Topics in probability theory: Itˆo calculus

Zhenyao Sun

Beijing Institute of Technology

September 25, 2024

 Ω 1 / 28

画

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

Theorem 18.5

For any continuous local martingales $M = (M_t)_{t>0}, N = (N_t)_{t>0}$, there exists a continuous process [*M, N*] with locally finite variation and $[M, N]_0 = 0$, such that $MN - [M, N]$ is a local martingale.

Locally finite variation?

• We say a function f on $[0, t]$ has finite variation $V_t(f)$, if

$$
V_t(f) := \sup \left\{ \sum_{i=1}^n |f(t_i) - f(t_{i-1})| : 0 = t_0 < \cdots < t_n = t, n \in \mathbb{N} \right\}
$$

is finite.

- We say a function f on $[0, \infty)$ has locally finite variation, if $V_t(f) < \infty$ for every $t > 0$.
- \bullet We say a stochastic process $(A_t)_{t>0}$ has locally finite variation, if almost surely its sample path has locally finite variation.

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ │ 큰 │ ◆ 9,9,9

Covariation

Theorem 18.5

For any continuous local martingales $M = (M_t)_{t>0}, N = (N_t)_{t>0}$, there exists a continuous process [*M, N*] with locally finite variation and $[M, N]_0 = 0$, such that $MN - [M, N]$ is a local martingale.

- \bullet Quadratic variation $[M] := [M, M]$.
- The existence of the covariation process is a cornerstone of stochastic calculus, allowing for the detailed study of the interactions between continuous local martingales and their products.

Approximation of covariation

Proposition 18.17

For any continuous martingales X, Y on $[0, t]$ and partitions 0 = t_0^n < ··· < $t_{k_n}^n$ = $t, n \in \mathbb{N}$, with $\max_k (t_k^n - t_{k-1}^n) \to 0$, we have

$$
\sum_{k=1}^{k_n} \left(X_{t_k^n} - X_{t_{k-1}^n} \right) \left(Y_{t_k^n} - Y_{t_{k-1}^n} \right) \to [X, Y]_t
$$

in probability when $n \to \infty$.

• Convergence in probability? (Review)

K ロ K K @ K K 할 K K 할 X T 할 X YO Q @

- Let $(X_n)_{n=1}^{\infty}$ be a sequence of random elements in a complete separable metric space (S, d) . Let *X* be a random element in *S*.
- We say $(X_n)_{n=1}^{\infty}$ converges to X in probability if for any $\epsilon > 0$

$$
\lim_{n \to \infty} \mathbb{P}(d(X_n, X) \ge \epsilon) = 0.
$$

Convergence in probability is weaker than a.s. convergence and $L^p, p \geq 1$, convergence.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q Q

Approximation of covariation

Proposition 18.17

For any continuous martingales X, Y on $[0, t]$ and partitions 0 = t_0^n < ··· < $t_{k_n}^n$ = $t, n \in \mathbb{N}$, with $\max_k (t_k^n - t_{k-1}^n) \to 0$, we have

$$
\sum_{k=1}^{k_n} \left(X_{t_k^n} - X_{t_{k-1}^n} \right) \left(Y_{t_k^n} - Y_{t_{k-1}^n} \right) \to [X, Y]_t
$$

in probability when $n \to \infty$.

This result explains the choice of the terminology.

K □ K K @ K K W B X R W B X A Q Q Q

Finite-variation martingales

Proposition 18.2

Let *M* be a continuous local martingale. Then

M has locally finite variation $\iff M$ is a.s. constant.

• These two statements are also equivalent to $[M] = 0$.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Theorem 18.11

For any continuous local martingale *M* and process $V \in \mathcal{L}(M)$, there exists an a.s. unique continuous local martingale $V \cdot M$ with $(V \cdot M)_0 = 0$, such that for any continuous local martingale N,

$$
[V \cdot M, N] = V \cdot [M, N], \quad a.s.
$$

where the right hand side is Stieltjes' integral of *V* against [*M, N*].

 \bullet $\mathscr{L}(M)$, *M*-integrable processes?

イロト イ部 トメ ミト メ ミト

- \bullet Let $(M_t)_{t>0}$ be a continuous local martingale, defined in a filtered probability space, say $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- Let $(V_t)_{t>0}$ be a real-valued adapted process.
- \bullet We require that $(V_t)_{t\geq 0}$ is progressive, that is to say, for any $t \geq 0$, the map $(\omega, s) \mapsto V_s(\omega)$ from the product space $(\Omega \times [0, t], \mathcal{F}_t \otimes \mathcal{B}_{[0, t]})$ to $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ is measurable.
- \bullet We say a progressive $(V_t)_{t>0}$ is *M*-integrable if for every $t>0$, almost surely, $(V^2 \cdot [M])_t < \infty$, where $V^2 \cdot [M]$ is Stieltjes' integral.

