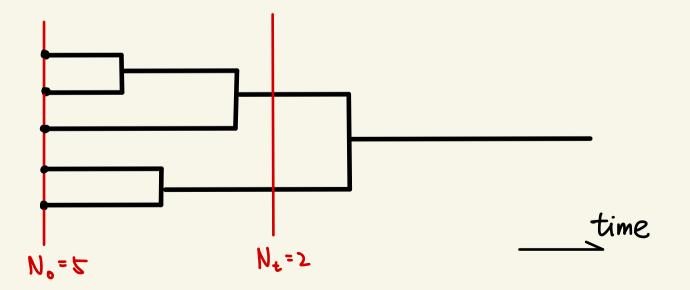
On the coming down from infinity of coalescing Brownian Motions

Zhenyao Sun

Tianyuan Mathematics Research Center Sept. 2023

kingman's coalescent kingman (1982) Consider a system of finitely many particles where each pair of particles coalesces into one particle with rate 1, independent of other pairs. Then the total number of particles $(N_t)_{t \ge 0}$ is a continuous time Markov chain on IN which jumps from n to n-1 with rate n(n-1)/2.



a graphical construction.
Aldous (1999)
kingman's coalescent can come down from +20, i.e.
$$\exists$$
 a IN-valued
Markov chain $(N_{\pm}^{\infty})_{\pm>0}$ which evolves as kingmon's coalescent and
satisfies $\pm N_{\pm}^{\infty} \rightarrow 2$ when ± 40 in probability.
Berestychi, Berestycki & Limic (2010)
There exists a process $(N_{\pm}^{(n)})_{\pm>0, n\in\mathbb{N}}$ sit. $\forall n\in\mathbb{N}, (N_{\pm}^{(n)})_{\pm>0}$ is a kingman's coalecent
(with $N_{0}^{(m)} = n$; and $\forall \pm >0$, $N_{\pm}^{(m)} \leq N_{\pm}^{(m+1)}$. The increasing limit $N_{\pm}^{(m)} = \lim_{n \neq \infty} N_{\pm}^{(m)}$
sotisfies $\pm N_{\pm}^{\infty} \rightarrow 2$ when ± 40 a.s. and in L^{p} for $p \ge 1$.
Constructed using partitions of IN.

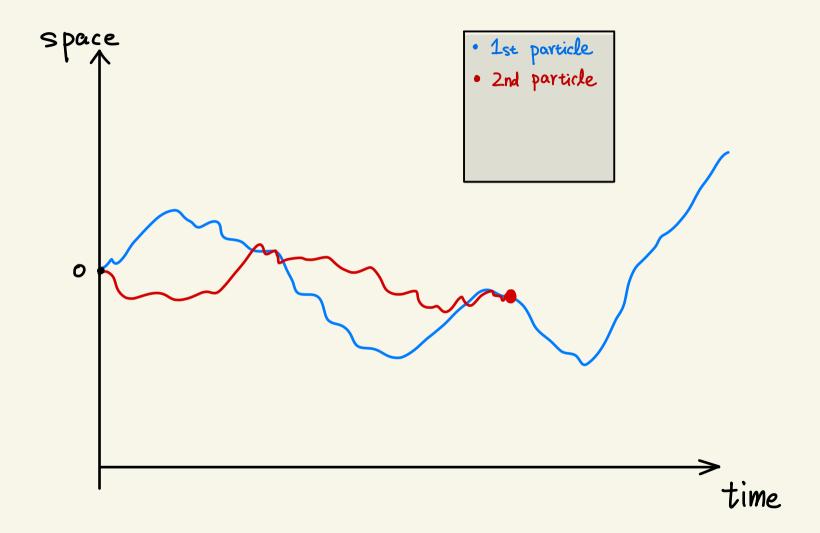
Spatial kingman's coalescent is a system of particles living on a Graph G s.t.

• At each site, particles coalesce according to kingman's coalescent. • Each particle moves as an independent random walk on G. $N_{+}(v)$:= number of particles at site v and time t. Then $(N_{t})_{t \ge 0}$ is a Markov Process. One can construct a process $(N_{t}^{(n)})_{t \ge 0, n \in \mathbb{N}}$ s.t. • VnelN, (N+) t>0 is a spatial kingman's coalescent with n initial particles located at a distinguished root site; • $\forall t \ge 0$, $N_t^{(n)}(v) \le N_t^{(n+1)}(v)$, $v \in G$, $n \in \mathbb{N}$. Define $N_{t}^{(\infty)}(v) := \lim_{n \uparrow +\infty} N_{t}^{(n)}(v)$ and the total population $N_{t}^{(\infty)}(G) := \sum_{v \in G} N_{t}^{(\infty)}(v)$.

