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Disintegration

Theorem 8.5

Let ξ, η be random elements in S and T . Let T be a Polish space. Then
L(ξ, η) = L(ξ)⊗ µ for a probability kernel µ from S to T . Furthermore,

L(η|ξ) = µ(ξ, ·), a.s.

Law of random elements, L(ξ) and L(ξ, η)?
Probability kernel µ?

Outer product L(ξ)⊗ µ?

Conditional distribution L(η|ξ)?
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Law of random elements

Let ξ be a random element taking values in a measurable space
(S,S), defined on a probability space, say (Ω,A,P).
The law of ξ, denoted by L(ξ), is a probability measure on S s.t.

L(ξ)(A) = P(ξ ∈ A), ∀A ∈ S.

Let η be another random element taking values in measure space
(T, T ).

Then (ξ, η) is a random element taking values in the product space
(S × T,S ⊗ T ).

The law of (ξ, η) is denoted by L(ξ, η).

3 / 31



Probability kernels

Let (S,S) and (X,X ) be two measurable spaces.

We say µ is a kernel from S to X, if

µ : S × X → R;
for every s ∈ S, µ(s, ·) : X → R is a measure of the measurable
space (X,X ); and
for every A ∈ X , µ(·, A) : S → R is a measurable function on S.

We say a kernel µ from S to X is a probability kernel, if for every
s ∈ S, µ(s, ·) : X → R is a probability measure.

We say µ is a kernel on S, if it is a kernel from S to S.
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Inner product of probability kernels

Suppose that µ is a probability kernels from a measurable space
(S,S) to a measurable space (X,X ).

Suppose that ν is a probability kernels from (X,X ) to a
measurable space (Y,Y).

Define a map µν : S × Y → R such that

(µν)(s,A) =



X
µ(s, dx)ν(x,A), s ∈ S,A ∈ Y.

It can be verified that µν is a probability kernel from (S,S) to
(Y,Y).

We say µν is the inner product between µ and ν.
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Outer product of probability kernels

Suppose that µ is a probability kernels from a measurable space
(S,S) to a measurable space (X,X ).

Suppose that ν is a probability kernels from (X,X ) to a
measurable space (Y,Y).

Denote by (X × Y,X ⊗ Y) the product measurable space of (X,X )
and (Y,Y).

Define map µ⊗ ν : S × (X ⊗ Y) → R such that for any s ∈ S,
A ∈ X and B ∈ Y,

(µ⊗ ν)(s,A×B) =



A
µ(s, dx)ν(x,B).

It can be verified that µ⊗ ν is a probability kernel from (S,S) to
the product space (X × Y,X ⊗ Y).

We say µ⊗ ν is the outer product between µ and ν.
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Inner product and outer product of a probability
measure and a probability kernel

Suppose that µ is a probability measure of a measurable space
(X,X ).

Suppose that ν is a probability kernels from (X,X ) to a
measurable space (Y,Y).

Define the inner product µν as a probability measure on Y :

(µν)(A) =



X
µ(dx)ν(x,A), A ∈ Y.

Define the outer product µ⊗ ν as the unique probability measure
on (X × Y,X ⊗ Y) such that

(µ⊗ ν)(A,B) =



A
µ(dx)ν(x,B), A ∈ X , B ∈ Y.
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Conditional distribution

Let η be a random element taking values in a measurable space
(T, T ) defined on a probability space, say (Ω,A,P).
Let F be a sub σ-field.

The conditional distribution L(η|F) is defined as a probability
kernels from (Ω,A) to (T, T ) such that for every A ∈ T ,

L(η|F)(·, A) = P(η ∈ A|F) = E[1{η∈A}|F ], a.s.

Warning: the existence of conditional distribution is not
guaranteed!

If F is generated by another random element ξ, then we define
L(η|ξ) = L(η|F).
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Disintegration

Theorem 8.5

Let ξ, η be random elements in S and T . Let T be a Polish space. Then
L(ξ, η) = L(ξ)⊗ µ for a probability kernel µ from S to T . Furthermore,

L(η|ξ) = µ(ξ, ·), a.s.

This gives the existence of conditional distribution.

A key condition is that η takes values in a Polish space.
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Existence of Markov processes

Theorem 11.4

Consider a time scale T ⊂ R starting at 0, a Polish space S, a
probability measure ν on S, and a family of probability kernels
{µs,t|s ≤ t, s, t ∈ T} on S satisfying Chapman–Kolmogorov equations.
Then there exists an S-valued Markov process (Xt)t∈T with intial
distribution ν and transition kernels µs,t.

Chapman–Kolmogorov equations?

Markov process?

Initial distribution?

Transition kernels?
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Chapman–Kolmogorov equations

Suppose that T ⊂ R and 0 ∈ T .

Let {µs,t|s < t, s, t ∈ T} be a family of probability kernels on a
measurable space S.

We say Chapman-Kolmogorov equation holds for
{µs,t|s < t, s, t ∈ T}, if for every s < u < t in T ,

µs,uµu,t = µs,t.
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Conditionally independent

Let (Ω,A,P) be a probability space.

