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Introduction

@ Model: Self-Catalytic Branching Brownian Motions (SBBM)
A particle system that extends the Branching Brownian Motion by
incorporating catalytic branching through pairwise interactions
between particles (which will be defined in the next slide).

o Objectives:

e Construct an SBBM that supports infinitely many particles.

o Characterize the law of the SBBM.

o Investigate the coming down from infinity (CDI) property of the SBBM.

@ Motivation:

e SBBMis offer insights into complex population dynamics, incorporating
biological dispersal and intraspecific competition/cooperation.

o SBBMs serve as moment duals to a class of stochastic
reaction-diffusion equations with multiplicative noise, providing
valuable information on the well-posedness, propagation speed, and
compact support properties of SPDEs.
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Model Setup and Parameters

SBBM Dynamics:

o Initial Configuration:
The positions of the initial particles are given by (x;)?_; C R.

o Particle Movement:
Each particle performs independent Brownian motion on R.

@ Ordinary Branching:
Particles branch independently at rate 5,, replaced by k offspring
according to the law (py).

o Catalytic Branching:
Each pair of particles independently branches at rate (., based on
their intersection local times, replaced by k offspring according to the
law (qk)-
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An illustration of SBBM
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@ A graph illustration of SBBM with p3 =1 and g1 = 1.
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Assumptions

o Catalytic Branching is Subcritical:

ZkCIk < 2.

@ Catalytic Branching is Not Parity-Preserving:
There exists an odd k such that g, > 0.

@ A Technical Assumption:
There exists R > 1 such that

ZRkpk < oo and Z R*qi < 0.
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The Explosion Problem for SBBM

A Priori Consideration:
@ The SBBM model is well-defined only up to its explosion time 7.
Definition of the Explosion Time 7..:

@ Define a sequence of stopping times {7y }«ecz, such that:

] 7'0:0.
e For each kK >0,

Ti+1 = inf{t > 74 : a branching occurs at time t}.
@ The explosion time is defined as:

Too = lim 7.
k—o00

The Explosion Problem:

@ Does 7o, = 007
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Non-Explosion Property

Athreya-Tribe (2000, Ann. Probab.)
If the ordinary branching is subcritical, i.e., > kpx < 1, then:

P(7e0 = o0) = 1.

Hou-Sun (ongoing)
The result above holds without assuming » kpx < 1.

Implications:

@ The SBBM model remains well-defined for all time.

e For t > 0, define Zg")(A) := #{particles in set A at time t}.

@ The process (Zt(n))tzo is a Markov process taking values in:
N := {locally finite point measures on R}.

o We refer to Z\" as an SBBM (with n initial particles).
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The Infinitely Initial Particles Problem

@ Consider the scenario where the initial configuration of an SBBM
consists of infinitely many particles located at (x;)7°; C R.

@ In this case, Toc = 0 almost surely, and the model is a priori not
well-defined.
The Infinitely Initial Particles Problem:
o Let (Zt(n))tZO be an SBBM with initial value Y7 ; 4.
@ What is the limit of the processes (Zt(n))tZO as n — 0o?
Characterizing the Law:

@ How can we characterize the law of (Zt(n))tzo?

@ Does the processes {(Z,_S"))tzo : n € N} satisfy the tightness property?
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The Dual SPDE

@ The dual SPDE of SBBM:

{atut(x): Sue(x) — O(ue(x)) + /Y (ue(x NWi(x), t>0,x€R,

up(x) = f(x), x€R.

@ Space-time White Noise:
(Wt)e>0 := a cylindrical Wiener process on L?(R), such that

E[Wi(@)Ws ()] = (t A s)(¢,9).

@ Ordinary Branching Mechanism:

(Zpkl—z 1—z)>.

o Catalytic Branching Mechanism:

<qu (1—2z)k 1—2)2>.
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The Dual SPDE

o Let z* :=inf{z €[1,2] : ¥(z) = 0}.

