
SOLUTIONS TO THE SELECTED EXERCISES IN R. DURRETT’S
PROBABILITY: THEORY AND EXAMPLES, II

ZHENYAO SUN

Exercise (6.5.1). To show that the convergence in (a) of Theorem 6.4.1. may occur
arbitrarily slowly, let Xm,m+k = f(k) ≥ 0, where f(k)/k is decreasing, and check that
Xm,m+k is subaddditive.

Proof. Verify (i):

X0,m +Xm,n = f(m) + f(n−m) = m
f(m)

m
+ (n−m)

f(n−m)

n−m

≥ m
f(n)

n
+ (n−m)

f(n)

n
= f(n) = X0,n.

Verify (ii): For each k, (Xnk,(n+1)k)n≥1 = (f(k))n≥1 is obviously a stationary sequence.
Verify (iii): The distribution of (Xm,m+k)k≥1 = (f(k))k≥1 obviously does not depend

on m.
Verify (iv): Obviously EX+

0,1 = f(1) < ∞. Denote by γ0 := limk→∞ f(k)/k ≥ 0, then
we do have EX0,n = f(n) ≥ γ0n and γ0 > −∞. �

Exercise (6.5.2.). Consider the longest common subsequence problem, Example 6.4.4.
when X1, X2, . . . and Y1, Y2, . . . are i.i.d. and take the values 0 and 1 with probability
1/2 each. (a) Compute EL1 and EL2/2 to get lower bounds on γ. (b) Show γ < 1 by
computing the expected number of i and j sequence of length K = an with the desired
property.

Proof. (a) Since L0,1 ∈ [0, 1] ∩ Z, we have

EL0,1 = P (L0,1 = 1) = P (X1 = Y1) = 1/2.

Similarly, since L0,2 ∈ [0, 2] ∩ Z, we have

EL0,2 = P (L0,2 = 1) + 2P (L0,2 = 2) = (1− P (L0,2 = 0)− P (L0,2 = 2)) + 2P (L0,2 = 2)

= 1 + P (L0,2 = 2)− P (L0,2 = 0) = 1 + P (X1 = Y1, X2 = Y2)− P (X1 = X2 6= Y1 = Y2)

= 1 + 1/4− 1/8 = 9/8

So we already know that

γ = sup
m≥1

E(L0,m)/m ≥ 9/16.

1
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(b) For each k, n ∈ N with k ≤ n, denote by In,k := {(i1, . . . , ik) : 1 < i1 < · · · <
ik ≤ n} the collection of all increasing multi-index with length k in the index space
{1, 2, . . . , n}. For each I = (i1, . . . , ik) ∈ In,k, denote by XI := (Xi1 , Xi2 , . . . , Xik) the
I-subsequence of the process (Xk)k∈N. Similarly, we can define YI for each I ∈ In,k. Note
that there exists a constant C > 0 such that for each integers 0 < k < n, we have

P (L0,n ≥ k) = P (∃I, J ∈ In,k s.t. XI = YJ) ≤
∑

I,J∈In,k

P (XI = YJ)

= #{I, J ∈ In,k} · 2−k =

(
n!

k!(n− k)!

)2

2−k

≤ C

(
nn+1/2e−n

kk+1/2e−k(n− k)n−k+1/2e−n−k
2−k
)2

, by Stirling’s formula

a:=n/k
= C

(
nn+1/2

(an)an+1/2((1− a)n)(1−a)n+1/2
2−na

)2

= C
1

a(1− a)n
exp

(
−2n ln

(
aa(1− a)1−a2a

))
.

Denote by g(a) = aa(1− a)1−a2a for each a ∈ (0, 1), then it holds that g(a) −−→
a↑1

2, which

says that there exists an 0 < a0 < 1 such that g(a0) > 1. Now taking kn = ba0nc,
according to an := kn/n→ a0, we have∑
n∈N

P

(
L0,n

n
≥ a0

)
≤
∑
n∈N

P (L0,n ≥ kn) ≤ C
∑
n∈N

1

an(1− an)n
exp (−2n ln g(an)) <∞.

Therefore, B-C lemma says that almost surely

γ = lim
n→∞

L0,n

n
≤ a0 < 1.

�

Exercise (6.5.3.). Given a rate one Poisson process in [0,∞) × [0,∞), let X1, Y1 be the
point that minimizes x+y. Let (X2, Y2) be the point in [X1,∞)× [Y1,∞) that minimizes
x + y, and so on. Use this construction to show that in Example 6.5.2. γ ≥ (8/π)1/2 >
1.59.

