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Covariation

Theorem 18.5

For any continuous local martingales M = (Mt)t≥0, N = (Nt)t≥0, there
exists a continuous process [M,N ] with locally finite variation and
[M,N ]0 = 0, such that MN − [M,N ] is a local martingale.

Locally finite variation?
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Locally finite variation?

We say a function f on [0, t] has finite variation Vt(f), if

Vt(f) := sup

󰀫
n󰁛

i=1

|f(ti)− f(ti−1)| : 0 = t0 < · · · < tn = t, n ∈ N

󰀬

is finite.

We say a function f on [0,∞) has locally finite variation, if
Vt(f) < ∞ for every t ≥ 0.

We say a stochastic process (At)t≥0 has locally finite variation, if
almost surely its sample path has locally finite variation.
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Covariation

Theorem 18.5

For any continuous local martingales M = (Mt)t≥0, N = (Nt)t≥0, there
exists a continuous process [M,N ] with locally finite variation and
[M,N ]0 = 0, such that MN − [M,N ] is a local martingale.

Quadratic variation [M ] := [M,M ].

The existence of the covariation process is a cornerstone of
stochastic calculus, allowing for the detailed study of the
interactions between continuous local martingales and their
products.
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Approximation of covariation

Proposition 18.17

For any continuous martingales X,Y on [0, t] and partitions
0 = tn0 < · · · < tnkn = t, n ∈ N, with maxk(t

n
k − tnk−1) → 0, we have

kn󰁛

k=1

󰀓
Xtnk

−Xtnk−1

󰀔󰀓
Ytnk − Ytnk−1

󰀔
→ [X,Y ]t

in probability when n → ∞.

Convergence in probability? (Review)
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Convergence in probability

Let (Xn)
∞
n=1 be a sequence of random elements in a complete

separable metric space (S, d). Let X be a random element in S.

We say (Xn)
∞
n=1 converges to X in probability if for any 󰂃 > 0

lim
n→∞

P(d(Xn, X) ≥ 󰂃) = 0.

Convergence in probability is weaker than a.s. convergence and
Lp, p ≥ 1, convergence.
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Approximation of covariation

Proposition 18.17

For any continuous martingales X,Y on [0, t] and partitions
0 = tn0 < · · · < tnkn = t, n ∈ N, with maxk(t

n
k − tnk−1) → 0, we have

kn󰁛

k=1

󰀓
Xtnk

−Xtnk−1

󰀔󰀓
Ytnk − Ytnk−1

󰀔
→ [X,Y ]t

in probability when n → ∞.

This result explains the choice of the terminology.
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Finite-variation martingales

Proposition 18.2

Let M be a continuous local martingale. Then

M has locally finite variation ⇐⇒ M is a.s. constant.

These two statements are also equivalent to [M ] = 0.
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Itô’s Integral

Theorem 18.11

For any continuous local martingale M and process V ∈ L (M), there
exists an a.s. unique continuous local martingale V ·M with
(V ·M)0 = 0, such that for any continuous local martingale N ,

[V ·M,N ] = V · [M,N ], a.s.

where the right hand side is Stieltjes’ integral of V against [M,N ].

L (M), M -integrable processes?
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M-integrable process

Let (Mt)t≥0 be a continuous local martingale, defined in a filtered
probability space, say (Ω,A, (Ft)t≥0,P).
Let (Vt)t≥0 be a real-valued adapted process.

We require that (Vt)t≥0 is progressive, that is to say, for any t ≥ 0,
the map (ω, s) 󰀁→ Vs(ω) from the product space
(Ω× [0, t],Ft ⊗ B[0,t]) to (R,BR) is measurable.

We say a progressive (Vt)t≥0 is M -integrable if for every t > 0,
almost surely, (V 2 · [M ])t < ∞, where V 2 · [M ] is Stieltjes’ integral.
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Itô’s Integral

Theorem 18.11

For any continuous local martingale M and process V ∈ L (M), there
exists an a.s. unique continuous local martingale V ·M with
(V ·M)0 = 0, such that for any continuous local martingale N ,

[V ·M,N ] = V · [M,N ], a.s.

where the right hand side is Stieltjes’ integral of V against [M,N ].

This result gives the mathematical definition of Itô’s integral.

Sometimes, we write

(V ·M)t =

󰁝 t

0
VsdMs.
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Chain rule

Lemma 18.14

For any continuous semi-martingale X and progressive U, V with
V ∈ L (X), we have

U ∈ L(V ·X) ⇐⇒ UV ∈ L(X), and

U · (V ·X) = (UV ) ·X a.s.

Continuous semi-martingale?

L (X), integrable processes for semi-martingale X?

V ·X, the integral against a semi-martingale?
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Continuous semi-martingale

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space.

We say an adapted continuous process (Xt)t≥0 is a continuous
semi-martingale, if it admits a decomposition X = M +A into a
continuous local martingale M and a continuous adapted process
A of locally finite variation starting at 0.

The decomposition is unique: if M +A = M ′ +A′, then
M −M ′ = A′ −A is a martingale with locally finite variation
starting at 0, so it must be the case that M = M ′.

13 / 28



Stochastic integration against a semi-martingale

Suppose that X is a continuous semi-martingale with
decomposition X = M +A.

We say V ∈ L (M) is integrable against X, if Stieltjes’ integrals

(V ·A)t =
󰁝 t

0
VsdAs

is well-defined for every t ≥ 0 almost surely.

In this case, we write V ∈ L (X) and define

V ·X := V ·M + V ·A.
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Chain rule

Lemma 18.14

For any continuous semi-martingale X and progressive U, V with
V ∈ L (X), we have

U ∈ L(V ·X) ⇐⇒ UV ∈ L(X), and

U · (V ·X) = (UV ) ·X a.s.