We say a family of sub σ-fields {Ft|t ∈ T} are independent given a
sub σ-field G, if for every distinct t1, t2, . . . , tn in T and
F1 ∈ Ft1 , F2 ∈ Ft2 , . . . , Fn ∈ Ftn , it holds that almost surely

P(F1 ∩ F2 ∩ · · · ∩ Fn|G) = P(F1|G)P(F2|G) . . .P(Fn|G).

Notationally, if sub σ-fields F and H are conditionally
independent given G, then we write

F⊥⊥GH.
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Markov process

Let (Ω,A,P) be a probability space.

Let time scale T ⊂ R and 0 ∈ T .

Suppose that (Ft)t∈T is a family of non-decreasing sub σ-fields,
a.k.a. a filtration indexed by T .

Let S be a Polish space.

Let (Xt)t∈T be an S-valued stochastic process, a.k.a. a family of
S-valued random elements.

We say (Xt)t∈T is a Markov process w.r.t. filtration (Ft)t∈T if for
every t ∈ T , σ(Xt) ∈ Ft and

Ft⊥⊥σ(Xt)σ(Xu : u ≥ t).
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Initial distribution and the transition kernels

Let T ⊂ [0,∞) and 0 ∈ T .

Let S be a Polish space.

Let (Xt)t∈T be an S-valued Markov process w.r.t. a filtration
(Ft)t∈T of a probability sapce (Ω,A,P).
We say a probability measure ν on S is the initial distribution of
(Xt)t∈T , if it is the distribution of X0.

We say a family of probability kernels {µs,t|s < t in T} on S are
the transition kernels of (Xt)t∈T , if for every s < t in T and B ∈ S,
almost surely

P(Xt ∈ B|Fs) = µs,t(Xs, B).

Since S is Polish, transition kernels of a given Markov process
always exists.
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Existence of Markov processes

Theorem 11.4

Consider a time scale T ⊂ R starting at 0, a Polish space S, a
probability measure ν on S, and a family of probability kernels
{µs,t|s ≤ t, s, t ∈ T} on S satisfying Chapman–Kolmogorov equations.
Then there exists an S-valued Markov process (Xt)t∈T with intial
distribution ν and transition kernels µs,t.

Starting point for further analysis of the properties of the Markov
process.
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Stationary and invariant

Lemma 11.11

Let (Xt)t≥0 be a homogeneous Markov process in a Polish space S, with
(homogeneous) transition kernels µt and initial distribution ν. Then

X is stationary ⇐⇒ ν is invariant for (µt)t≥0.

Homogeneous Markov process and homogenous transition kernels?

Stationary process?

Invariant measure?
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Homogeneous Markov process

Let S be a Polish space.

Suppose that (Xt)t≥0 is an S-valued Markov process with
transition kernels {µs,t|s < t in [0,∞)}.
Suppose that µs,t only depends on t− s.

That is to say, there exists a family of probability kernels
{µ̃t|t ≥ 0} of S, such that µs,t = µ̃t−s for every 0 ≤ s < t.

Then, we say (Xt)t≥0 is a homogeneous Markov process with
(homogeneous) transition kernels (µ̃t)t≥0.

It is known that (µ̃t)t≥0 is a semigroup:

µ̃tµ̃s = µ̃t+s.
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Stationary process

We say a process (Xt)t≥0 is stationary, if for every
0 ≤ t1 < t2 < · · · < tn and t ≥ 0, we have

L(Xt1 , Xt2 , . . . , Xtn) = L(Xt1+t, Xt2+t, . . . , Xtn+t).
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Invariant measure

Let (µt)t≥0 is a family of probability kernels of a Polish space S.

Suppose that (µt)t≥0 is a semigroup.

We say a probability measure ν of S is invariant w.r.t. (µt)t≥0 if,
for every t ≥ 0, νµt = ν.
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Stationary and invariant

Lemma 11.11

Let (Xt)t≥0 be a homogeneous Markov process in a Polish space S, with
(homogeneous) transition kernels µt and initial distribution ν. Then

X is stationary ⇐⇒ ν is invariant for (µt)t≥0.

This result is foundational in the study of long-term behavior of
Markov processes, particularly in:

Ergodic theory, where one studies conditions under which a process
converges to a stationary distribution.
Statistical mechanics, where stationary distributions often describe
equilibrium states
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Strong Markov property

Theorem 11.14

Let (Ft)t≥0 be a filtration of a probability space. Let (Xt)t≥0 be an
(Ft)t≥0-adapted, càdlàg stochastic process taking values in a separable
complete metric space (S, dS). Let P be a probability kernel from S to
DS . Then these conditions are equivalent:

X is strongly homogeneous at every bounded optional time τ
w.r.t. kernel P .

X satisfies the strong Markov property at every optional time
τ < ∞ w.r.t. kernle P .

Similar result holds while replacing ‘càdlàg’ and ‘DS ’ by ‘continuous’
and ‘CS ’ respectively.

Wiener space CS? Skorokhod space DS?

Strongly homogeneous?

Strong Markov property?
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Wiener space

Let (S, dS) be a seperable complete metric space.

Denote by CS the space of continuous paths in S indexed by
[0,∞).