Limic & Sturm (2006) If G is a finite graph, then $\mathbb{P}(N_t^{(\infty)}(G) < +\infty) = 1, \forall t > 0.$ Angel, Berestycki & Limic (2012) If G is an infinite connected graph with bounded degree, then $\mathbb{P}(N_t^{(\infty)}(g) = +\infty) = 1, \forall t \ge 0.$

Is there an analogy of Kingman's coalescent in the continuum spatial setting? The Wright-Fisher diffusion Well-known duality Let (Nt)tro be Kingman's coalescent with initial value No=n. Let (X+)+>0 be the solution of the stochastic differential equation $dX_{t} = \frac{1}{2} X_{t} (1 - X_{t}) dB_{t}; X_{o} = P \in [0, 1].$ Then $\mathbb{E}[(1-X_{0})^{N_{t}}] = \mathbb{E}[(1-X_{t})^{N_{0}}]$ Brownian motion.

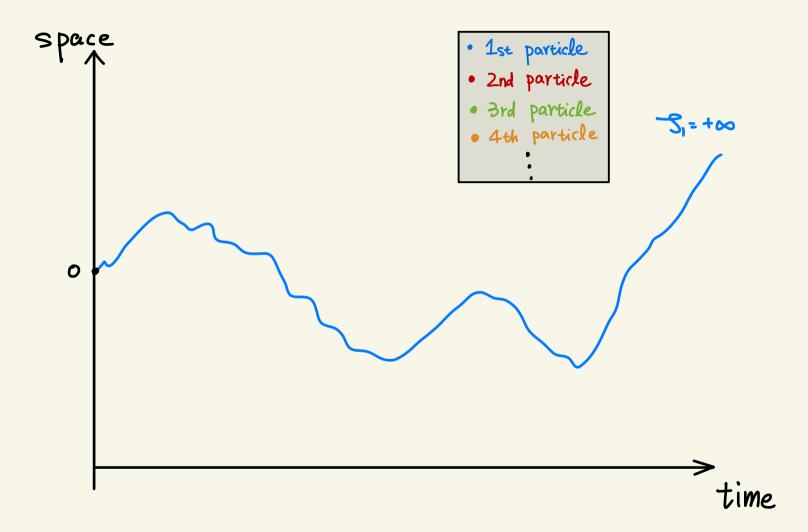
Is there an analogy of Kingman's coalescent in the continuum spatial setting? Yes! Shiga (1988) - Shiga's coalescing Brownian motions. Consider a system of finitely many Brownian particles on R where each pair of particles coalesces into one particle with rate 1/2 according to their intersection local time. Denote by $(B_t^{(i)})_{i \in I_t}$ the positions of the particles at time t. Let (Ut(x))tro, xEIR be the solution to the stochastic partial differential equation $\partial_t \mathcal{U}_t(x) = \frac{1}{2} \partial_x^2 \mathcal{U}_t(x) + \sqrt{\mathcal{U}_t(x) (1 - \mathcal{U}_t(x))} \mathcal{W}_{t,x}, \quad \mathcal{U}_0 = f \in C([R,[0,1]).$ Then $\mathbb{E}\left[\prod_{i \in I_{t}} (I - u_{o}(B_{t}^{(i)}))\right] = \mathbb{E}\left[\prod_{i \in I_{t}} (I - u_{t}(B_{o}^{(i)}))\right]$ Space-time white noise