Proof. The definition of rate one Poisson point process N is given by Example 3.7.7..
More precisely, N(ω,A) is a random measure on [0,∞)2 such that

• For each w ∈ Ω, N(w, ·) is a N ∩ {∞}-valued measure on [0,∞)2.
• For each Borel subset A ⊂ [0,∞)2, N(·, A) is a Poisson distributed random vari-
able with mean µ(A), the Lebesgue measure of A.

Note that N is a (random) atomic measure, therefore, it is valid to talk about the points
of N . According to its definition, (X1, Y1) is a point of the atomic measure N in [0,∞)2

which minimizes x + y. And (X2, Y2) is the point in [X1,∞)× [Y1,∞) which minimizes
x+ y.
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We claim the following fact: ((Xk+1, Yk+1)− (Xk, Yk))k∈N are i.i.d. random variables
with the same distribution of (X1, Y1). This fact is crucial. Its proof relies on the strong
Markov property of the Poisson point processes. Here we omit the details.

Note that for each t ≥ 0, we have

P (X1 + Y1 > t) = P (N {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ t} = 0)

= e−
∫
(x,y):x≥0,y≥0,x+y≤t µ(dx,dy) = e−

t2

2 .

Therefore,

E[X1 + Y1] =

∫ ∞
0

P (X1 + Y1 > t)dt =

√
π

2
,

which, thanks to the symmetry, says that EX1 = EY1 =
√

π
8
. Now, from Law of large

numbers, we have almost surely
Zn
n

:=
max(Xn, Yn)

n
−−−→
n→∞

√
π

8
.

On the other hand, denoted by L0,s length of the longest increasing path lying in the
square R0,n with vertices (0, 0), (0, s), (s, 0) and (s, s). (Here the length of a path is
simply the number of the ’Poisson’ points on that path. So the length of a path is always
an integer number.) It is now obvious that (X1, Y2), . . . , (Xn, Yn) forms an increasing
path in the square R0,Zn . Therefore, we have L0,Zn ≥ n. Using the result in Example
6.5.2., we have

γ = lim
n→∞

L0,Zn

Zn
≥ lim

n→∞

n

Zn
=

√
8

π
.

�

Exercise (6.5.4.). Let πn be a random permutation of {1, . . . , n} and let Jnk be the num-
ber of subsets of {1, . . . , n} of size k so that the associated πn(j) form an increasing
subsequence. Compute EJnk and take k ∼ αn1/2 to conclude that in Example 6.5.2.
γ ≤ e.

Proof. For each k, n ∈ N with k ≤ n, denote by Hn,k the collection of all subset of
{1, . . . , n} with length k. For each h ∈ Hn,k, we write h = {hi : i = 1, . . . , k} such that
0 < h1 < · · · < hk ≤ n. There exists a constant C > 0 such that for each 0 < k < n, we
have

EJnk =
∑

h∈Hn,k

P
(

(πn(hi))
k
i=1 is increasing

)
= #Hn,k ·

Ck
n · (n− k)!

n!

=
n!

k!(n− k)!k!
≤ nk

(k!)2
≤ C

(
e
√
n

k

)2k

, by Stirling formula.

Therefore if k ∼ αn1/2 with α > e, we have∑
n∈N

EJnk <∞.



4 Z. SUN

Now let l(πn) be the length of the longest increasing sequence in the random permutation
πn, then ∑

n∈N

P

(
l(πn)

n1/2
≥ α

)
=
∑
n∈N

P
(
Jndαn1/2e ≥ 1

)
≤
∑
n∈N

EJndαn1/2e <∞

This, and B-C lemma says that

γ := lim
n→∞

l(πn)

n1/2
≤ α, almost surely.

Finally, since α is chosen arbitrarily in (e,∞), we have that γ ≤ e almost surely. �

Exercise (6.5.5.). Let φ(θ) = E exp(−θti) and

Yn = (µφ(θ))−n
Zn∑
i=1

exp (−θTn(i))

where the sum is over individuals in generation n and Tn(i) is the ith person’s birth time.
Show that Yn is a nonnegative martingale and use this to conclude that if exp(−θa)/µφ(θ) >
1, then P (X0,n ≤ an) → 0. A little thought reveals that this bound is the same as the
answer in the answer in the last exercise.

