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Introduction

Model: Self-Catalytic Branching Brownian Motions (SBBM)
A particle system that extends the Branching Brownian Motion by
incorporating catalytic branching through pairwise interactions
between particles (which will be defined in the next slide).

Objectives:
Construct an SBBM that supports infinitely many particles.
Characterize the law of the SBBM.
Investigate the coming down from infinity (CDI) property of the SBBM.

Motivation:
SBBMs offer insights into complex population dynamics, incorporating
biological dispersal and intraspecific competition/cooperation.
SBBMs serve as moment duals to a class of stochastic
reaction-diffusion equations with multiplicative noise, providing
valuable information on the well-posedness, propagation speed, and
compact support properties of SPDEs.
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Model Setup and Parameters

SBBM Dynamics:

Initial Configuration:
The positions of the initial particles are given by (xi )

n
i=1 ⊂ R.

Particle Movement:
Each particle performs independent Brownian motion on R.
Ordinary Branching:
Particles branch independently at rate βo, replaced by k offspring
according to the law (pk).

Catalytic Branching:
Each pair of particles independently branches at rate βc, based on
their intersection local times, replaced by k offspring according to the
law (qk).
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An illustration of SBBM

A graph illustration of SBBM with p3 = 1 and q1 = 1.
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Assumptions

Catalytic Branching is Subcritical:∑
kqk < 2.

Catalytic Branching is Not Parity-Preserving:
There exists an odd k such that qk > 0.

A Technical Assumption:
There exists R > 1 such that∑

Rkpk <∞ and
∑

Rkqk <∞.
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The Explosion Problem for SBBM

A Priori Consideration:

The SBBM model is well-defined only up to its explosion time τ∞.

Definition of the Explosion Time τ∞:

Define a sequence of stopping times {τk}k∈Z+ such that:

τ0 = 0.
For each k ≥ 0,

τk+1 := inf{t > τk : a branching occurs at time t}.

The explosion time is defined as:

τ∞ := lim
k→∞

τk .

The Explosion Problem:

Does τ∞ = ∞?
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Non-Explosion Property

Athreya-Tribe (2000, Ann. Probab.)

If the ordinary branching is subcritical, i.e.,
∑

kpk < 1, then:

P(τ∞ = ∞) = 1.

Hou-Sun (ongoing)

The result above holds without assuming
∑

kpk < 1.

Implications:

The SBBM model remains well-defined for all time.

For t ≥ 0, define Z
(n)
t (A) := #{particles in set A at time t}.

The process (Z
(n)
t )t≥0 is a Markov process taking values in:

N := {locally finite point measures on R}.

We refer to Z
(n)
· as an SBBM (with n initial particles).
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The Infinitely Initial Particles Problem

Consider the scenario where the initial configuration of an SBBM
consists of infinitely many particles located at (xi )

∞
i=1 ⊂ R.

In this case, τ∞ = 0 almost surely, and the model is a priori not
well-defined.

The Infinitely Initial Particles Problem:

Let (Z
(n)
t )t≥0 be an SBBM with initial value

∑n
i=1 δxi .

What is the limit of the processes (Z
(n)
t )t≥0 as n → ∞?

Characterizing the Law:

How can we characterize the law of (Z
(n)
t )t≥0?

Does the processes {(Z (n)
t )t≥0 : n ∈ N} satisfy the tightness property?
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The Dual SPDE

The dual SPDE of SBBM:{
∂tut(x) =

∆
2 ut(x)− Φ(ut(x)) +

√
Ψ(ut(x))Ẇt(x), t > 0, x ∈ R,

u0(x) = f (x), x ∈ R.

Space-time White Noise:
(Wt)t≥0 := a cylindrical Wiener process on L2(R), such that

E[Wt(ϕ)Ws(ψ)] = (t ∧ s)⟨ϕ, ψ⟩.

Ordinary Branching Mechanism:

Φ(z) := βo

( ∞∑
k=0

pk(1− z)k − (1− z)

)
.

Catalytic Branching Mechanism:

Ψ(z) := βc

( ∞∑
k=0

qk(1− z)k − (1− z)2

)
.
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The Dual SPDE

Let z∗ := inf{z ∈ [1, 2] : Ψ(z) = 0}.
Under the assumption that the catalytic branching is not
parity-preserving, we have z∗ ∈ [1, 2).

Let C (R, [0, z∗]) := {Continuous functions from R to [0, z∗]}.
We say a C (R, [0, z∗])-valued continuous process (ut)t≥0 is a weak
solution to the dual SPDE if there exists a space-time white noise W
such that for all ϕ ∈ Cc(R), almost surely,

⟨ut , ϕ⟩ − ⟨f , ϕ⟩ =
∫ t

0
⟨us ,

∆

2
ϕ⟩ds −

∫ t

0
⟨Φ(us), ϕ⟩ds

+

∫ t

0
⟨
√

Ψ(us)ϕ, dWs⟩.