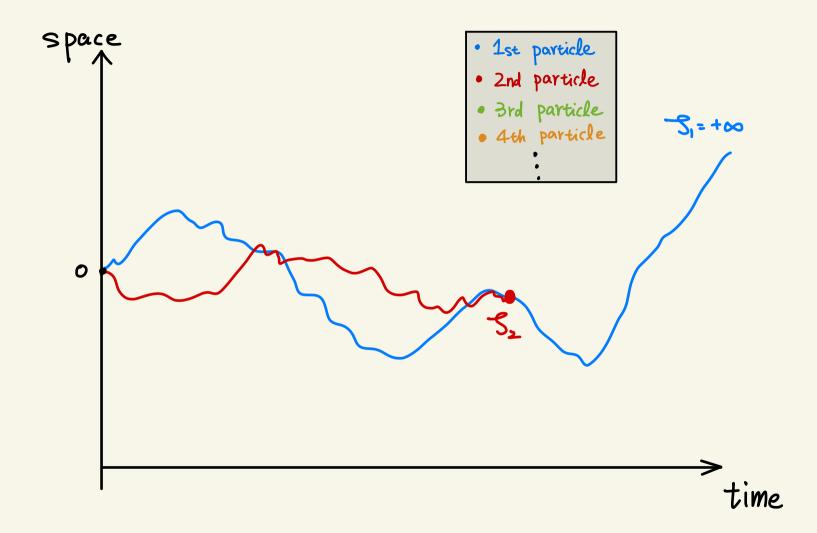


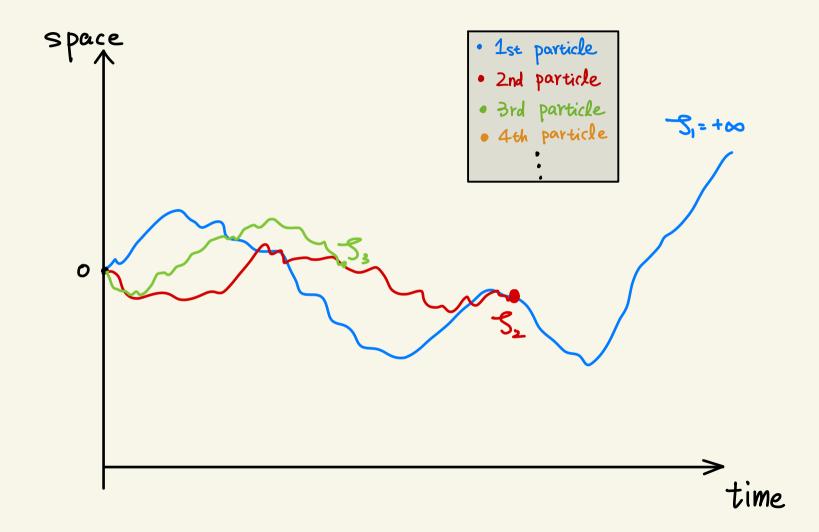
Can we initiate shiga's coalescing Brownian motions with infinetly many initial particles? Yes!

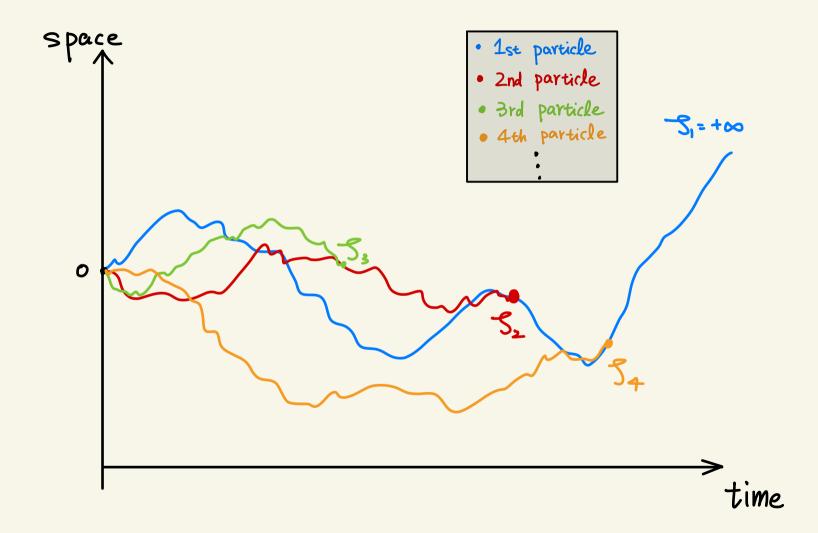
Tribe's construction (1995)

of shiga's coalescing Brownian motions $(Z_{t})_{t \ge 0}$ with initial configuration $(X_{t})_{t \ge 10} \subset \mathbb{R}$: · Let $(B_{\pm}^{(i)})_{i\in\mathbb{N}}$ be a sequence of independent Brownian motions s.t. $\forall i\in\mathbb{N}$, $B_{o}^{(i)} = \chi_{i}$. · Let $(e^{(i)})_{i \in \mathbb{N}}$ be a family of independent exponential random variable with mean 2. • Let $(L_{t}^{(i,j)})_{t>0}$ be the local time of $(B_{t}^{(i)} - B_{t}^{(j)})_{t>0}$ at position 0 for $i, j \in \mathbb{N}$. · Define Ji=+00, and inductively Vi>1, $J_i := \inf \{t \ge 0: \sum_{j \le i} L_{tAJ_j}^{(i,j)} \ge e^{(i)} \}$ (Life time of ith particle) · Define $\mathbf{Z}_{t}^{(n)} := \sum_{i=1}^{n} \mathbb{1}_{t \in [0, \mathbf{J}_{i}]} \delta_{\mathbf{B}_{t}^{(i)}}, t \ge 0; \quad \mathbf{Z}_{t} := \sum_{i=1}^{+\infty} \mathbb{1}_{t \in [0, \mathbf{J}_{i}]} \delta_{\mathbf{B}_{t}^{(i)}}, t \ge 0.$