Proof. Let Fn be the filtration which contains all the information about the birth times
of all the persons whose generations are smaller than or equal to n. Denote by Z

(n,i)
1

the number of children of i-th particle in generation n. Denote by T
(n,i)
1 (k) the birth

time of the k-th child of the i-th particle in generation n. It can be verified from the
independence of the birth of each particles that

E [Yn+1|Fn] = E

(µφ(θ))−(n+1)
Zn∑
i=1

Z
(n,i)
1∑
k=1

exp(−θT (n,i)
1 (k))

∣∣∣∣∣∣Fn


= (µφ(θ))−(n+1)
Zn∑
i=1

exp(−θTn(i))E

Z(n,i)
1∑
k=1

exp
(
−θ
(
T

(n,i)
1 (k)− Tn(i)

))∣∣∣∣∣∣Fn


= (µφ(θ))−(n+1)
Zn∑
i=1

exp(−θTn(i))E

[
Z1∑
k=1

exp (−θT1(k))

]
= Yn.

This says that Yn is a non-negative martingale. Therefore, it has a finite almost sure
limit, say Y∞. Observe that, we always have

e−θX0,n

(µφ(θ))n
≤ 1

(µφ(θ))n

Zn∑
i=1

exp (−θTn(i)) .
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Therefore, if exp(−θa)/µφ(θ) > 1, then

P (X0,n ≤ an) = P (e−θX0,n ≥ e−θan) ≤ Ee−θX0,n

e−θan

≤ E[
∑Zn

i=1 e
−θTn(i)]

µnφ(θ)n

(
µφ(θ)

e−θa

)n
= Yn(1− ε)n → 0.

�

Exercise (7.1.1.). Given s < t fine P (B(s) > 0, B(t) > 0).

Proof.

P (B(s) > 0, B(t) > 0) = P (B(s) > 0, B(t)−B(s) > −B(s))

=

∫ ∞
0

dx

∫ ∞
−x

1√
2πs
· e−

x2

2s
1√

2π(t− s)
e−

y2

2(t−s)dy

=
1

4
+

1

2π
arcsin

√
s

t
.

�

Exercise (7.1.2.). Find E(B2
1B2B3)

E[B2
1B2B3] = E

[
B2

1 (B1 + (B2 −B1)) (B1 + (B2 −B1) + (B3 −B2))
]

= E[B4
1 ] + E

[
B2

1 (B2 −B1)
2]

= E[B4
1 ] + E[B2

1 ]E
[
(B2 −B1)

2]
= 4.

Exercise (7.1.4.). A ∈ Fo if and only if there is a sequence of times t1, t2, · · · in [0,∞)
and a B ∈ R{1,2,··· } so that A = {w : (w(t1), w(t2), · · · ) ∈ B}. In words, all events in Fo
depend on only countably many coordinates.

Proof. Let Ω = R[0,∞). Define coordinate process:

Xω(t) = ω(t),∀ω ∈ Ω, t ≥ 0.

Denote by

I = {I = (tk)k∈N : ∀k ∈ N, tk ∈ [0,∞)}
the collection of all the time sequence. For each time sequence I = (tk)k∈N ∈ I, define a
map ψI from Ω to RN such that

ψI(ω) := (Xω(tk))k∈N.

Define [I] := {tk : k ∈ N}. Consider a σ-field on Ω given by F[I] = σ(X(t) : t ∈ [I]).
Then by standard measure theory, we have

F[I] = {ψ−1I B : B ∈ RN}.(0.1)
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Define the family of subsets of Ω by
G := {A ⊂ Ω : ∃I ∈ I, B ∈ RN s.t. A = ψ−1I B}.

What we needs to proof for this exercise is that G ⊂ Fo and Fo ⊂ G.
1. We claim that G ⊂ Fo. In fact for each A ∈ G, there is an I ∈ I and B ∈ RN such

that A = ψ−1I B. Therefore A ∈ F[I] ⊂ Fo.
2. We claim that G is a σ-field. In fact, if (Ak)k∈N is a sequence of elements in G, then

there exists a sequence of I-elements (Ik)k∈N and a sequence of RN-elements (Bk)k∈N such
that

Ak = ψ−1Ik Bk, k ∈ N.
We also have that there exists a J ∈ I such that

[J ] =
⋃
k∈N

[Ik]

simply because the right hand side is countable. Now, from (0.1), we have
⋃
k∈NAk ∈

σ(F[Ik] : k ∈ N) = F[J ] ⊂ G. The rest of this claim is elementary.
3. We claim that Fo ⊂ G. In fact, for each t ∈ [0,∞), we have X(t) is G-measurable

simply because Ft ⊂ G. �

Exercise (7.1.5.). Looking at the proof of Theorem 7.1.6. carefully shows that if γ > 5/6
then Bt is not Hölder continuous with exponent γ at any point in [0, 1]. Show, by
considering k increments instead of 3, that the last conclusion is true for all γ > 1/2+1/k.