K ロ K K @ K K 할 K K 할 X T 할 X YO Q @

Itô's Integral

Theorem 18.11

For any continuous local martingale M and process $V \in \mathcal{L}(M)$, there exists an a.s. unique continuous local martingale $V \cdot M$ with $(V \cdot M)_0 = 0$, such that for any continuous local martingale N,

$$
[V \cdot M, N] = V \cdot [M, N], \quad a.s.
$$

where the right hand side is Stieltjes' integral of *V* against [*M, N*].

- This result gives the mathematical definition of Itô's integral.
- Sometimes, we write

$$
(V \cdot M)_t = \int_0^t V_s \mathrm{d}M_s.
$$

Chain rule

Lemma 18.14

For any continuous semi-martingale *X* and progressive *U, V* with $V \in \mathscr{L}(X)$, we have

$$
U \in L(V \cdot X) \iff UV \in L(X), \text{ and}
$$

$$
U \cdot (V \cdot X) = (UV) \cdot X \text{ a.s.}
$$

- Continuous semi-martingale?
- \bullet $\mathscr{L}(X)$, integrable processes for semi-martingale *X*?
- \bullet *V* \cdot *X*, the integral against a semi-martingale?

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow \cdots

- Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space.
- \bullet We say an adapted continuous process $(X_t)_{t>0}$ is a continuous semi-martingale, if it admits a decomposition $X = M + A$ into a continuous local martingale *M* and a continuous adapted process *A* of locally finite variation starting at 0.
- The decomposition is unique: if $M + A = M' + A'$, then $M - M' = A' - A$ is a martingale with locally finite variation starting at 0, so it must be the case that $M = M'$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 900

Stochastic integration against a semi-martingale

- Suppose that *X* is a continuous semi-martingale with decomposition $X = M + A$.
- We say $V \in \mathcal{L}(M)$ is integrable against X, if Stieltjes' integrals

$$
(V \cdot A)_t = \int_0^t V_s \mathrm{d}A_s
$$

is well-defined for every $t \geq 0$ almost surely.

• In this case, we write $V \in \mathscr{L}(X)$ and define

$$
V \cdot X := V \cdot M + V \cdot A.
$$

K ロ K K 마 X X X X X X X X X X X X

Lemma 18.14

For any continuous semi-martingale *X* and progressive *U, V* with $V \in \mathscr{L}(X)$, we have $\bullet \quad U \in L(V \cdot X) \iff UV \in L(X)$, and

$$
U \cdot (V \cdot X) = (UV) \cdot X \text{ a.s.}
$$

A fundamental result in stochastic analysis.

イ押 トイヨ トイヨ トー

4 0 F

Theorem 18.18

For any continuous semi-martingale *X* in \mathbb{R}^d and function $f \in C^2(\mathbb{R}^d)$, we have almost surely that

$$
f(X) = f(X_0) + \sum_{i=1}^d \partial_i f(X) \cdot X^i + \frac{1}{2} \sum_{i,j=1}^d \partial_i \partial_j f(X) \cdot [X^i, X^j].
$$

This second-order correction arises because semimartingales exhibit random fluctuations, and their 2rd order variation contributes to the overall change in $f(X)$.

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB} \rightarrow

Elementary stochastic integral

Theorem

For any elementary process

$$
V_t = \sum_{k=1}^n \xi_k \mathbf{1}_{(t_k, t_{k+1}]}(t), \quad t \ge 0
$$

and continuous semi-martingale $(X_t)_{t>0}$, we have

$$
(V \cdot X)_t = \sum_{k=1}^n \xi_k (X_{t \wedge t_{k+1}} - X_{t \wedge t_k}), t \ge 0, a.s.
$$

Elementary process?

画

(ロ) (個) (星) (星) (

- Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space.
- We say a process $(V_t)_{t>0}$ is elementary, if

$$
V_t = \sum_{k=1}^n \xi_k \mathbf{1}_{(t_k, t_{k+1}]}(t), \quad t \ge 0
$$

where $n \in \mathbb{N}$, $0 \le t_1 < t_2 < \cdots < t_n < \infty$ are non-random, and $(\xi_k)_{k=1}^n$ is a family of bounded random variables, furthermore, ξ_k is \mathcal{F}_{t_k} -measurable for each *k*.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 900

Elementary stochastic integral

Theorem

For any elementary process

$$
V_t = \sum_{k=1}^n \xi_k \mathbf{1}_{(t_k, t_{k+1}]}(t), \quad t \ge 0
$$

and continuous semi-martingale $(X_t)_{t>0}$, we have

$$
(V \cdot X)_t = \sum_{k=1}^n \xi_k (X_{t \wedge t_{k+1}} - X_{t \wedge t_k}), t \ge 0, a.s.
$$

This is known as the elementary stochastic integral.

