ団 K K モ X K モ X モ ヨー イコ X K C