Proof. Fix a constant C < ∞. Let An = {w : ∃s ∈ [0, 1] s.t. ∀|t − s| ≤ k
n
, |Bt − Bs| ≤

C|t− s|γ}. For 1 ≤ i ≤ n− k + 1, let

Yi,n = max{|B(
i+ j

n
)−B(

i+ j − 1

n
)| : j = 0, 1, . . . , k − 1}.

and

Bn = {at least one Yk,n ≤
(2k − 1)C

nγ
}.

Then it can be verified that An ⊂ Bn. Therefore

P (An) ≤ P (Bn) ≤ nP

(
|B(

1

n
)| ≤ (2k − 1)C

nγ

)k
≤ nP (|B(1)| ≤ (2k − 1)C

nγ−
1
2

)k

≤ n

(
2(2k − 1)C
√

2πnγ−
1
2

)k
→ 0.

Rest is the same as Theorem 7.1.6. �

Exercise (7.1.6.). Fix t and let ∆m,n = B(tm2−n)−B(t(m− 1)2−n). Compute

E

(∑
m≤2n

∆2
m,n − t

)2
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and use Borel-Cantelli to conclude that supm≤2n ∆2
m,n → t a.s. as n→∞.

Proof.

E

( 2n∑
m=1

∆2
m,n − t

)2
 =

2n∑
m=1

E

(
∆2
m,n −

t

2n

)2

= 2nE

[(
B(

t

2n
)− t

2n

)2
]

= t22−n+1.

Therefore,

P

(∣∣∣∣∣
2n∑
m=1

∆2
m,n − t

∣∣∣∣∣ > 1

n

)
≤ n2t22−n+1.

This says that

P
(∣∣∣ 2n∑

m=1

∆2
m,n − t

∣∣∣ > 1

n
i.o.
)

= 0.

So we get the desired result by BC Lemma. �

Exercise (7.2.1.). Let T0 = inf {s > 0 : Bs = 0} and let R = inf {t > 1 : Bt = 0}. R is for
right or return. Use the Markov property at time 1 to get

Px(R > 1 + t) =

∫
p1(x, y)Py(T0 > t)dy

Proof. Notice that R = T0 ◦ θ1 + 1, therefore from Theorem 7.2.1. we have
Ex
(
1R(·)>1+t

∣∣F+
1

)
= Ex

(
1(T0◦θ1)>t

∣∣F+
1

)
= Ex

[
(1T0>t ◦ θ1) (ω)

∣∣F+
1

]
= EB1 [1T0>t] =

∫
p1(x, y)Py(T0 > t)dy.

�

Exercise (7.2.3.). Let a < b, then with probability one a is the limit of local maximum
of Bt in (a, b). So the set of local maxima of Bt is almost surely a dense set. However,
unlike the zero set it is countable.

Proof. From Theorem 7.2.5., we know that T0 := inf{t ∈ (a, b) : Bt = Ba} = a almost
surely. This says that there exists a Ω0 with probability 1 such that for any ω ∈ Ω0, there
exists a strictly decreasing sequence of tn with Btn = Ba and tn ↓ a.

From Theorem 7.2.4., we know that T1 := inf{t ∈ (a, b) : Bt > Ba} = a almost surely.
This says that there exists a Ω1 with probability 1 such that for any ω ∈ Ω1, there exists
a strictly decreasing sequence of sn with Bsn > Ba and sn ↓ a.

Therefore, by chosen suitable subsequence, we know that for each ω ∈ Ω0 ∩ Ω1, there
exists a strictly decreasing sequence

t1 > s1 > t2 > s2 > . . .
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such that Btk = Ba and Bsk > Ba for each k ∈ N and that both tk ↓ a and sk ↓ a hold.
Now since the Brownian path are continuous, there will be a sequence of (rk)k∈N such
that

t1 > r1 > t2 > r2 > . . .

and each rk is a local maxima. (Simply chose rk ∈ (tk, tk+1) such that Brk = max{Br :
r ∈ [tk, tk+1]}.)

