Topics in probability theory: Markov Process

Zhenyao Sun

Beijing Institute of Technology

September 17, 2024

 Ω 1 / 31

画

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Theorem 8.5

Let ξ , η be random elements in *S* and *T*. Let *T* be a Polish space. Then $\mathcal{L}(\xi, \eta) = \mathcal{L}(\xi) \otimes \mu$ for a probability kernel μ from *S* to *T*. Furthermore,

 $\mathcal{L}(n|\xi) = \mu(\xi, \cdot), \quad a.s.$

- Law of random elements, $\mathcal{L}(\xi)$ and $\mathcal{L}(\xi, \eta)$?
- Probability kernel *µ*?
- \bullet Outer product $\mathcal{L}(\xi) \otimes \mu$?
- Conditional distribution $\mathcal{L}(\eta|\xi)$?

K ロ K K 個 K K 差 K K 差 K … 差

Law of random elements

- \bullet Let ξ be a random element taking values in a measurable space (S, S) , defined on a probability space, say $(\Omega, \mathcal{A}, \mathbb{P})$.
- The law of ξ , denoted by $\mathcal{L}(\xi)$, is a probability measure on *S* s.t.

$$
\mathcal{L}(\xi)(A) = \mathbb{P}(\xi \in A), \quad \forall A \in \mathcal{S}.
$$

- \bullet Let η be another random element taking values in measure space (T, \mathcal{T}) .
- Then (ξ, η) is a random element taking values in the product space $(S \times T, \mathcal{S} \otimes \mathcal{T}).$
- The law of (ξ, η) is denoted by $\mathcal{L}(\xi, \eta)$.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Probability kernels

- Let (S, \mathcal{S}) and (X, \mathcal{X}) be two measurable spaces.
- \bullet We say μ is a kernel from *S* to *X*, if
	- $\bullet \mu : S \times \mathcal{X} \to \mathbb{R}$;
	- for every $s \in S$, $\mu(s, \cdot) : \mathcal{X} \to \mathbb{R}$ is a measure of the measurable space (X, \mathcal{X}) ; and
	- for every $A \in \mathcal{X}$, $\mu(\cdot, A) : S \to \mathbb{R}$ is a measurable function on *S*.
- \bullet We say a kernel μ from S to X is a probability kernel, if for every $s \in S$, $\mu(s, \cdot) : \mathcal{X} \to \mathbb{R}$ is a probability measure.
- We say *µ* is a kernel on *S*, if it is a kernel from *S* to *S*.

イロト イ押ト イヨト イヨト

Inner product of probability kernels

- Suppose that μ is a probability kernels from a measurable space (S, \mathcal{S}) to a measurable space (X, \mathcal{X}) .
- Suppose that ν is a probability kernels from (X, \mathcal{X}) to a measurable space (Y, Y) .
- Define a map $\mu\nu : S \times \mathcal{Y} \to \mathbb{R}$ such that

$$
(\mu\nu)(s,A) = \int_X \mu(s, dx)\nu(x,A), \quad s \in S, A \in \mathcal{Y}.
$$

- **It** can be verified that $\mu\nu$ is a probability kernel from (S, \mathcal{S}) to (Y, \mathcal{Y}) .
- We say *µ*ν is the inner product between *µ* and ν.

K ロ K K @ K K 통 K K 통 K X B K Y Q Q @

Outer product of probability kernels

- \bullet Suppose that μ is a probability kernels from a measurable space (S, \mathcal{S}) to a measurable space (X, \mathcal{X}) .
- Suppose that ν is a probability kernels from (X, \mathcal{X}) to a measurable space (Y, Y) .
- Denote by $(X \times Y, \mathcal{X} \otimes \mathcal{Y})$ the product measurable space of (X, \mathcal{X}) and (Y, Y) .
- Define map $\mu \otimes \nu : S \times (\mathcal{X} \otimes \mathcal{Y}) \to \mathbb{R}$ such that for any $s \in S$, $A \in \mathcal{X}$ and $B \in \mathcal{Y}$,

$$
(\mu \otimes \nu)(s, A \times B) = \int_A \mu(s, dx)\nu(x, B).
$$

- **•** It can be verified that $\mu \otimes \nu$ is a probability kernel from (S, \mathcal{S}) to the product space $(X \times Y, \mathcal{X} \otimes \mathcal{Y})$.
- We say $\mu \otimes \nu$ is the outer product between μ and ν .

