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Gaussian processes

Theorem (Existence of Gaussian process)

Let T be any index set and let M : T → R by any function. Let
K : T × T → R be a non-negative definite function. Then, there exists
a probability space (Ω,F ,P) and random variables (Xt)t∈T such that
(Xt)t∈T is a Gaussian process with mean M and covariance K.

Non-negative definite function?

Gaussian process?

Mean and covariance of a Gaussian process?
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Non-negative definite function

Let A = (ai,j)
n
i,j=1 be an n× n symmetric matrix with real entries.

We say A is non-negative definite if for any x ∈ Rn, we have

〈x,Ax〉 =
d󰁛

i=1

xi(Ax)i =

d󰁛

i=1

d󰁛

j=1

xiai,jxj ≥ 0.

We say a function K : T × T → R is non-negative definite if, for
every t1, . . . , tn in T , the matrix (K(ti, tj))

n
i,j=1 is non-negative

definite.
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Gaussian process

Let T be any index set.

We say (Xt)t∈T is a Gaussian process, if for any n ∈ N, t1, . . . , tn
in T , and λ1, . . . ,λn in R, the random variable

λ1Xt1 + · · ·+ λnXtn

has a normal distribution.
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Mean and covariance of a Gaussian process

Let T be any index set.

Let (Xt)t∈T be a Gaussian process.

We say a function M : T → R is the mean of the Gaussian process
X, if E[Xt] = M(t) for every t ∈ T .

We say a function K : T × T → R is the covariance of the
Gaussian process X, if Cov(Xt, Xs) = K(t, s) for every t, s in T .
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Gaussian processes

Theorem (Existence of Gaussian process)

Let T be any index set and let M : T → R by any function. Let
K : T × T → R be a non-negative definite function. Then, there exists
a probability space (Ω,F ,P) and random variables (Xt)t∈T such that
(Xt)t∈T is a Gaussian process with mean M and covariance K.

This allows the modeling of a wide range of stochastic processes
with spatial and time correlations, making Gaussian processes
extremely flexible in applications like machine learning, statistics,
and stochastic modeling.
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Independent increments

Theorem 14.4

Let (Xt)t≥0 be a continuous process in Rd with X0 = 0. Then these
conditions are equivalent:

X has independent increments,

X is Gaussian, and there exist some continuous functions (bt)t≥0

in Rd and (at)t≥0 in Rd × Rd such that Xt −Xs has mean bt − bs
and covariance at − as for every s ≤ t.

Independent increments?
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Independent increments

Let (Xt)t≥0 be a process in Rd.

We say (Xt)t≥0 has independent increments, if for every n ∈ N and
0 ≤ t0 ≤ · · · ≤ tn, the random variables

Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.
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Independent increments

Theorem 14.4

Let (Xt)t≥0 be a continuous process in Rd with X0 = 0. Then these
conditions are equivalent:

X has independent increments,

X is Gaussian, and there exist some continuous functions (bt)t≥0

in Rd and (at)t≥0 in Rd × Rd such that Xt −Xs has mean bt − bs
and covariance at − as for every s ≤ t.

Continuous processes with independent increments must be
Gaussian!

This is =crucial in the modeling of various stochastic phenomena.
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Brownian motion

Theorem 14.5 (Definition of BM 1)

There exists a continuous process (Bt)t≥0 in R with stationary,
independent increments such that B0 = 0, E[B1] = 0 and E[B2

1 ] = 1.
Such process is unique in law.

Stationary, independent increments?
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Stationary, independent increments

Let (Xt)t≥0 be a process in Rd.

We say (Xt)t≥0 has stationary increments, if for every h ≥ 0 and
t ≥ 0, L(Xt+h −Xt) = L(Xh −X0).

We say (Xt)t≥0 has stationary independent increments, if it has
stationary increments and independent increments.
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Brownian motion

Theorem 14.5 (Definition of BM 1)

There exists a continuous process (Bt)t≥0 in R with stationary,
independent increments such that B0 = 0, E[B1] = 0 and E[B2

1 ] = 1.
Such process is unique in law.