To summarize, for each a < b, we have almost surely that a is the limit of local
maximum of Bt in (a, b). Therefore, almost surely, for each q ∈ Q, we have q is in the
closure of the set of local maximum of the Brownian path. In another word, almost surely,
the set of local maxima of Brownian path is a dense set. �

Exercise (7.2.4.). (i) Suppose f(t) > 0 for all t > 0. Use Theorem 7.2.3. to conclude
that lim supt↓0B(t)/f(t) = c, P0 a.s., where c ∈ [0,∞] is a constant. (ii) Show that if
f(t) =

√
t then c =∞, so with probability one Brownian paths are not Hölder continuous

of order 1/2 at 0.

Proof. (i). Define C = lim supt↓0B(t)/f(t), then C is a random variable which is F+
0 -

measurable. It can also be verified that C takes values in [0,∞] from Theorem 7.2.4.,
since there exists a sequence of strictly decreasing t0 ↓ 0 with B(t0) > 0.

Now use Theorem 7.2.3. we know that C almost surely is a constant.
(ii). Define Xt = tB(1/t), then by Theorem 7.2.6. and Theorem 7.2.8 we have

lim sup
t↓0

B(t)√
t

= lim sup
t↓0

tX(1/t)√
t

= lim sup
u→∞

X(u)√
u

=∞.

�

Exercise (7.3.1.). Let A be an Fσ, that is, a countable union of closed sets. Show that
TA = inf {t : Bt ∈ A} is a stopping time.

Proof. Let

A =
⋃
n∈N

Kn

where Kn are closed sets. Define closed sets An =
⋃n
k=1Kk, then we have

A =
⋃
n∈N

An

Define T(An) = inf{t : Bt ∈ An} which by Theorem 7.3.4. are stopping times. Now notice
that ⋃

n∈N

{t : Bt ∈ An} = {t : Bt ∈ A}.
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So we must have

TA = inf
n∈N

T(An) = lim
n→∞

T(An).

Theorem 7.3.2. then says that TA is a stopping time. �

Exercise (7.3.2.). If S and T are stopping times, then S ∧ T = min{S, T}, S ∨ T =
max{S, T}, and S + T are also stopping times. In particular, if t ≥ 0, then S ∧ t, S ∨ t
and S + t are stopping times.

Proof. It can be verified that for each t > 0,

{S ∧ T > t} = {S > t} ∩ {T > t} ∈ Ft,
and

{S ∨ T > t} = {S > t} ∪ {T > t} ∈ Ft,
and

{S + T < t} = {∃q1, q2 ∈ Q, s.t. S ≤ q1, T ≤ q2, q1 + q2 < t}

=
⋃

q1,q2∈Q:0≤q1+q2≤t

{S ≤ q1, T ≤ q2} ∈ Ft.

�

Exercise (7.3.4.). Let S be a stopping time, let A ∈ FS, and let R = S on A and R =∞
on Ac. Show that R is a stopping time.

Proof. It can be verified that for each t ∈ [0,∞)

{R ≤ t} = {A, S ≤ t} ∈ Ft.
�

Exercise (7.3.5.). Let S and T be stopping times. {S < T}, {S > T}, and {S = T} are
in FS (and in FT ).

Proof. It can be verified that, for each s > 0,

{S < T} ∩ {S < s} = {∃q ∈ Q ∩ (0, s), s.t. S < q < T}

=
⋃

q∈Q∩(0,s)

{S < q, T > q} ∈ Fs.

This shows that {S < T} ∈ FS. It can also be verified that, for each s > 0,

{S > T} ∩ {S < s} = {∃q ∈ Q, s.t. T < q < S < s}

=
⋃

q∈Q:0<q<s

({T < q} ∪ {q < S < s}) ∈ Fs.

This says that {S > T} ∈ FS. Finally
{S = T} = ({S > T} ∪ {S < T})c ∈ FS.

�
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Exercise. Let Bt = (B1
t , B

2
t ) be a two-dimensional Brownian motion starting from 0.