Approximation by the elementary stochastic integrals

Lemma 18.23

For any continuous semi-martingale $X = M + A$ and process $V \in \mathcal{L}(X)$, there exists a sequence of elementary processes V^1, V^2, \ldots , such that a.s., simultaneously for any $t > 0$,

$$
\int_0^t (V_s^n - V_s)^2 d[M]_s + \sup_{r \in [0,t]} \left| \int_0^r (V_s^n - V_s) dA_s \right| \to 0, \quad n \to \infty.
$$

And in this case, for every $t > 0$,

$$
\sup_{r \in [0,t]} \left| \int_0^r V_s^n dX_s - \int_0^r V_s dX_s \right| \xrightarrow{p} 0, \quad n \to \infty.
$$

• This result gives us another definition of Itô's integral.

(ロ) (個) (星) (星)

Stochastic integral and random time change

Theorem 18.24

Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space. Let τ be a finite random time change with induced filtration *G*. Let $X = M + A$ be a τ -continuous \mathcal{F} -semi-martingale. Then

 \bullet *X* \circ τ is a continuous *G*-semi-martingale withdecomposition $M \circ \tau + A \circ \tau$, such that $[X \circ \tau] = [X] \circ \tau$ a.s.

$$
\bullet
$$
 $V \in \mathcal{L}(X)$ implies $V \circ \tau \in \mathcal{L}(X \circ \tau)$ and

$$
(V \circ \tau) \cdot (X \circ \tau) = (V \cdot X) \circ \tau \quad a.s.
$$

- finite random time change?
- induced filtration by the random time change?
- **c** continuous w.r.t. a time change τ ?
- \bullet time changed process $X \circ \tau$?

イロト イ部 トメ ミト メ ミト

- Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space.
- Let $(\tau_s)_{s>0}$ be a family of optional times.
- We say $\tau = (\tau_s)_{s>0}$ is a finite random time change, if τ_s is non-decreasing in *s*, right-continuous in *s*, and $\tau_s < \infty$ for every $s \geq 0$ almost surely.

Filtration induced by random time change

- Let $(\tau_s)_{s>0}$ be a finite random time change in a filtered probability space $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- Define $\mathcal{G}_s := \mathcal{F}_{\tau_s}, s \geq 0$. It can be verified that \mathcal{G}_s is also a filtration.
- We call $(\mathcal{G}_s)_{s>0}$ the filtration induced by the time change τ .

세미 시 세 주 시 제 관 시 제 관 시 파 기

- Let $(\tau_s)_{s>0}$ be a finite random time change in a filtered probability space $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- \bullet A process X is said to be τ -continuous, if a.s. it is constant on every interval $[\tau_{s-}, \tau_s], s \geq 0.$
- \bullet Here, $\tau_{s-} := \lim_{r \uparrow s} \tau_r$, and $\tau_{0-} := 0$.

- Let $(\tau_s)_{s>0}$ be a finite random time change in a filtered probability space $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.
- Let $X = (X_t)_{t>0}$ be an *F*-adapted continuous process.
- Define a new process $Y_s = (X \circ \tau)_s = X_{\tau_s}$.
- We say *Y* is the time-changed process of *X* under the random time change τ .

K ロ K K B K K B K X B K T B K

Theorem 18.24

Let $(\Omega, \mathcal{A}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ be a filtered probability space. Let τ be a finite random time change with induced filtration \mathcal{G} . Let $X = M + A$ be a τ -continuous \mathcal{F} -semi-martingale. Then

 \bullet *X* \circ τ is a continuous *G*-semi-martingale withdecomposition $M \circ \tau + A \circ \tau$, such that $[X \circ \tau] = [X] \circ \tau$ a.s.

$$
\bullet \ V \in \mathcal{L}(X) \text{ implies } V \circ \tau \in \mathcal{L}(X \circ \tau) \text{ and}
$$

$$
(V \circ \tau) \cdot (X \circ \tau) = (V \cdot X) \circ \tau \quad a.s.
$$

The structure of semi-martingale, quadratic variation, and stochastic integral is preserved under the random time change.

Martingale as time-changed Brownian motion

Theorem 19.4

Let *M* be a continuous local martingale w.r.t. filtration $(\mathcal{F}_t)_{t>0}$ and $M_0 = 0$. Define random time change

$$
\tau_s := \inf\{t \ge 0 : [M]_t > s\}, \quad s \ge 0,
$$

and the induced filtration

$$
\mathcal{G}_s := \mathcal{F}_{\tau_s}, \quad s \geq 0.
$$

Then there exists a *G*-Brownian motion such that almost surely

$$
B_s = (M \circ \tau)_s = M_{\tau_s}, \quad s \in [0, [M]_\infty),
$$

and

$$
M_t = (B \circ [M])_t = B_{[M]_t}, \quad t \ge 0.
$$

Thanks!

K ロ K イ団 K K モ X K モ X モ ヨー イコ X K C