@ Under the assumption that the catalytic branching is not
parity-preserving, we have z* € [1,2).

e Let C(R, [0, z*]) := {Continuous functions from R to [0, z*]}.

e We say a C(R, [0, z*])-valued continuous process (ut)¢>o is a weak
solution to the dual SPDE if there exists a space-time white noise W
such that for all ¢ € C.(R), almost surely,

(00.0) = (£.0) = [ (un Goras — [ c@(ue). )0

+ / (VW (us)p, dWs).
0

Shiga (1994, Can. J. Math.)

For each initial value f € C(R, [0, z*]), there exists a weak solution to the
dual SPDE.

il = = = = v t
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The Duality

@ For any [0, z*]-valued function g and point measure y, define

(1-g) = [ (1 - g0+,

xeR

Athreya-Tribe (2000, Ann. Probab.)
If the ordinary branching is subcritical, i.e., Y kpx < 1, then:

B[00 =20 -w)].

Hou-Sun (ongoing)
The result above holds without assuming » kpx < 1.

@ Corollary: The uniqueness in law holds for the dual SPDE.
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SBBM with Infinitely Many Initial Particles

@ Let the state space N\ be equipped with the vague topology.
Initial Trace (A, p):
o A := {sub-sequential limits of (x;)?°,}.

o /_L = ing/\ 5XI"

Hou-Sun (ongoing)
There exists an A-valued cadlag Markov process (Z;)¢so such that

(Zt("))t>o converges to (Z;)s>0 as n — oo in finite-dimensional
distributions. The law of the process (Z;)¢~o is determined by the two
branching mechanisms (®, W) and the initial trace (A, u).

o We call (Z¢)¢>0 an SBBM with initial trace (A, ) and branching
mechanisms ($, V).
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Coming Down from Infinity (CDI)

The Local-Time Coalescing Brownian Motions (LCBM):

@ If the ordinary branching rate 5, = 0 and the catalytic branching law
satisfies g1 = 1, then the SBBM degenerates into the LCBM.

@ In this case, ® =0 and V(z) = z(1 — 2).

Barnes-Mytnik-Sun (2023, Ann. Probab.)

Suppose that (Z;)¢~0 is an LCBM. Let U be any open interval. Then,
almost surely, for every t > 0,

Z:(U) < 00 <= (AUsupp(p)) N U is bounded.

o The CDI property: Almost surely, for every t > 0,

Zi(R) < 0o <= sup{|x| : i € N} < 0.

Hou-Sun (ongoing)
Same result holds for the SBBM.
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The Mean Field Equation (MFE)

From a physic’s point of view:
@ The MFE for a system of independent Brownian motions is given by
the heat equation 0:h = %h. In the sense that

1 1
E[#{particles in (x — =, x + E) at time t}] ~ hy(x).

2
o The MFE for LCBM is v = v — Y012

Le Gall (1996, J. Appl. Math. Stochastic Anal.)

There exists a unique non-negative solution (v¢(x))¢>0xcr to the PDE

Oeve(x) = évt(x) ()

2 2.
{yER:Vr>O,Iim/ vt(x)dx:oo}:/\,
t=0 /,

lm<vt7¢> = <,ua ¢>a NS CC(AC)

vt(x)z, t>0,xeR,
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Speed of CDI for LCBM

The Speed of CDI Problem
@ Assume CDI holds for a process (N¢)¢>o.
@ Can we find a rate function a(t) such that N;/a(t) — 1 as t ] 07

Barnes-Mytnik-Sun (2023, Ann. Probab.) |

Suppose that (Z¢)¢~o is an LCBM with initial trace (A, u). Let U be an
open interval. Suppose that (A Nsupp(u)) N U is bounded and AN U # 0.

Then, .
_ ;1
</;1 Vt(X) dX) Zt(U) u—0> ]_,

where (v¢(x))¢>0xer is the solution to the corresponding MFE with initial
trace (A, ). ‘
Hou-Sun (ongoing)

The exact same result holds for SBBM.
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Comments

Criticality of the Branching:
@ It is crucial for our result that the catalytic branching is subcritical,
e, > kqk <2.
@ Barnes-Mytnik-Sun (2024, Arxiv) constructed an SBBM with p,, =1

and g1 = 1, and showed that the total population in this model is
“reflecting from infinity”.