Shiga (1994, Can. J. Math.)

For each initial value f ∈ C (R, [0, z∗]), there exists a weak solution to the
dual SPDE.
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The Duality

For any [0, z∗]-valued function g and point measure µ, define

(1− g)µ :=
∏
x∈R

(1− g(x))µ({x}).

Athreya-Tribe (2000, Ann. Probab.)

If the ordinary branching is subcritical, i.e.,
∑

kpk < 1, then:

E
[
(1− ut)

Z
(n)
0

]
= E

[
(1− u0)

Z
(n)
t

]
.

Hou-Sun (ongoing)

The result above holds without assuming
∑

kpk < 1.

Corollary: The uniqueness in law holds for the dual SPDE.
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SBBM with Infinitely Many Initial Particles

Let the state space N be equipped with the vague topology.

Initial Trace (Λ, µ):

Λ := {sub-sequential limits of (xi )
∞
i=1}.

µ :=
∑

xi ̸∈Λ δxi .

Hou-Sun (ongoing)

There exists an N -valued càdlàg Markov process (Zt)t>0 such that

(Z
(n)
t )t>0 converges to (Zt)t>0 as n → ∞ in finite-dimensional

distributions. The law of the process (Zt)t>0 is determined by the two
branching mechanisms (Φ,Ψ) and the initial trace (Λ, µ).

We call (Zt)t>0 an SBBM with initial trace (Λ, µ) and branching
mechanisms (Φ,Ψ).
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Coming Down from Infinity (CDI)

The Local-Time Coalescing Brownian Motions (LCBM):

If the ordinary branching rate βo = 0 and the catalytic branching law
satisfies q1 = 1, then the SBBM degenerates into the LCBM.

In this case, Φ = 0 and Ψ(z) = z(1− z).

Barnes-Mytnik-Sun (2023, Ann. Probab.)

Suppose that (Zt)t>0 is an LCBM. Let U be any open interval. Then,
almost surely, for every t > 0,

Zt(U) <∞ ⇐⇒ (Λ ∪ supp(µ)) ∩ U is bounded.

The CDI property: Almost surely, for every t > 0,

Zt(R) <∞ ⇐⇒ sup{|xi | : i ∈ N} <∞.

Hou-Sun (ongoing)

Same result holds for the SBBM.
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The Mean Field Equation (MFE)

From a physic’s point of view:

The MFE for a system of independent Brownian motions is given by
the heat equation ∂th = ∆

2 h. In the sense that

E[#{particles in (x − 1

2
, x +

1

2
) at time t}] ≈ ht(x).

The MFE for LCBM is ∂tv = ∆
2 v − Ψ′(0+)

2 v2.

Le Gall (1996, J. Appl. Math. Stochastic Anal.)

There exists a unique non-negative solution (vt(x))t>0,x∈R to the PDE
∂tvt(x) =

∆

2
vt(x)−

Ψ′(0+)

2
vt(x)

2, t > 0, x ∈ R,{
y ∈ R : ∀r > 0, lim

t→0

∫ y+r

y−r
vt(x) dx = ∞

}
= Λ,

lim
t→0

⟨vt , ϕ⟩ = ⟨µ, ϕ⟩, ϕ ∈ Cc(Λ
c).
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Speed of CDI for LCBM

The Speed of CDI Problem

Assume CDI holds for a process (Nt)t≥0.

Can we find a rate function a(t) such that Nt/a(t) → 1 as t ↓ 0?

Barnes-Mytnik-Sun (2023, Ann. Probab.)

Suppose that (Zt)t>0 is an LCBM with initial trace (Λ, µ). Let U be an
open interval. Suppose that (Λ ∩ supp(µ)) ∩ U is bounded and Λ ∩ Ū ̸= ∅.
Then, (∫

U
vt(x) dx

)−1

Zt(U)
L1−−→
t↓0

1,

where (vt(x))t>0,x∈R is the solution to the corresponding MFE with initial
trace (Λ, µ).

Hou-Sun (ongoing)

The exact same result holds for SBBM.
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Comments

Criticality of the Branching:

It is crucial for our result that the catalytic branching is subcritical,
i.e.,

∑
kqk < 2.

Barnes-Mytnik-Sun (2024, Arxiv) constructed an SBBM with p∞ = 1
and q1 = 1, and showed that the total population in this model is
“reflecting from infinity”.