K ロ K K @ K K 할 X K 할 X - 할 X Y Q Q @

Inner product and outer product of a probability measure and a probability kernel

- Suppose that μ is a probability measure of a measurable space (X, \mathcal{X}) .
- Suppose that ν is a probability kernels from (X, \mathcal{X}) to a measurable space (Y, Y) .
- Define the inner product *µ*ν as a probability measure on *Y* :

$$
(\mu\nu)(A) = \int_X \mu(\mathrm{d} x)\nu(x,A), \quad A \in \mathcal{Y}.
$$

• Define the outer product $\mu \otimes \nu$ as the unique probability measure on $(X \times Y, \mathcal{X} \otimes \mathcal{Y})$ such that

$$
(\mu \otimes \nu)(A, B) = \int_A \mu(\mathrm{d}x)\nu(x, B), \quad A \in \mathcal{X}, B \in \mathcal{Y}.
$$

K ロ K K @ K K 통 K K 통 K X B K Y Q Q @

Conditional distribution

- \bullet Let η be a random element taking values in a measurable space (T, \mathcal{T}) defined on a probability space, say $(\Omega, \mathcal{A}, \mathbb{P})$.
- Let $\mathcal F$ be a sub σ -field.
- The conditional distribution $\mathcal{L}(\eta|\mathcal{F})$ is defined as a probability kernels from (Ω, \mathcal{A}) to (T, \mathcal{T}) such that for every $A \in \mathcal{T}$,

$$
\mathcal{L}(\eta|\mathcal{F})(\cdot,A) = \mathbb{P}(\eta \in A|\mathcal{F}) = \mathbb{E}[\mathbf{1}_{\{\eta \in A\}}|\mathcal{F}], \quad a.s.
$$

- Warning: the existence of conditional distribution is not guaranteed!
- **If** $\mathcal F$ is generated by another random element ξ , then we define $\mathcal{L}(\eta|\xi) = \mathcal{L}(\eta|\mathcal{F}).$

K ロ K K @ K K 통 K K 통 K X B K Y Q Q @

Theorem 8.5

Let ξ , η be random elements in *S* and *T*. Let *T* be a Polish space. Then $\mathcal{L}(\xi, \eta) = \mathcal{L}(\xi) \otimes \mu$ for a probability kernel μ from *S* to *T*. Furthermore,

$$
\mathcal{L}(\eta|\xi) = \mu(\xi, \cdot), \quad a.s.
$$

- This gives the existence of conditional distribution.
- \bullet A key condition is that η takes values in a Polish space.

→ 何 ▶ → ヨ ▶ → ヨ ▶

Existence of Markov processes

Theorem 11.4

Consider a time scale $T \subset \mathbb{R}$ starting at 0, a Polish space *S*, a probability measure ν on S , and a family of probability kernels $\{\mu_{s,t}|s \leq t, s,t \in T\}$ on *S* satisfying Chapman–Kolmogorov equations. Then there exists an *S*-valued Markov process $(X_t)_{t \in T}$ with intial distribution ν and transition kernels $\mu_{s,t}$.

- Chapman–Kolmogorov equations?
- Markov process?
- Initial distribution?
- **•** Transition kernels?

 $A \oplus B$ $A \oplus B$ $A \oplus B$

Chapman–Kolmogorov equations

- Suppose that $T \subset \mathbb{R}$ and $0 \in T$.
- Let $\{\mu_{s,t}|s \lt t, s,t \in T\}$ be a family of probability kernels on a measurable space *S*.
- We say Chapman-Kolmogorov equation holds for ${ \mu_{s,t} | s < t, s, t \in T }$, if for every $s < u < t$ in *T*,

 $\mu_{s,u}\mu_{u,t} = \mu_{s,t}.$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ ○ 결 ...

Conditionally independent

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
- We say a family of sub σ -fields $\{\mathcal{F}_t | t \in T\}$ are independent given a sub σ -field \mathcal{G} , if for every distinct t_1, t_2, \ldots, t_n in T and $F_1 \in \mathcal{F}_{t_1}, F_2 \in \mathcal{F}_{t_2}, \ldots, F_n \in \mathcal{F}_{t_n}$, it holds that almost surely

 $\mathbb{P}(F_1 \cap F_2 \cap \cdots \cap F_n | \mathcal{G}) = \mathbb{P}(F_1 | \mathcal{G}) \mathbb{P}(F_2 | \mathcal{G}) \ldots \mathbb{P}(F_n | \mathcal{G}).$

• Notationally, if sub σ -fields $\mathcal F$ and $\mathcal H$ are conditionally independent given \mathcal{G} , then we write