@ When the catalytic branching is supercritical, i.e., > kqx > 2, we
believe that the SBBM will explode in finite time.

@ When there is no ordinary branching, i.e., 5, = 0, and the catalytic
branching is critical, i.e., Y kqx = 2, we believe that the SBBM is
non-explosive and rescales to the stochastic heat equation:

A .
ot = Eu + uW.

Z. Sun SBBM 16 /22



Comments

About the Parity:

It is crucial for our result that the catalytic branching is not
parity-preserving, i.e., there exists an odd number k such that g, > 0.

Consider an SBBM with no ordinary branching, i.e., 8o = 0, and
go = 1. We call this model the local-time annihilating Brownian
motion (LABM).

LABM is non-explosive and can be defined up to all time, provided
there are only finitely many initial particles.

It can be shown that {Z{") : n € N} is tight.

However, the subsequential convergence-in-distribution limit of
{Zt(") : n € N} is not unique.

Hammer-Ortgiese-Vollering (2021, Stochastic Process. Appl.):

The entrance laws of the (hard) annihilating Brownian motion are
characterized.
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Comments

Examples of Duality:
@ We say two Markov processes (X:)t>0 and (Y:)¢>o are dual to each
other if there exists a large class of functions H(x, y) such that

E[H(X¢, Yo)] = E[H(Xo, Y?)].

@ Bachelier (1900, Ann. Sci. Ecole Norm. Sup.):
Brownian motion and the heat equation 0;h = %h.

@ McKean (1975, Comm. Pure Appl. Math.): Branching Brownian
motion and the FKPP equation 0;v = %v +v(l—v).

@ Harris (1978, Ann. Probab.):
Coalescing random walk and the voter model.

@ Shiga (1986, Math. Appl.): LCBM and the stochastic FKPP equation
Ov="2v+/v(1- V)W.

@ Téth-Werner (1998, Probab. Theory Relat. Fields):
(Hard) Coalescing Brownian motions and itself.

@ Folklore: Stochastic heat equation 0;u = %u + uW and itself.
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Comments

Coming Down from Infinity (CDI):

Aldous (1999, Bernoulli): Kingman's coalescent.

Schweinsberg (2000, Electron. Comm. Probab.) and
Berestycki-Berestycki-Limic (2010, Ann. Probab.): A-coalescent.

Limic-Sturm (2006, Electron. J. Probab.) and
Angel-Berestycki-Limic (2012, Probab. Theory Related Fields):
Coalescing random walks on graphs.

Mourrat-Weber (2017, Comm. Math. Phys.): Dynamical ®4 model
(leading to a new construction of the Euclidean ®% Field Theory).

Li-Yang-Zhou (2019, Ann. Appl. Probab.):
Continuous-state nonlinear branching processes.

Baguley-Doering-Shi (2024, Arxiv): Time-changed Lévy processes.
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Comments

The Mean Field Equation (MFE)

The CDI rate of SBBM is characterized by 0;v = %v — WW
despite that the true MFE is 0,7 = 47 + /(04)7 — Y0052,

This is because v(s,y) = V(s,y) uniformly for (s,y) € [0, 1] x R.
The equation 0;v = %v — v|v|® with initial trace (A, ) was studied
by Marcus-Véron (1999, Comm. Partial Differential Equations) in the
PDE literature.

Watanabe (1968, J. Math. Kyoto Univ.):

The equation 9;v = %v — %ﬂ is the Laplace dual to the

Super-Brownian motion (X¢)¢>o.

Le Gall (1996, J. Appl. Math. Stochastic Anal.) used the equation
Orv = %v — %vz to study the Brownian snake, which is related

to the super-Brownian motion through a Ray-Knight type theorem.
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Theory Roadmap

The SBBM Lp

Moment dual The dual SPDE

Our Results

The Mean Field Equation

Oeu=2u—d(u)+/V u)W

Behave similarly
for small initial data
and small time

Laplacian dual The Super-Brownian motion

eve = By — VO,2 X = X + VW (0H)XW
A — 00 A — 00
The FKPP equation Moment dual The critical binary BBM

Orw = %W-‘r %(W— 1)2

with branching rate A
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Thanks!
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