Let Ta = inf{t : B2
t = a}. Show that (1) B1(Ta), a ≥ 0 has independent (stationary)

increments and (2) B1(Ta) =d aB
1(T1). Use this to conclude that B1(Ta) has a Cauchy

distribution.

Proof. (1) Suppose that 0 = a0 < a1 < . . . an = u < an+1 = v. Thanks to induction,
in order to show that increments {B1(T(a(k+1))) − B1(T(ak)) : k = 0, . . . , n} are mutually
independent with each other, we only have to show that the last increment B1(Tv) −
B1(Tu) is independent of the previous increments {B1(T(a(k+1)))−B1(T(ak)) : k = 0, . . . , n−
1}. Notice that all (Ta)a≥0 are stopping times of the two-dimensional Brownian motion
(Bt)t≥0 whose corresponding filtration will be denote by (Ft)t≥0. Then it is easy to see that
the previous increments {B1(T(ak+1))−B1(T(ak)) : k = 0, . . . , n−1} are F(Tu)-measurable.
So we only have to show that B1(Tv)− B1(Tu) is independent of the σ-field F(Tu). Now
from the strong Markov property: for any bounded function f ,

E
[
f
(
B1(Tv)−B1(Tu)

)
|F(Tu)

]
= E(B1(Tu),u)

[
f
(
B1(Tv)−B1(0)

)]
= E(0,0)

[
f
(
B1(Tv−u)

)]
.

The RHS is non-random, so B1(Tv) − B1(Tu) is independent of the σ-field F(Tu). The
RHS also says that the distribution of B1(Tu)−B1(Tv) is only dependent on v− u. This
is the stationary part.

(2) Note that from (7.1.1.) we have for each a > 0

(Xs)s≥0 := (a−1Ba2s)s≥0
d
= (Bs)s≥0

Therefore,

B1(Ta) = B1(inf{t : B2(t) = a}) = B1(a2 inf{s : a−1B2(a2s) = 1})

= a ·X1(inf{s : X2
s = 1}) d

= aB1(T1)

(3). From (1) we have that

B1(Tn)
d
=

n∑
k=0

Yk

where (Yk)k∈Z+

d
= (B(Tk+1)−B(Tk))k∈Z+

are i.i.d. random variables. So now, we have
that

B1(T1)
d
= n−1B1(Tn)

d
= n−1

n∑
k=1

Yk −−−→
n→∞

B1(T1).

Simply notice that (B1
t , B

2
t )t≥0

d
= (−B1

t , B
2
t ), one can verify that (Yk)k∈Z+ actually have

symmetric distribution. So B1(T1) must have symmetric α-stable distribution with α = 1,
which by its definition, is Cauchy distribution. �
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Exercise (7.4.2.). Use (7.2.3) to show that R := inf{t > 1 : Bt = 0} has probability
density

P0(R− 1 ∈ dt) =
1

(πt1/2(1 + t))
dt.

Proof. According to (7.2.3.) and (7.4.6), we have

P0(R− 1 ∈ dt) =

∫
y∈R

p1(0, y)Py(T0 ∈ dt)dy

=

∫
y∈R

p1(0, y)P0(Ty ∈ dt)dy =

∫
y∈R

p1(0, y)
1√

2πs3
ye−

y2

2t dt dy

=
1

πt1/2(1 + t)
dt.

�

Exercise (7.4.4.). Let As,t be the event Brownian motion has at least one zero in [s, t].
Show that P0(As,t) = 2

π
arccos(

√
s/t).

Proof. According to 7.4.6., note that

P0(As,t) = 2

∫ ∞
0

ps(0, x)Px(T0 ≤ t− s)dx

= 2

∫ ∞
0

(2πs)−1/2se−x
2/2

∫ t−s

0

(2πu3)−1/2xe−x
2/2u du dx

=
2

π
arccos(

√
s/t).

�

Exercise (7.5.1.). Let T = inf{Bt 6∈ (−a, a)}. Show that

E0 exp(−λT ) = 1/ cosh(a
√

2λ)

Proof. According to the fact that eθBt−
1
2
θ2t is a martingale, and the fact (from symmetry)

that conditionally given T , BT = a or BT = −a with 1/2 probability, we have that

1 = E0

[
eθBT−

1
2
θ2T
]

= E0

[
e−

1
2
θ2T
]
· e

θa + e−θa

2
.