F⊥⊥*GH.*

K ロ > K 個 > K ミ > K ミ > → ミ → の Q Q →

Markov process

- Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space.
- Let time scale $T \subset \mathbb{R}$ and $0 \in T$.
- Suppose that $(\mathcal{F}_t)_{t \in \mathcal{T}}$ is a family of non-decreasing sub σ -fields, a.k.a. a filtration indexed by *T*.
- Let *S* be a Polish space.
- \bullet Let $(X_t)_{t \in T}$ be an *S*-valued stochastic process, a.k.a. a family of *S*-valued random elements.
- \bullet We say $(X_t)_{t \in T}$ is a Markov process w.r.t. filtration $(\mathcal{F}_t)_{t \in T}$ if for every $t \in T$, $\sigma(X_t) \in \mathcal{F}_t$ and

$$
\mathcal{F}_t \perp \!\!\!\perp_{\sigma(X_t)} \sigma(X_u : u \ge t).
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 〈 경 〉

Initial distribution and the transition kernels

- Let $T \subset [0,\infty)$ and $0 \in T$.
- Let *S* be a Polish space.
- \bullet Let $(X_t)_{t \in T}$ be an *S*-valued Markov process w.r.t. a filtration $(\mathcal{F}_t)_{t \in \mathcal{T}}$ of a probability sapce $(\Omega, \mathcal{A}, \mathbb{P})$.
- We say a probability measure ν on *S* is the initial distribution of $(X_t)_{t \in T}$, if it is the distribution of X_0 .
- \bullet We say a family of probability kernels $\{\mu_{s,t}|s < t \text{ in } T\}$ on *S* are the transition kernels of $(X_t)_{t \in T}$, if for every $s < t$ in *T* and $B \in \mathcal{S}$, almost surely

$$
\mathbb{P}(X_t \in B|\mathcal{F}_s) = \mu_{s,t}(X_s, B).
$$

• Since *S* is Polish, transition kernels of a given Markov process always exists.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Theorem 11.4

Consider a time scale $T \subset \mathbb{R}$ starting at 0, a Polish space *S*, a probability measure ν on *S*, and a family of probability kernels $\{\mu_{s,t}|s \leq t, s,t \in T\}$ on *S* satisfying Chapman–Kolmogorov equations. Then there exists an *S*-valued Markov process $(X_t)_{t \in T}$ with intial distribution ν and transition kernels $\mu_{s,t}$.

Starting point for further analysis of the properties of the Markov process.

イロト イ部 トメ ミト メ ミト

Lemma 11.11

Let $(X_t)_{t>0}$ be a homogeneous Markov process in a Polish space *S*, with (homogeneous) transition kernels μ_t and initial distribution ν . Then

X is stationary $\iff \nu$ is invariant for $(\mu_t)_{t>0}$.

- Homogeneous Markov process and homogenous transition kernels?
- Stationary process?
- **I**nvariant measure?

 $A\stackrel{\frown}{\longrightarrow}A\stackrel{\frown}{\longrightarrow}A\stackrel{\frown}{\longrightarrow}A\stackrel{\frown}{\longrightarrow}A$

Homogeneous Markov process

- Let *S* be a Polish space.
- Suppose that $(X_t)_{t>0}$ is an *S*-valued Markov process with transition kernels $\{\mu_{s,t}|s \leq t \text{ in } [0,\infty)\}.$
- Suppose that $\mu_{s,t}$ only depends on $t s$.
- That is to say, there exists a family of probability kernels $\{\tilde{\mu}_t | t \geq 0\}$ of *S*, such that $\mu_{s,t} = \tilde{\mu}_{t-s}$ for every $0 \leq s < t$.
- Then, we say $(X_t)_{t>0}$ is a homogeneous Markov process with (homogeneous) transition kernels $(\tilde{\mu}_t)_{t>0}$.
- It is known that $(\tilde{\mu}_t)_{t>0}$ is a semigroup:

$$
\tilde{\mu}_t \tilde{\mu}_s = \tilde{\mu}_{t+s}.
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경 경

 \bullet We say a process $(X_t)_{t>0}$ is stationary, if for every $0 \leq t_1 \leq t_2 \leq \cdots \leq t_n$ and $t \geq 0$, we have

$$
\mathcal{L}(X_{t_1},X_{t_2},\ldots,X_{t_n})=\mathcal{L}(X_{t_1+t},X_{t_2+t},\ldots,X_{t_n+t}).
$$

K ロ > K 個 > K ミ > K ミ > → ミ → の Q Q →

- \bullet Let $(\mu_t)_{t>0}$ is a family of probability kernels of a Polish space *S*.
- Suppose that $(\mu_t)_{t>0}$ is a semigroup.
- We say a probability measure ν of *S* is invariant w.r.t. $(\mu_t)_{t>0}$ if, for every $t > 0$, $\nu \mu_t = \nu$.