When the catalytic branching is supercritical, i.e.,
∑

kqk > 2, we
believe that the SBBM will explode in finite time.

When there is no ordinary branching, i.e., βo = 0, and the catalytic
branching is critical, i.e.,

∑
kqk = 2, we believe that the SBBM is

non-explosive and rescales to the stochastic heat equation:

∂tu =
∆

2
u + uẆ .
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Comments

About the Parity:

It is crucial for our result that the catalytic branching is not
parity-preserving, i.e., there exists an odd number k such that qk > 0.

Consider an SBBM with no ordinary branching, i.e., β0 = 0, and
q0 = 1. We call this model the local-time annihilating Brownian
motion (LABM).

LABM is non-explosive and can be defined up to all time, provided
there are only finitely many initial particles.

It can be shown that {Z (n)
t : n ∈ N} is tight.

However, the subsequential convergence-in-distribution limit of

{Z (n)
t : n ∈ N} is not unique.

Hammer-Ortgiese-Völlering (2021, Stochastic Process. Appl.):
The entrance laws of the (hard) annihilating Brownian motion are
characterized.
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Comments

Examples of Duality:

We say two Markov processes (Xt)t≥0 and (Yt)t≥0 are dual to each
other if there exists a large class of functions H(x , y) such that

E[H(Xt ,Y0)] = E[H(X0,Yt)].

Bachelier (1900, Ann. Sci. École Norm. Sup.):
Brownian motion and the heat equation ∂th = ∆

2 h.

McKean (1975, Comm. Pure Appl. Math.): Branching Brownian
motion and the FKPP equation ∂tv = ∆

2 v + v(1− v).

Harris (1978, Ann. Probab.):
Coalescing random walk and the voter model.

Shiga (1986, Math. Appl.): LCBM and the stochastic FKPP equation
∂tv = ∆

2 v +
√
v(1− v)Ẇ .

Tóth-Werner (1998, Probab. Theory Relat. Fields):
(Hard) Coalescing Brownian motions and itself.

Folklore: Stochastic heat equation ∂tu = ∆
2 u + uẆ and itself.

. . .
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Comments

Coming Down from Infinity (CDI):

Aldous (1999, Bernoulli): Kingman’s coalescent.

Schweinsberg (2000, Electron. Comm. Probab.) and
Berestycki-Berestycki-Limic (2010, Ann. Probab.): Λ-coalescent.

Limic-Sturm (2006, Electron. J. Probab.) and
Angel-Berestycki-Limic (2012, Probab. Theory Related Fields):
Coalescing random walks on graphs.

Mourrat-Weber (2017, Comm. Math. Phys.): Dynamical Φ4
3 model

(leading to a new construction of the Euclidean Φ4
3 Field Theory).

Li-Yang-Zhou (2019, Ann. Appl. Probab.):
Continuous-state nonlinear branching processes.

Baguley-Döering-Shi (2024, Arxiv): Time-changed Lévy processes.

. . .
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Comments

The Mean Field Equation (MFE)

The CDI rate of SBBM is characterized by ∂tv = ∆
2 v − Ψ′(0+)

2 v2

despite that the true MFE is ∂t ṽ = ∆
2 ṽ +Φ′(0+)ṽ − Ψ′(0+)

2 ṽ2.

This is because v(s, y) ≍ ṽ(s, y) uniformly for (s, y) ∈ [0, 1]× R.
The equation ∂tv = ∆

2 v − v |v |α with initial trace (Λ, µ) was studied
by Marcus-Véron (1999, Comm. Partial Differential Equations) in the
PDE literature.

Watanabe (1968, J. Math. Kyoto Univ.):

The equation ∂tv = ∆
2 v − Ψ′(0+)

2 v2 is the Laplace dual to the
Super-Brownian motion (Xt)t≥0.

Le Gall (1996, J. Appl. Math. Stochastic Anal.) used the equation

∂tv = ∆
2 v − Ψ′(0+)

2 v2 to study the Brownian snake, which is related
to the super-Brownian motion through a Ray-Knight type theorem.
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Theory Roadmap

The SBBM
The dual SPDE
∂tu = ∆

2
u − Φ(u) +

√
Ψ(u)Ẇ

The Mean Field Equation

∂tvt =
∆
2
v − Ψ′(0+)

2
v 2

The Super-Brownian motion
∂tX = ∆

2
X +

√
Ψ′(0+)XẆ

The FKPP equation
∂tw = ∆

2
w + λ

2
(w − 1)2

The critical binary BBM
with branching rate λ

Moment dual

Laplacian dual

Our Results
Behave similarly

for small initial data
and small time

Moment dual

λ → ∞ λ → ∞
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Thanks!
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