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Disintegration

Theorem 8.5

Let &, n be random elements in S and T'. Let T be a Polish space. Then
L(&,n) = L(§) ® p for a probability kernel p from S to T'. Furthermore,

L(n|€) = p(&;-), as.

e Law of random elements, £(£) and L£(&,7n)?
o Probability kernel u?

e Outer product L£(&) ® u?

e Conditional distribution £(n|€)?
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Law of random elements

o Let £ be a random element taking values in a measurable space
(S,S8), defined on a probability space, say (€2, A, P).
@ The law of £, denoted by L(&), is a probability measure on S s.t.

L(E)(A) =P e A), VAeS.

@ Let 1 be another random element taking values in measure space
(T, 7).

@ Then (§,7) is a random element taking values in the product space
(SxT,S®T).

@ The law of (§,n) is denoted by L(§,n).
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Probability kernels

e Let (S5,S) and (X, X) be two measurable spaces.
o We say u is a kernel from S to X, if
o :SxX =R,
o for every s € S, u(s,-) : X = R is a measure of the measurable
space (X, X); and
o for every A€ X, u(-,A) : S — R is a measurable function on S.
@ We say a kernel p from S to X is a probability kernel, if for every
s€ S, u(s,:) : X = R is a probability measure.

o We say u is a kernel on S, if it is a kernel from S to S.
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Inner product of probability kernels

@ Suppose that p is a probability kernels from a measurable space
(S,S) to a measurable space (X, X).

@ Suppose that v is a probability kernels from (X, X) to a
measurable space (Y,)).

@ Define a map pv : S x Y — R such that
(uv)(s, A) = / (s, dr)v(xz, A), se€S,Ae).
X

@ It can be verified that uv is a probability kernel from (S,S) to
¥,)).

@ We say pv is the inner product between p and v.
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Outer product of probability kernels

@ Suppose that y is a probability kernels from a measurable space
(S,S) to a measurable space (X, X).

e Suppose that v is a probability kernels from (X, X) to a
measurable space (Y,)).

@ Denote by (X x Y, X ® )) the product measurable space of (X, X)
and (Y,)).

@ Define map p®@v: S x (X ®Y) — R such that for any s € S,
Aec X and Be),

(p®v)(s,Ax B)= /A,u(s,d:c)u(x,B).

e It can be verified that ;4 ® v is a probability kernel from (5, S) to
the product space (X x Y, X ®)).

o We say u ® v is the outer product between p and v.
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Inner product and outer product of a probability
measure and a probability kernel

@ Suppose that y is a probability measure of a measurable space
(X, X).

@ Suppose that v is a probability kernels from (X, X) to a
measurable space (Y,)).

@ Define the inner product pv as a probability measure on Y:

() (4) = / w(da)v(z, 4), Ae.

X

@ Define the outer product p ® v as the unique probability measure
on (X xY,X ®)) such that

(Lev)(A,B)= /A,u,(dx)y(x,B), Ae X, Be).
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Conditional distribution

o Let 1 be a random element taking values in a measurable space
(T, T) defined on a probability space, say (2, A, P).
o Let F be a sub o-field.

@ The conditional distribution £(n|F) is defined as a probability
kernels from (2,.4) to (T, T) such that for every A € T,

L F)(-,A) =P(n € AIF) =E[lgenlFl,  as.

@ Warning: the existence of conditional distribution is not
guaranteed!

o If F is generated by another random element &, then we define

L(n|&) = L(n|F).
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Disintegration

Theorem 8.5

Let &, n be random elements in S and T'. Let T be a Polish space. Then
L(&,n) = L(§) ® p for a probability kernel p from S to T'. Furthermore,

/3(77|§) = M(’Ea ')7 a.s.

o This gives the existence of conditional distribution.

@ A key condition is that 7 takes values in a Polish space.
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Existence of Markov processes

Theorem 11.4

Consider a time scale T' C R starting at 0, a Polish space S, a
probability measure v on S, and a family of probability kernels
{pstls <t,s,t € T} on S satisfying Chapman-Kolmogorov equations.
Then there exists an S-valued Markov process (X;)qer with intial
distribution v and transition kernels fi4 ;.

o Chapman—Kolmogorov equations?
@ Markov process?
o Initial distribution?

@ Transition kernels?
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Chapman—Kolmogorov equations

@ Suppose that T C R and 0 € T

o Let {pst|s <t,s,t € T} be a family of probability kernels on a
measurable space S.

@ We say Chapman-Kolmogorov equation holds for
{pstls <t,s,t € T}, if for every s <u <tin T,

Hsulbut = Hs,t-
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Conditionally independent

e Let (22, A,P) be a probability space.

e We say a family of sub o-fields {F;|t € T'} are independent given a
sub o-field G, if for every distinct t1,t2,...,t, in T and
e R, FheF,,..., e Fy,, it holds that almost surely

P(F N F3N - NEF,|G) = P(F|G)P(F|G) . .. P(F,|G).

o Notationally, if sub o-fields F and H are conditionally
independent given G, then we write

FlgH.
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Markov process

o Let (2, A,P) be a probability space.
@ Let time scale T'C R and 0 € T.