A fundamental result in stochastic analysis.
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Itô’s formula

Theorem 18.18

For any continuous semi-martingale X in Rd and function f ∈ C2(Rd),
we have almost surely that

f(X) = f(X0) +

d󰁛

i=1

∂if(X) ·Xi +
1

2

d󰁛

i,j=1

∂i∂jf(X) · [Xi, Xj ].

This second-order correction arises because semimartingales
exhibit random fluctuations, and their 2rd order variation
contributes to the overall change in f(X).
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Elementary stochastic integral

Theorem

For any elementary process

Vt =

n󰁛

k=1

ξk1(tk,tk+1](t), t ≥ 0

and continuous semi-martingale (Xt)t≥0, we have

(V ·X)t =

n󰁛

k=1

ξk(Xt∧tk+1
−Xt∧tk), t ≥ 0, a.s.

Elementary process?
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Elementary stochastic integral

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space.

We say a process (Vt)t≥0 is elementary, if

Vt =

n󰁛

k=1

ξk1(tk,tk+1](t), t ≥ 0

where n ∈ N, 0 ≤ t1 < t2 < · · · < tn < ∞ are non-random, and
(ξk)

n
k=1 is a family of bounded random variables, furthermore, ξk is

Ftk -measurable for each k.
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Elementary stochastic integral

Theorem

For any elementary process

Vt =

n󰁛

k=1

ξk1(tk,tk+1](t), t ≥ 0

and continuous semi-martingale (Xt)t≥0, we have

(V ·X)t =

n󰁛

k=1

ξk(Xt∧tk+1
−Xt∧tk), t ≥ 0, a.s.

This is known as the elementary stochastic integral.
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Approximation by the elementary stochastic
integrals

Lemma 18.23

For any continuous semi-martingale X = M +A and process
V ∈ L (X), there exists a sequence of elementary processes V 1, V 2, . . . ,
such that a.s., simultaneously for any t > 0,

󰁝 t

0
(V n

s − Vs)
2d[M ]s + sup

r∈[0,t]

󰀏󰀏󰀏󰀏
󰁝 r

0
(V n

s − Vs)dAs

󰀏󰀏󰀏󰀏 → 0, n → ∞.

And in this case, for every t > 0,

sup
r∈[0,t]

󰀏󰀏󰀏󰀏
󰁝 r

0
V n
s dXs −

󰁝 r

0
VsdXs

󰀏󰀏󰀏󰀏
p−→ 0, n → ∞.

This result gives us another definition of Itô’s integral.
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Stochastic integral and random time change

Theorem 18.24

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space. Let τ be a finite
random time change with induced filtration G. Let X = M +A be a
τ -continuous F-semi-martingale. Then

X ◦ τ is a continuous G-semi-martingale withdecomposition
M ◦ τ +A ◦ τ , such that [X ◦ τ ] = [X] ◦ τ a.s.

V ∈ L (X) implies V ◦ τ ∈ L (X ◦ τ) and

(V ◦ τ) · (X ◦ τ) = (V ·X) ◦ τ a.s.

finite random time change?

induced filtration by the random time change?

continuous w.r.t. a time change τ?

time changed process X ◦ τ?
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Finite random time change

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space.

Let (τs)s≥0 be a family of optional times.

We say τ = (τs)s≥0 is a finite random time change, if τs is
non-decreasing in s, right-continuous in s, and τs < ∞ for every
s ≥ 0 almost surely.
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Filtration induced by random time change

Let (τs)s≥0 be a finite random time change in a filtered probability
space (Ω,A, (Ft)t≥0,P).
Define Gs := Fτs , s ≥ 0. It can be verified that Gs is also a
filtration.

We call (Gs)s≥0 the filtration induced by the time change τ .
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Continuous w.r.t. a time change τ

Let (τs)s≥0 be a finite random time change in a filtered probability
space (Ω,A, (Ft)t≥0,P).
A process X is said to be τ -continuous, if a.s. it is constant on
every interval [τs−, τs], s ≥ 0.

Here, τs− := limr↑s τr, and τ0− := 0.
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Time-changed process

Let (τs)s≥0 be a finite random time change in a filtered probability
space (Ω,A, (Ft)t≥0,P).
Let X = (Xt)t≥0 be an F-adapted continuous process.

Define a new process Ys = (X ◦ τ)s = Xτs .

We say Y is the time-changed process of X under the random
time change τ .
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Stochastic integral and random time change

Theorem 18.24

Let (Ω,A, (Ft)t≥0,P) be a filtered probability space. Let τ be a finite
random time change with induced filtration G. Let X = M +A be a
τ -continuous F-semi-martingale. Then

X ◦ τ is a continuous G-semi-martingale withdecomposition
M ◦ τ +A ◦ τ , such that [X ◦ τ ] = [X] ◦ τ a.s.

V ∈ L (X) implies V ◦ τ ∈ L (X ◦ τ) and

(V ◦ τ) · (X ◦ τ) = (V ·X) ◦ τ a.s.

The structure of semi-martingale, quadratic variation, and
stochastic integral is preserved under the random time change.
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Martingale as time-changed Brownian motion

Theorem 19.4

Let M be a continuous local martingale w.r.t. filtration (Ft)t≥0 and
M0 = 0. Define random time change

τs := inf{t ≥ 0 : [M ]t > s}, s ≥ 0,

and the induced filtration

Gs := Fτs , s ≥ 0.

Then there exists a G-Brownian motion such that almost surely

Bs = (M ◦ τ)s = Mτs , s ∈ [0, [M ]∞),

and
Mt = (B ◦ [M ])t = B[M ]t , t ≥ 0.
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Thanks!
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