Does shiga's coalescing Brownian motions have the property of coming down from infinity?

Hobson & Tribe (2005) Consider shiga's coalescing Brownian motions on the unit length circle S with initial configuration $(X_i)_{i\in\mathbb{N}}$ sampled as i.i.d uniform r.v. Then the total number of particles $Z_t(S)$ is finite for $\forall t > 0$ a.s. Moreover, $t Z_t(S) \longrightarrow 2$ in probability when $t \downarrow 0$.

Does shiga's coalescing Brownian motions on R have the property of coming down from infinity? Barnes, Mytnik & S. (2023) Consider shiga's coalescing Brownian motions on R with arbitrary (deterministic) initial configuration $(x_i)_{i \in \mathbb{N}} \subset \mathbb{R}$. Let U C IR be an arbitrary open interval. (1) If {Xi: iEIN} AU is compactly supported, then $\mathbb{P}(\mathbb{Z}_{t}(\mathbb{U}) < +\infty, \forall t > 0) = 1$. (>) If {Xi: iEIN} () is not compactly supported. then $\mathbb{P}(\mathbb{Z}_{+}(U) = +\infty, \forall t \ge 0) = 1$.

What are the rate of coming down from infinity for shiga's coalescing Brownian motions? The initial trace of the solution v. Le Gall (1996) \forall closed subset $\mathcal{M} \subset \mathbb{R}$, and \forall non-negative/Radon measure μ on \mathcal{N}^{c} , there exists a unique non-negative $V = V^{(\Lambda,\mu)} \in C^{1,2}((0,+\infty) \times \mathbb{R})$ s.t. $\partial_{t} V = \frac{1}{2} \partial_{x}^{2} V - \frac{1}{2} V^{2}, \quad \forall t > 0, \; x \in \mathbb{R},$ $\Lambda = \begin{cases} y \in \mathbb{R} : \; \forall r > 0, \; \lim_{t \neq 0} \int_{y-r}^{y+r} V_{t,x} \; dx = +\infty \end{cases},$ $\int_{\Lambda^{c}} \phi(x) \mu(dx) = \lim_{t \neq 0} \int_{\Lambda^{c}} \phi(x) \; V_{t,x} \; dx, \quad \forall \phi \in C_{c}(\Lambda^{c}).$

Represented using the Brownian snake.

Let (Zz)zzo be shiga's coalescing Brownian motions with initial configuration (Xi)ieIN. Define $\Lambda := \{y \in \mathbb{R} : \forall r > 0, Z_{\circ}((y - r, y + r)) = +\infty\}$ and $\mu := Z_{\circ}|_{\Lambda^{c}}$. Barnes, Mytnik & S. (2023) Let U be an arbitrary open interval. If { Xi: i e INS NU is compactly supported, then $\mathbb{E}[\mathbb{Z}_{+}(\mathbb{U})] < +\infty$, $\forall \pm >0$; Furthermore, • if $\Lambda \cap \overline{U} = \phi$, then $\lim_{t \to 0} \mathbb{E}[Z_{t}(U)] < +\infty$; • if $\Lambda \cap \overline{U} \neq \phi$, then $\lim_{t \to \infty} \mathbb{E}[\mathbb{Z}_{+}(U)] = +\infty, \&$ $Z_{t}(U) \rightarrow 1$ in L' when two. $\int_{V_{t,x}} V_{t,x}^{(\Lambda,\mu)} dx$

Corollary If $\{\chi_i: i \in \mathbb{N}\}\$ is unbounded, then $\mathbb{P}(\mathbb{Z}_t(\mathbb{IR}) = +\infty, \forall t \ge 0) = 1$. If $\{\chi_i: i \in \mathbb{N}\}\$ is bounded, then $\mathbb{E}[\mathbb{Z}_t(\mathbb{IR})] < +\infty, \forall t > 0$; $\lim_{t \to 0} \mathbb{E}[\mathbb{Z}_t(\mathbb{IR})] = +\infty$; $\{\chi_t^{(1,1)}, \chi_t^{(1,1)}\}\$ $\frac{\mathbb{Z}_t(\mathbb{IR})}{\int V_{t,\chi}^{(1,1)} d\chi} \rightarrow 1$ in L' when $t \downarrow 0$. What more exactly is the rate of coming down from infinity? (What is the behavior of $\int_{U} V_{t,x}^{(\Lambda,\mu)} dx$ when $t \neq 0$?)