@ Suppose that (F;)ier is a family of non-decreasing sub o-fields,
a.k.a. a filtration indexed by T'.

@ Let S be a Polish space.

o Let (X¢)ier be an S-valued stochastic process, a.k.a. a family of
S-valued random elements.

o We say (X¢)ier is a Markov process w.r.t. filtration (F)iep if for
every t € T, 0(Xy) € F; and

ft—LLg(Xt)O'(Xu Tu > t).
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Initial distribution and the transition kernels

o Let T'C [0,00) and 0 € T.

@ Let S be a Polish space.

o Let (X{)ier be an S-valued Markov process w.r.t. a filtration
(Fi)ter of a probability sapce (€2, A, P).

@ We say a probability measure v on S is the initial distribution of
(Xt)ier, if it is the distribution of Xj.

e We say a family of probability kernels {ys:|/s <t in T} on S are
the transition kernels of (X3)ier, if for every s < tin T and B € S,

almost surely
P(X: € B|Fs) = pst(Xs, B).

@ Since S is Polish, transition kernels of a given Markov process
always exists.
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Existence of Markov processes

Theorem 11.4

Consider a time scale T' C R starting at 0, a Polish space S, a
probability measure v on S, and a family of probability kernels
{pstls <t,s,t € T} on S satisfying Chapman-Kolmogorov equations.
Then there exists an S-valued Markov process (X;)ier with intial
distribution v and transition kernels p ;.

e Starting point for further analysis of the properties of the Markov
process.

15 / 31




Stationary and invariant

Lemma 11.11

Let (X¢)t>0 be a homogeneous Markov process in a Polish space S, with
(homogeneous) transition kernels p; and initial distribution v. Then

X is stationary <= v is invariant for (u):>0.

@ Homogeneous Markov process and homogenous transition kernels?
@ Stationary process?

o Invariant measure?
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Homogeneous Markov process

@ Let S be a Polish space.

e Suppose that (X¢)¢>0 is an S-valued Markov process with
transition kernels {ps¢|s < ¢ in [0, 00)}.

@ Suppose that ps; only depends on t — s.

e That is to say, there exists a family of probability kernels
{fie|t > 0} of S, such that ps¢ = fi;—s for every 0 < s < t.

@ Then, we say (X;)¢>0 is a homogeneous Markov process with
(homogeneous) transition kernels (fi)¢>0.

o It is known that (fi¢)¢>0 is a semigroup:

fitfis = ficys.
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Stationary process

o We say a process (X;)¢>0 is stationary, if for every
0<t1 <tya<---<t,andt >0, we have

L(Xty, Xtyy ooy X)) = L(Xty 11, Xtgtts o5 Xtytt)-

18 / 31



Invariant measure

o Let (41¢)r>0 is a family of probability kernels of a Polish space S.
@ Suppose that (p:)i>0 is a semigroup.

o We say a probability measure v of S is invariant w.r.t. (u:)e>o if,
for every t > 0, vy = v.
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Stationary and invariant

Lemma 11.11
Let (X¢)t>0 be a homogeneous Markov process in a Polish space S, with
(homogeneous) transition kernels p; and initial distribution v. Then

X is stationary <= v is invariant for (u¢):>o.

@ This result is foundational in the study of long-term behavior of
Markov processes, particularly in:
e Ergodic theory, where one studies conditions under which a process

converges to a stationary distribution.
o Statistical mechanics, where stationary distributions often describe

equilibrium states
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Strong Markov property

Theorem 11.14

Let (Ft)t>0 be a filtration of a probability space. Let (X;)¢>0 be an
(Fi)e>0-adapted, cadlag stochastic process taking values in a separable
complete metric space (S,dg). Let P be a probability kernel from S to
Dg. Then these conditions are equivalent:

@ X is strongly homogeneous at every bounded optional time 7
w.r.t. kernel P.

© X satisfies the strong Markov property at every optional time
T < o0 w.r.t. kernle P.

Similar result holds while replacing ‘cadlag’ and ‘Dg’ by ‘continuous’
and ‘Cyg’ respectively.

@ Wiener space Cg? Skorokhod space Dg?
e Strongly homogeneous?
e Strong Markov property?
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Wiener space

Let (S,dg) be a seperable complete metric space.

Denote by Cg the space of continuous paths in .S indexed by
[0, 00).

In other word, w € Cg iff w is a continuous map from [0, 00) to S.

For every z,y in Cg, define the pseudometrics

dC,n(l‘)y) ‘= sup dS(mta yt)7 n > 0
te[0,n]

and metric

do(z,y) =) (den(z,y)A1)/2.