We call such process a standard Brownian motion.

(Bt)t≥0 is a continuous Gaussian process with mean 0 and
covariance E[BtBs] = t ∧ s.

Brownian motion is the fundamental continuous stochastic process.
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Invariance Principle

Theorem 23.6 (Definition of BM 2)

Let ξ1, ξ2, . . . be i.i.d. random variables with E[ξi] = 0 and Eξ2i = 1. Let

St :=

󰀫󰁓n
k=1 ξk, t = n ∈ Z+,

continuous linear, t ∈ [n, n+ 1], n ∈ Z+.

Then, after the parabolic rescaling,

󰀕
1√
n
Snt

󰀖

t≥0

d−→ standard Brownian motion (Bt)t≥0, n → ∞

as random elements in Wiener space C([0,∞),R).

This demonstrates the universality of Brownian motion as a
continuous limit of random walks.
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Brownian motion as Markov process

Theorem (Definition of BM 3)

Let (µt)t≥0 be the heat kernels of R. Let (Bt)t≥0 be a standard
Brownian motion (Bt)t≥0. Let (Ft)t≥0 be the natural filtration of
(Bt)t≥0. Then (Bt)t≥0 is a homogeneous Markov process with
transition kernels (µt)t≥0 w.r.t. (Ft)t≥0, i.e.

P(Bt ∈ A|Fs) = µt−s(Bs, A), a.s. A ∈ BR, 0 ≤ s ≤ t.

Heat kernels?

Natural filtration?
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Heat kernels

We say a family of probability kernels (µt)t≥0 on R are heat
kernels, if µ0(x, ·) = δx(·) and for t > 0,

µt(x, dy) =
1√
2πt

e−
(y−x)2

2t dy.

Heal kernels are the fundamental solutions to the heat equation.

Consider the heat equation

󰀫
∂tut(x) =

∆
2 ut(x)

u0(x) = f(x).

It is known that the solution is the mixture of fundamental
solutions:

ut(x) =

󰁝
f(y)µt(x, dy).
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Natural filtration

Let (Xt)t≥0 be a given process on a probability space (Ω,A,P).
Define FX

t = σ(Xs : s ≤ t).

Then we say (FX
t )t≥0 is the natural filtration of (Xt)t≥0.
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Brownian motion as Markov process

Theorem (Definition of BM 3)

Let (µt)t≥0 be the heat kernels of R. Let (Bt)t≥0 be a standard
Brownian motion (Bt)t≥0. Let (Ft)t≥0 be the natural filtration of
(Bt)t≥0. Then (Bt)t≥0 is a homogeneous Markov process with
transition kernels (µt)t≥0 w.r.t. (Ft)t≥0, i.e.

P(Bt ∈ A|Fs) = µt−s(Bs, A), a.s. A ∈ BR, 0 ≤ s ≤ t.

This result connects Brownian motions to the heat equations
∂tu = ∆

2 u.

This gives another definition of Brownian motion.
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Strong Markov property

Theorem 14.11

For every x ∈ R, denote by Px be the Wiener measure on CR with
initial value x. Let (Ω,A, (Ft)t≥0,P) be a filtered probability space. For
an F-Brownian motion (Bt)t≥0 in R and an F-optional time τ < ∞,
(Bt)t≥0 satisfies the strong Markov property at τ w.r.t. kernel P .

Wiener measure?

F-Brownian motion?
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Wiener measure

Let (Bt)t≥0 be a standard Brownian motion.

Since (Bt)t≥0 has continuous paths, we can regard B as a random
elements taking values in the Wiener space CR.

For every x ∈ R, the Wiener measure Px is defined as the law of
the CR-valued random element (Bt + x)t≥0.
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F-Brownian motion

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space.