Example 1
If
$$\chi_i = 0$$
 for every i.e., then
 $NE \geq_t (IR) \rightarrow C := \int V_{1,\chi}^{(10\%, null)} dx$ in L' when two.
Example 2
If $\Im \chi_i : i \in INJ$ is a dense subset of $[0, 1]$, then
 $t \geq_t (IR) \rightarrow 2$ in L' when two.
parallel result of Hobson & Tribe (2005)

For $\frac{1}{2} < \alpha < 1$, does there exist initial configuration $(\chi_i)_{i \in \mathbb{N}}$ so that the total population $Z_t(\mathbb{R})$ behaves like t^{α} as $t \neq 0$? VACIR, · define A's Y-neighborhood Ar := { y EIR:] x EA, |y-x| < r } for every r>0; • we say A has Minkowski dimension δ ε[0,1], if log Leb(Ar) log r → 1-S as r+0; • when A has Minkowski dimension SE[0, 1], we say it is Minkowski measurable with Minkowski content $k \in (0, +\infty)$, if $\frac{\text{Leb}(A_r)}{r^{1-\delta}} \rightarrow K \text{ as } \gamma \downarrow 0.$

Barnes, Mytnik & S. (2023) Suppose that $(x_i)_{i \in \mathbb{N}}$ is bounded, without isolated points $(\mu = 0)$. Suppose that Λ has Minkowski dimension $\delta \in [0,1]$. Then $\frac{\log \mathcal{Z}_t(\mathbb{R})}{\log t} \rightarrow -\frac{1+\delta}{2} \quad \text{in probability as t} 0.$ Conjecture Further suppose that Λ is Minkowski measurable with Minkowski Content K E (0, 1 00), then ∃ C(d)>0, depending only on δ, s.t. $t^{\frac{1+\delta}{2}} Z_t(\mathbb{R}) \rightarrow C(\delta) k$ in L' as $t \downarrow 0$.

Shiga's coalescing
Brownian motions.
Rate of
Coming down from infinity

$$\partial_{\pm} U = \pm \partial_{\pm}^{2} U - \frac{1}{2}U^{2}$$

Singular points of $V_{0} = \Lambda$
 $V_{0} |_{\Lambda^{C}} = \mu$
Shiga's duality
Shi

5 Similarity between U & U? Consider the case when $X_i = 0$ for every $i \in \mathbb{N}$. Let u & \tilde{U} be the weak solution to SPDEs $(0 < \varepsilon < 1)$ $\partial_{\pm} \mathcal{U} = \frac{1}{2} \partial_{x}^{2} \mathcal{U} + \sqrt{\mathcal{U}(1-\mathcal{U})} \mathcal{W}, \quad \mathcal{U}_{0} \equiv \mathcal{E},$ $\partial_t \tilde{\mathcal{U}} = \frac{1}{2} \partial_x^2 \tilde{\mathcal{U}} + \sqrt{\mathcal{U}} \dot{\mathcal{W}}, \qquad \tilde{\mathcal{U}}_0 \equiv \mathcal{E}.$ Shiga's duality $\Rightarrow \mathbb{E}[(1-\varepsilon)^{\mathbb{Z}_t(\mathbb{IR})}] = \mathbb{P}(\mathcal{U}_{t,o} = o).$ Standard result for Super-Brownian motion $\Rightarrow \exp(-\varepsilon \int V_{t,x}^{(\text{fof},0)} dx) = \mathbb{P}(\tilde{u}_{t,0} = 0).$ We can argue using SPDE tools that $\left| \mathbb{P}(\mathcal{U}_{t,0} = 0) - \mathbb{P}(\widetilde{\mathcal{U}}_{t,0} = 0) \right| \lesssim \mathcal{E}$ for small ϵ and t.

This is based on my joint work with

Clayton Barnes

Leonid Mytnik

Thanks !!

&