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Gaussian processes

Theorem (Existence of Gaussian process)

Let T be any index set and let M : T'— R by any function. Let

K : T xT — R be a non-negative definite function. Then, there exists
a probability space (£2, F,P) and random variables (X;);cr such that
(Xt)ter is a Gaussian process with mean M and covariance K.

@ Non-negative definite function?

@ Gaussian process?

@ Mean and covariance of a Gaussian process?
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Non-negative definite function

o Let A= (a;;);';—; be an n x n symmetric matrix with real entries.

@ We say A is non-negative definite if for any = € R™, we have
d d d
(x, Ax) = ZmZ(Ax)Z = Zinamxj > 0.
i=1 i=1 j=1

@ We say a function K : T x T — R is non-negative definite if, for
every ty,...,t, in T, the matrix (K(;,;));';—; is non-negative
definite.
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Gaussian process

o Let T be any index set.

o We say (X;)ier is a Gaussian process, if for any n € N, ¢4, ...

in T, and Aq,..., A, in R, the random variable
A Xy + o+ A Xy,

has a normal distribution.

itn
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Mean and covariance of a Gaussian process

o Let T be any index set.
o Let (Xy)ier be a Gaussian process.

@ We say a function M : T — R is the mean of the Gaussian process
X, if E[Xy] = M(t) for every t € T

@ We say a function K : T'x T — R is the covariance of the
Gaussian process X, if Cov(Xy, X5) = K(t,s) for every t,s in T
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Gaussian processes

Theorem (Existence of Gaussian process)

Let T be any index set and let M : T'— R by any function. Let

K : T xT — R be a non-negative definite function. Then, there exists
a probability space (2, F,P) and random variables (X;):cr such that
(Xt)ter is a Gaussian process with mean M and covariance K.

@ This allows the modeling of a wide range of stochastic processes
with spatial and time correlations, making Gaussian processes

extremely flexible in applications like machine learning, statistics,
and stochastic modeling.
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Independent increments

Theorem 14.4

Let (Xt)+>0 be a continuous process in R? with Xy = 0. Then these
conditions are equivalent:

@ X has independent increments,

© X is Gaussian, and there exist some continuous functions (bt)¢>0
in R? and (at)e>0 in R% x R? such that X; — X, has mean b; — by
and covariance a; — as for every s < t.

o Independent increments?
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Independent increments

o Let (X;);>0 be a process in RY.

o We say (X;)¢>0 has independent increments, if for every n € N and
0<ty<---<t,, the random variables

X, — X, Xty — Xy oo, Xy, — X,y

are independent.
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Independent increments

Theorem 14.4

Let (X¢)i>0 be a continuous process in R? with Xy = 0. Then these
conditions are equivalent:

@ X has independent increments,

© X is Gaussian, and there exist some continuous functions (bt)¢>0
in R? and (at)e>0 in R x R? such that X; — X, has mean b; — b,
and covariance a; — as for every s < t.

o Continuous processes with independent increments must be
Gaussian!

@ This is =crucial in the modeling of various stochastic phenomena.
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Brownian motion

Theorem 14.5 (Definition of BM 1)

There exists a continuous process (Bi):> in R with stationary,
independent increments such that By = 0, E[B;] = 0 and E[B?] = 1.
Such process is unique in law.

e Stationary, independent increments?
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Stationary, independent increments

o Let (X;);>0 be a process in RY.

o We say (X¢):>0 has stationary increments, if for every h > 0 and
t >0, L(Xypn — Xi) = L(X), — Xo).

o We say (X¢):>0 has stationary independent increments, if it has
stationary increments and independent increments.
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Brownian motion

Theorem 14.5 (Definition of BM 1)

There exists a continuous process (B;):>0 in R with stationary,
independent increments such that By = 0, E[B1] = 0 and E[B}] = 1.
Such process is unique in law.

@ We call such process a standard Brownian motion.

® (B¢)t>0 is a continuous Gaussian process with mean 0 and
covariance E[ByBs| =t A s.

@ Brownian motion is the fundamental continuous stochastic process.
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Invariance Principle

Theorem 23.6 (Definition of BM 2)
Let £1,&9, ... beii.d. random variables with E[§;] = 0 and E€? = 1. Let

S, :— {ZZ:lgkv t:n€Z+,
=

continuous linear, ten,n+1),neZy.

Then, after the parabolic rescaling,

1
(—Snt) 9, standard Brownian motion (Bt)t>0, M — 00
t>0

NG

as random elements in Wiener space C(]0,00),R).

@ This demonstrates the universality of Brownian motion as a
continuous limit of random walks.
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Brownian motion as Markov process

Theorem (Definition of BM 3)

Let (pu)r>0 be the heat kernels of R. Let (By);>0 be a standard
Brownian motion (Bt)i>0. Let (F;)i>0 be the natural filtration of
(Bt)t>0. Then (By):>0 is a homogeneous Markov process with
transition kernels (u¢)e>0 w.r.t. (F¢)e>o, 1.€.

P(B; € A|Fs) = p—s(Bs, A), a.s. A€ Bg,0<s<t.

@ Heat kernels?
@ Natural filtration?
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Heat kernels

e We say a family of probability kernels (y)i>0 on R are heat
kernels, if po(z, ) = 6,(-) and for ¢ > 0,

1 _wo?
Nt(l‘a dy) = \/2—7'('te 2 dy

@ Heal kernels are the fundamental solutions to the heat equation.