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \right\} & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right\} \end{array} \right. \right. , \end{array} \right.$

Lemma 11.11

Let $(X_t)_{t>0}$ be a homogeneous Markov process in a Polish space *S*, with (homogeneous) transition kernels μ_t and initial distribution ν . Then

X is stationary $\iff \nu$ is invariant for $(\mu_t)_{t>0}$.

- This result is foundational in the study of long-term behavior of Markov processes, particularly in:
	- Ergodic theory, where one studies conditions under which a process converges to a stationary distribution.
	- Statistical mechanics, where stationary distributions often describe equilibrium states

K ロ K K B K K B K X B K T B K

Strong Markov property

Theorem 11.14

Let $(\mathcal{F}_t)_{t>0}$ be a filtration of a probability space. Let $(X_t)_{t>0}$ be an $(\mathcal{F}_t)_{t>0}$ -adapted, càdlàg stochastic process taking values in a separable complete metric space (S, d_S) . Let P be a probability kernel from S to D*S*. Then these conditions are equivalent:

- \bullet *X* is strongly homogeneous at every bounded optional time τ w.r.t. kernel *P*.
- 2 *X* satisfies the strong Markov property at every optional time $\tau < \infty$ w.r.t. kernle P.

Similar result holds while replacing 'càdlàg' and ' \mathbb{D}_S ' by 'continuous' and '*CS*' respectively.

- Wiener space *CS*? Skorokhod space D*S*?
- Strongly homogeneous?
- Strong Markov property?

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Wiener space

- \bullet Let (S, d_S) be a seperable complete metric space.
- Denote by *C^S* the space of continuous paths in *S* indexed by $[0,\infty)$.
- \bullet In other word, $w \in C_S$ iff *w* is a continuous map from $[0, \infty)$ to *S*.
- \bullet For every x, y in C_S , define the pseudometrics

$$
d_{C,n}(x,y) := \sup_{t \in [0,n]} d_S(x_t, y_t), \quad n \ge 0
$$

and metric

$$
d_C(x, y) := \sum_{n=1}^{\infty} (d_{C,n}(x, y) \wedge 1)/2^n.
$$

• C_S equipped with the topology generated by d_C is called the Wiener space.

イロト イ押 トイヨ トイヨト

Why do we need Wiener Space?

- \bullet Let $(X_t)_{t>0}$ be a continuous process taking values in a separable complete metric space *S*, defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.
- It can be verified that $X : \omega \mapsto (X_t(\omega))_{t>0}$ is a measurable map from $(\Omega, \mathcal{A}, \mathbb{P})$ to C_S .
- In other word, *X* is a *C_S*-valued random element.
- With an abuse of notation, we do not distinguish the process $(X_t)_{t>0}$ and X.
- Therefore, we can talk about the law of the process $(X_t)_{t>0}$.
- Moreover, it is known that C_S is a Polish space.
- Therefore, we can talk about the conditional law of the process $(X_t)_{t>0}$ given a sub σ -field F.

イロト イ部 トイ君 トイ君 トッ君

Skorokhod space

- \bullet Let (S, d_S) be a seperable complete metric space.
- Denote by \mathbb{D}_S the space of càdlàg paths in *S* indexed by $[0, \infty)$.
- In other word, $w \in \mathbb{D}_S$ iff $w : [0, \infty) \to S$,

$$
w(t) = \lim_{r \downarrow t} w(r), \quad t \ge 0,
$$

and

$$
\lim_{r \uparrow t} w(r) \text{ exist}, \quad t > 0.
$$

 \bullet \mathbb{D}_S equipped with the *J*₁-topology (defined in the next slide) is called the Skorokhod space.

K ロ K K 個 K K 결 K K 결 K (결

The *J*1-topology

- We say λ is a time change of $[0, n]$ if it is a strictly increasing continuous bijection from [0*, n*] to itself.
- Let Λ_n be the collection of all time change of $[0, n]$.
- \bullet For any *x* and *y* in \mathbb{D}_S , define pseudometrics

$$
d_{\mathbb{D},n}(x,y) = \inf_{\lambda \in \Lambda_n} \left(\sup_{t \in [0,n]} |\lambda(t) - t| + \sup_{t \in [0,n]} |x(\lambda(t)) - y(t)| \right)
$$

and metric

$$
d_{\mathbb{D}}(x,y) = \sum_{n=1}^{\infty} (d_{\mathbb{D},n}(x,y) \wedge 1)/2^n.
$$

• The topology generated by the metric $d_{\mathbb{D}}$ is called the *J*₁-topology of Skorokhod space.