Nk

n=1

o (g equipped with the topology generated by d¢ is called the
Wiener space.
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Why do we need Wiener Space?

o Let (X¢)i>0 be a continuous process taking values in a separable
complete metric space S, defined on a probability space (2, A, P).

o It can be verified that X : w +— (X;(w))i>0 is a measurable map
from (92, A,P) to Cg.

@ In other word, X is a Cg-valued random element.

o With an abuse of notation, we do not distinguish the process
(Xt)tZO &Hd X.

o Therefore, we can talk about the law of the process (X¢)i>0.
@ Moreover, it is known that Cg is a Polish space.

@ Therefore, we can talk about the conditional law of the process
(Xt)i>0 given a sub o-field F.
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Skorokhod space

e Let (S,dg) be a seperable complete metric space.
@ Denote by Dg the space of cadlag paths in S indexed by [0, c0).
e In other word, w € Dg iff w: [0,00) — S,

w(t) = liﬁlw(r), t>0,

and

limw(r) exist, ¢ > 0.
rit

e Dg equipped with the Ji-topology (defined in the next slide) is
called the Skorokhod space.
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The J,-topology

e We say A is a time change of [0,n] if it is a strictly increasing
continuous bijection from [0, n] to itself.

o Let A, be the collection of all time change of [0, n].

o For any x and y in Dg, define pseudometrics

dpp(z,y) = inf [ sup [A(t) —t[+ sup |z(A(?)) — y(0)]
A€An \ tefon) te[o,n)

and metric
o0

dp(z,y) =Y _(dpn(z,y) A1)/2"

n=1
@ The topology generated by the metric dp is called the .J;-topology
of Skorokhod space.
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Why do we need Skorokhod Space?

o Let (X¢)i>0 be a cadlag process taking values in a separable
complete metric space S, defined on a probability space (2, A, P).

o It can be verified that X : w +— (X;(w))i>0 is a measurable map
from (92, A,P) to Dg.

o In other word, X is a Dg-valued random element.

o With an abuse of notation, we do not distinguish the process
(Xt)tZO &Hd X.

o Therefore, we can talk about the law of the process (X¢)i>0.
@ Moreover, it is known that Dg is a Polish space.

@ Therefore, we can talk about the conditional law of the process
(Xt)i>0 given a sub o-field F.
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Strong homogeneous Markov process

@ Let S be a separable complete metric space.
o Let Dg be the Skorokhod space of S-valued cadlag paths.
o For any t > 0 define the shift operator 6; : Dg — Dg such that

(Orw)(s) =w(t+s), weDg,s>0.

e Suppose that (X;)¢>0 is an S-valued cadlag Markov process.

@ Suppose that there exists a probability kernels P from S to Dg
such that, for every ¢ > 0, almost surely

L(0,X|X;) = P(Xy, ).

o Then we say (X;)¢>0 is strong homogeneous.

e For cadlag Markov processes, homogeneous and strong
homogeneous are equivalent.
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Strong homogeneous at an optional time

o Let Dg be the Skorokhod space w.r.t. a separable complete metric
space S.

o Let (F;)i>0 be a filtration of a probability space (£, A, P)
satisfying the usual hypothesis.

@ Suppose that (X¢)i>0 is an S-valued adapted cadlag process. (Not
necessarily Markovian!)

@ Let P be a probability kernel from S to Dg.

o We say X is strong homogeneous at a optional time 7 w.r.t. kernel
P, if
L(0:X|X;)=P(X;,-), a.s.
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Strongly Markov property at an optional time

@ Let Dg be the Skorokhod space w.r.t. a separable complete metric
space S.

o Let (F¢)e>0 be a filtration of a probability space (€2,.A,P)
satisfying the usual hypothesis.

e Suppose that (X¢)i>0 is an S-valued adapted cadlag process. (Not
necessarily Markovian!)

@ Let P be a probability kernel from S to Dg.

o We say X satisfies the strong Markov property at a optional time
T w.r.t. kernel P, if

]rTJ_LU(XT)U(QTX), £(97—X|X7—> = PXT, a.s.
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Strong Markov property

Theorem 11.14

Let (Ft)t>0 be a filtration of a probability space. Let (X;)¢>0 be an
(Ft)e>0-adapted, cadlag stochastic process taking values in a separable
complete metric space (S,dg). Let P be a probability kernel from S to
Dg. Then these conditions are equivalent:

@ X is strongly homogeneous at every bounded optional time 7
w.r.t. kernel P.

© X satisfies the strong Markov property at every optional time
T < o0 w.r.t. kernle P.

Similar result holds while replacing ‘cadlag’ and ‘Dg’ by ‘continuous’
and ‘Cyg’ respectively.

@ This result is not obvious at all!
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Thanks!
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