In other word, w ∈ CS iff w is a continuous map from [0,∞) to S.

For every x, y in CS , define the pseudometrics

dC,n(x, y) := sup
t∈[0,n]

dS(xt, yt), n ≥ 0

and metric

dC(x, y) :=

∞

n=1

(dC,n(x, y) ∧ 1)/2n.

CS equipped with the topology generated by dC is called the
Wiener space.
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Why do we need Wiener Space?

Let (Xt)t≥0 be a continuous process taking values in a separable
complete metric space S, defined on a probability space (Ω,A,P).
It can be verified that X : ω → (Xt(ω))t≥0 is a measurable map
from (Ω,A,P) to CS .

In other word, X is a CS-valued random element.

With an abuse of notation, we do not distinguish the process
(Xt)t≥0 and X.

Therefore, we can talk about the law of the process (Xt)t≥0.

Moreover, it is known that CS is a Polish space.

Therefore, we can talk about the conditional law of the process
(Xt)t≥0 given a sub σ-field F .
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Skorokhod space

Let (S, dS) be a seperable complete metric space.

Denote by DS the space of càdlàg paths in S indexed by [0,∞).

In other word, w ∈ DS iff w : [0,∞) → S,

w(t) = lim
r↓t

w(r), t ≥ 0,

and
lim
r↑t

w(r) exist, t > 0.

DS equipped with the J1-topology (defined in the next slide) is
called the Skorokhod space.
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The J1-topology

We say λ is a time change of [0, n] if it is a strictly increasing
continuous bijection from [0, n] to itself.

Let Λn be the collection of all time change of [0, n].

For any x and y in DS , define pseudometrics

dD,n(x, y) = inf
λ∈Λn


sup

t∈[0,n]
|λ(t)− t|+ sup

t∈[0,n]
|x(λ(t))− y(t)|



and metric

dD(x, y) =

∞

n=1

(dD,n(x, y) ∧ 1)/2n.

The topology generated by the metric dD is called the J1-topology
of Skorokhod space.
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Why do we need Skorokhod Space?

Let (Xt)t≥0 be a càdlàg process taking values in a separable
complete metric space S, defined on a probability space (Ω,A,P).
It can be verified that X : ω → (Xt(ω))t≥0 is a measurable map
from (Ω,A,P) to DS .

In other word, X is a DS-valued random element.

With an abuse of notation, we do not distinguish the process
(Xt)t≥0 and X.

Therefore, we can talk about the law of the process (Xt)t≥0.

Moreover, it is known that DS is a Polish space.

Therefore, we can talk about the conditional law of the process
(Xt)t≥0 given a sub σ-field F .
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Strong homogeneous Markov process

Let S be a separable complete metric space.

Let DS be the Skorokhod space of S-valued càdlàg paths.

For any t ≥ 0 define the shift operator θt : DS → DS such that

(θtw)(s) = w(t+ s), w ∈ DS , s ≥ 0.

Suppose that (Xt)t≥0 is an S-valued càdlàg Markov process.

Suppose that there exists a probability kernels P from S to DS

such that, for every t ≥ 0, almost surely

L(θtX|Xt) = P (Xt, ·).

Then we say (Xt)t≥0 is strong homogeneous.

For càdlàg Markov processes, homogeneous and strong
homogeneous are equivalent.
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Strong homogeneous at an optional time

Let DS be the Skorokhod space w.r.t. a separable complete metric
space S.

Let (Ft)t≥0 be a filtration of a probability space (Ω,A,P)
satisfying the usual hypothesis.

Suppose that (Xt)t≥0 is an S-valued adapted càdlàg process. (Not
necessarily Markovian!)

Let P be a probability kernel from S to DS .

We say X is strong homogeneous at a optional time τ w.r.t. kernel
P , if

L(θτX|Xτ ) = P (Xτ , ·), a.s.
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Strongly Markov property at an optional time

Let DS be the Skorokhod space w.r.t. a separable complete metric
space S.

Let (Ft)t≥0 be a filtration of a probability space (Ω,A,P)
satisfying the usual hypothesis.

Suppose that (Xt)t≥0 is an S-valued adapted càdlàg process. (Not
necessarily Markovian!)

Let P be a probability kernel from S to DS .

We say X satisfies the strong Markov property at a optional time
τ w.r.t. kernel P , if

Fτ⊥⊥σ(Xτ )σ(θτX), L(θτX|Xτ ) = PXτ , a.s.
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Strong Markov property

Theorem 11.14

Let (Ft)t≥0 be a filtration of a probability space. Let (Xt)t≥0 be an
(Ft)t≥0-adapted, càdlàg stochastic process taking values in a separable
complete metric space (S, dS). Let P be a probability kernel from S to
DS . Then these conditions are equivalent:

X is strongly homogeneous at every bounded optional time τ
w.r.t. kernel P .

X satisfies the strong Markov property at every optional time
τ < ∞ w.r.t. kernle P .

Similar result holds while replacing ‘càdlàg’ and ‘DS ’ by ‘continuous’
and ‘CS ’ respectively.

This result is not obvious at all!
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Thanks!
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