イロト イ部ト イ君ト イ君ト 一番

Why do we need Skorokhod Space?

- Let $(X_t)_{t>0}$ be a càdlàg process taking values in a separable complete metric space *S*, defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$.
- It can be verified that $X : \omega \mapsto (X_t(\omega))_{t>0}$ is a measurable map from $(\Omega, \mathcal{A}, \mathbb{P})$ to \mathbb{D}_S .
- In other word, *X* is a \mathbb{D}_S -valued random element.
- With an abuse of notation, we do not distinguish the process $(X_t)_{t>0}$ and X.
- Therefore, we can talk about the law of the process $(X_t)_{t>0}$.
- Moreover, it is known that \mathbb{D}_S is a Polish space.
- Therefore, we can talk about the conditional law of the process $(X_t)_{t>0}$ given a sub σ -field F.

イロト イ部 トイ君 トイ君 トッ君

Strong homogeneous Markov process

- Let *S* be a separable complete metric space.
- \bullet Let \mathbb{D}_S be the Skorokhod space of *S*-valued càdlàg paths.
- For any $t > 0$ define the shift operator $\theta_t : \mathbb{D}_S \to \mathbb{D}_S$ such that

$$
(\theta_t w)(s) = w(t+s), \quad w \in \mathbb{D}_S, s \ge 0.
$$

- Suppose that $(X_t)_{t>0}$ is an *S*-valued càdlàg Markov process.
- \bullet Suppose that there exists a probability kernels *P* from *S* to \mathbb{D}_S such that, for every $t \geq 0$, almost surely

$$
\mathcal{L}(\theta_t X | X_t) = P(X_t, \cdot).
$$

- Then we say $(X_t)_{t>0}$ is strong homogeneous.
- For càdlàg Markov processes, homogeneous and strong homogeneous are equivalent.

イロト イ団 トイヨト イヨト 一番

Strong homogeneous at an optional time

- Let D*^S* be the Skorokhod space w.r.t. a separable complete metric space *S*.
- Let $(\mathcal{F}_t)_{t>0}$ be a filtration of a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ satisfying the usual hypothesis.
- Suppose that $(X_t)_{t>0}$ is an *S*-valued adapted càdlàg process. (Not necessarily Markovian!)
- \bullet Let *P* be a probability kernel from *S* to \mathbb{D}_S .
- We say X is strong homogeneous at a optional time τ w.r.t. kernel *P*, if

$$
\mathcal{L}(\theta_\tau X | X_\tau) = P(X_\tau, \cdot), \quad a.s.
$$

K ロ K K @ X K 경 X K 경 X 시 경

Strongly Markov property at an optional time

- Let D*^S* be the Skorokhod space w.r.t. a separable complete metric space *S*.
- Let $(\mathcal{F}_t)_{t>0}$ be a filtration of a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ satisfying the usual hypothesis.
- Suppose that $(X_t)_{t>0}$ is an *S*-valued adapted càdlàg process. (Not necessarily Markovian!)
- \bullet Let *P* be a probability kernel from *S* to \mathbb{D}_S .
- We say *X* satisfies the strong Markov property at a optional time τ w.r.t. kernel P, if

$$
\mathcal{F}_{\tau} \perp \!\!\!\perp_{\sigma(X_{\tau})} \sigma(\theta_{\tau} X), \qquad \mathcal{L}(\theta_{\tau} X | X_{\tau}) = P_{X_{\tau}}, \quad a.s.
$$

K ロ K K @ X K 경 X K 경 X 시 경

Strong Markov property

Theorem 11.14

Let $(\mathcal{F}_t)_{t>0}$ be a filtration of a probability space. Let $(X_t)_{t>0}$ be an $(\mathcal{F}_t)_{t>0}$ -adapted, càdlàg stochastic process taking values in a separable complete metric space (S, d_S) . Let P be a probability kernel from S to D*S*. Then these conditions are equivalent:

- \bullet *X* is strongly homogeneous at every bounded optional time τ w.r.t. kernel *P*.
- 2 *X* satisfies the strong Markov property at every optional time $\tau < \infty$ w.r.t. kernle P.

Similar result holds while replacing 'càdlàg' and ' \mathbb{D}_S ' by 'continuous' and '*CS*' respectively.

• This result is not obvious at all!

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \bigoplus \right\} & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \begin{array}{ccc} \square & \rightarrow & \left\{ \end{array} \right\} \end{array} \right. \right. , \end{array} \right.$

Thanks!

イロト イ御 トイ君 トイ君 トー 君 一のなび