@ Consider the heat equation
Opur(x) = %ut(z‘)
up(z) = f(x).

It is known that the solution is the mixture of fundamental
solutions:

wn(x) = / £ (w)pa(r, dy).
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Natural filtration

o Let (X;)i>0 be a given process on a probability space (€2, A, P).
o Define }",;X =o0(Xs:8<t).
e Then we say (F;%);>0 is the natural filtration of (X;);>o.
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Brownian motion as Markov process

Theorem (Definition of BM 3)

Let (u¢)e>0 be the heat kernels of R. Let (B;):>0 be a standard
Brownian motion (Bi)¢>0. Let (Ft)t>0 be the natural filtration of
(Bt)t>0. Then (By)i>0 is a homogeneous Markov process with
transition kernels (p¢)i>0 w.r.t. (Ft)e>o, 1.€.

P(Bt S A‘]:S) = Mt_S(BS,A), a.s. A€ Bg,0<s<t.

@ This result connects Brownian motions to the heat equations
Ou = %u
o This gives another definition of Brownian motion.
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Strong Markov property

Theorem 14.11

For every x € R, denote by P, be the Wiener measure on Cr with
initial value z. Let (2, A, (F¢)t>0,P) be a filtered probability space. For
an F-Brownian motion (Bt)¢>o in R and an F-optional time 7 < oo,
(Bt)¢>0 satisfies the strong Markov property at 7 w.r.t. kernel P.

@ Wiener measure?

@ F-Brownian motion?
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Wiener measure

o Let (B¢)t>0 be a standard Brownian motion.

@ Since (B)¢>0 has continuous paths, we can regard B as a random
elements taking values in the Wiener space Ck.

e For every x € R, the Wiener measure P, is defined as the law of
the Cr-valued random element (B, + x)>0.
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JF-Brownian motion

o Let (Q, A, (Fi)i>0,P) be a filtered probability space.
o Let (u¢)i>0 be the heat kernels of R.

o We say an F-adapted continuous process (Bi);>0 is an
F-Brownian motion, if it is a homogeneous Markov process with
transition kernels (p¢)¢>0 w.r.t. filtration F.
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Strong Markov property

Theorem 14.11

For every z € R, denote by P, be the Wiener measure on Cr with
initial value z. Let (2, A, (F¢)i>0,P) be a filtered probability space. For
an F-Brownian motion (B;):>0 in R and an F-optional time 7 < oo.
Then (B:):>o satisfies the strong Markov property at 7 w.r.t. kernel P.

@ The result says that, given B;, the future path 6, B has the
conditional distribution Pp_, and is independent of the past F.
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Lévy’s martingale characterization of Brownian
motion

Theorem 19.3 (Definition of BM 4)

Let (F:)e>0 be a filtration. The following two statements are
equivalent:

© Let (B;)i>0 be a standard F-Brownian motion. Then (B;);>0 and
(B? — t)1>0 are F-martingales.

© Let (M;)i>0 be a continuous F-martingale satisfies the property
that (M2 — t);>0 is also a F-martingale. Then (M;);>¢ is a
standard JF-Brownian motion.
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Regularity and Irregularity of Brownian path

Theorem 14.10

Let (Bi)t>0 be a standard Brownian motion. Then

P ((Bt)tep,1) € CP([0,1],R)) = {(1)’ ii(lo/a;ﬂ),

In particular, (By)s>0 is not differentiable.

e Holder space CP([0, 1], R).
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Holder space

e Let p € [0,1). The Holder space CP([0,1],R) is the space of
continuous functions f : [0, 1] — R such that there exists a
constant C' > 0 satisfying the Holder condition:

|f(t) = f(s)| < CJt —sP, st €[0,1].

o If p=neN, CP([0,1],R) represents the space of n-times
continuously differentiable functions.

o If p=n-+ a where n € Nand a € (0,1), then CP([0,1],R)
represents the space of functions in C™ whose n-th derivative is in

ce.
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Regularity and Irregularity of Brownian path

Theorem 14.10

Let (Bi)i>0 be a standard Brownian motion. Then

P ((B)tepp,) € CP([0,1],R)) = {(1) ii(10/;/2),

In particular, (Bt)s>0 is not differentiable.

o This result roughly says that dB; = B4 — B; ~ Vdt.
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Quadratic variation

Theorem 14.9

Let B be a standard Brownian motion, and fix any ¢ > 0. Then for any
partitions 0 = t, 0 <tp1 <--- <tpk, =t with

hn = ma’X{tnﬂ‘ o tn’i,1 S 17 ) kn} — 0, we have
kn
> (Bin, — Bun,)? —t, i L2
=

The convergence holds a.s. when the partitions are nested.

e Convergence in LP,p > 17
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Convergence in LP,p > 1

o Let (2, A,P) be a probability space.
e For a random variable £ on 2, we say & € LP with p > 1 if

€]l := E[J£[7]P < oo.
e For a sequence of random variables &1,&9,... and £ in LP, we say

€, — €in LP if
1€n = &llp = 0, 1 — oo
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Quadratic variation

Theorem 14.9

Let B be a Brownian motion, and fix any ¢ > 0. Then for any
partitions 0 = ¢ < ¢ <--- <ty =t with

hn = max{tmi o tn’i,1 S 17 ) kn} — 0, we have
kn
> (Bin, — Bun,)? —t, i L2
=

The convergence holds a.s. when the partitions are nested.

e This result basically says that (dB;)? = (B qt — By)? = dt.
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Thanks!
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