Let (µt)t≥0 be the heat kernels of R.
We say an F-adapted continuous process (Bt)t≥0 is an
F-Brownian motion, if it is a homogeneous Markov process with
transition kernels (µt)t≥0 w.r.t. filtration F .
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Strong Markov property

Theorem 14.11

For every x ∈ R, denote by Px be the Wiener measure on CR with
initial value x. Let (Ω,A, (Ft)t≥0,P) be a filtered probability space. For
an F-Brownian motion (Bt)t≥0 in R and an F-optional time τ < ∞.
Then (Bt)t≥0 satisfies the strong Markov property at τ w.r.t. kernel P .

The result says that, given Bτ , the future path θτB has the
conditional distribution PBτ , and is independent of the past Fτ .
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Lévy’s martingale characterization of Brownian
motion

Theorem 19.3 (Definition of BM 4)

Let (Ft)t≥0 be a filtration. The following two statements are
equivalent:

Let (Bt)t≥0 be a standard F-Brownian motion. Then (Bt)t≥0 and
(B2

t − t)t≥0 are F-martingales.

Let (Mt)t≥0 be a continuous F-martingale satisfies the property
that (M2

t − t)t≥0 is also a F-martingale. Then (Mt)t≥0 is a
standard F-Brownian motion.

22 / 29



Regularity and Irregularity of Brownian path

Theorem 14.10

Let (Bt)t≥0 be a standard Brownian motion. Then

P
󰀃
(Bt)t∈[0,1] ∈ Cp([0, 1],R)

󰀄
=

󰀫
1, p ∈ (0, 1/2),

0, p > 1/2.

In particular, (Bt)t≥0 is not differentiable.

Hölder space Cp([0, 1],R).
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Hölder space

Let p ∈ [0, 1). The Hölder space Cp([0, 1],R) is the space of
continuous functions f : [0, 1] → R such that there exists a
constant C > 0 satisfying the Hölder condition:

|f(t)− f(s)| ≤ C|t− s|p, s, t ∈ [0, 1].

If p = n ∈ N, Cp([0, 1],R) represents the space of n-times
continuously differentiable functions.

If p = n+ α where n ∈ N and α ∈ (0, 1), then Cp([0, 1],R)
represents the space of functions in Cn whose n-th derivative is in
Cα.
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Regularity and Irregularity of Brownian path

Theorem 14.10

Let (Bt)t≥0 be a standard Brownian motion. Then

P
󰀃
(Bt)t∈[0,1] ∈ Cp([0, 1],R)

󰀄
=

󰀫
1, p ∈ (0, 1/2),

0, p > 1/2.

In particular, (Bt)t≥0 is not differentiable.

This result roughly says that dBt = Bt+dt −Bt ≈
√
dt.
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Quadratic variation

Theorem 14.9

Let B be a standard Brownian motion, and fix any t > 0. Then for any
partitions 0 = tn,0 < tn,1 < · · · < tn,kn = t with
hn := max{tn,i − tn,i−1 : i = 1, . . . , kn} → 0, we have

kn󰁛

i=1

(Btn,i −Btn,i−1)
2 → t, in L2.

The convergence holds a.s. when the partitions are nested.

Convergence in Lp, p ≥ 1?
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Convergence in Lp, p ≥ 1

Let (Ω,A,P) be a probability space.

For a random variable ξ on Ω, we say ξ ∈ Lp with p ≥ 1 if

󰀂ξ󰀂p := E[|ξ|p]1/p < ∞.

For a sequence of random variables ξ1, ξ2, . . . and ξ in Lp, we say
ξn → ξ in Lp if

󰀂ξn − ξ󰀂p → 0, n → ∞.
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Quadratic variation

Theorem 14.9

Let B be a Brownian motion, and fix any t > 0. Then for any
partitions 0 = tn0 < tn1 < · · · < tnkn = t with
hn := max{tn,i − tn,i−1 : i = 1, . . . , kn} → 0, we have

kn󰁛

i=1

(Btn,i −Btn,i−1)
2 → t, in L2.

The convergence holds a.s. when the partitions are nested.

This result basically says that (dBt)
2 = (Bt+dt −Bt)

2 = dt.

28 / 29



Thanks!
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