This implies the desired result. �

Exercise (7.5.3). Let σ = inf{t : Bt 6∈ (a, b)} and let λ > 0.
(1) Use the strong Markov property to show

Ex exp−λTa = Ex
(
e−λσ;Ta < Tb

)
+ Ex

(
e−λσ;Tb < Ta

)
Eb exp{−λTa}.
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(2) Interchange the roles of a and b to get a second equation, use Theorem 7.5.7. to
get

Ex
[
e−λσ;Ta < Tb

]
= sinh(

√
2λ(b− x))/ sinh(

√
2λ(b− a)).

Proof. (1). We have that Ex[e−λ(Ta−σ)|Fσ] = EBσ [e−λTa ]. Therefore,

Exe
−λTa = Ex

[
e−λσE

[
e−λ(Ta−σ)

∣∣Fσ]]
= Ex

[
e−λσ, Ta < Tb

]
+ Ex[e

−λσ, Ta > Tb]Ebe
−λTa .

(2). Change a and b in the above, we have

Ex
[
e−λTb

]
= Ex

[
e−λσ;Tb < Ta

]
+ Ex

[
e−λσ;Ta < Tb

]
Ea[e

−λTb ].

According to Theorem 7.5.7., we have

Ex
[
e−λTa

]
= exp(−(a− x)

√
2λ);

Ex
[
e−λTb

]
= exp(−(x− b)

√
2λ);

Ea[e
−λTb ] = Eb[e

−λTa ] = exp(−(b− a)
√

2λ).

From those, we can obtain the desired result by solving a linear equation. �

Exercise (7.5.5.). Find a martingale of the form B6
t − c1tB4

t + c2t
2B2

t − c3t3 and use it to
compute the third moment of T = inf{t : Bt 6= (−a, a)}.

Proof. It can be verified that when c1 = 15, c2 = 45, c3 = 15, function

u(x, t) := x6 − c1tx4 + c2t
2x2 − c3t3

solves equations
∂u

∂t
+

1

2

∂2u

∂x2
= 0.

Therefore B6
t − c1tB

4
t + c2t

2B2
t − c3t

3 is a martingale. Now it can be calculated from
bounded convergence and monotone convergence that

E
[
T 3
]

= lim
t→∞

E
[
(T ∧ t)3

]
= lim

t→∞
c−13 E

[
B6
T∧t − c1(T ∧ t)B4

T∧t + c2(T ∧ t)2B2
T∧t
]

= c−13 E
[
a6 − c1Ta4 + c2T

2a2
]

=
61

15
a6.

�

Exercise (7.6.5.). Show that B3
t −

∫ t
0

3Bsds is a martingale.

Proof. According to Ito’s formula,

d

(
B3
t −

∫ t

0

3Bsds

)
= 3B2

t dBt +
1

2
· 6Btdt− 3Btdt = 3B2

t dBt.

This and Theorem 7.6.4. imply that B3
t −

∫ t
0

3Bsds is a martingale. �
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Exercise (7.6.3.). Let β2k(t) = E0B
2k
t . Use Ito’s formula to relate β2k(t) to β2k−2(t) and

use this relationship to derive a formula for β2k(t).

Proof. According to Ito’s formula:

dB2k
t = 2kB2k−1

t dBt +
1

2
2k(2k − 1)B2k−2

t dt.

Therefore,

β2k(t) = E
[
B2k
t

]
= E

[∫ t

0

2kB2k−1
s dBs +

2k(2k − 1)

2

∫ t

0

B2k−2
s ds

]
=

2k(2k − 1)

2

∫ t

0

E
[
B2k−2
s

]
ds =

2k(2k − 1)

2

∫ t

0

E
[
B2k−2
s

]
ds

=
2k(2k − 1)

2

∫ t

0

β2(k−1)(s)ds.

Now, it is trivial to verify that

β2k(t) = (2k − 1)!! · tk.
�

Exercise (7.6.5.). Apply Ito’s formula to (d-dimensional) |Bt|2. Use this to conclude that
E0|Bt|2 = td.

Proof. According to Ito’s formula Theorem 7.6.7., let f(x) = |x|2, x ∈ Rd, we have

df(Bt) =
d∑

k=1

Dkf(Bs)dB
(k)
s +

1

2

d∑
k=1

Dkkf(Bs)ds

=
d∑

k=1

2B(k)
s dB(k)

s +
d∑

k=1

ds

Therefore, thanks to Theorem 7.6.4.,

E0

[
|Bt|2

]
= E0

[
2

d∑
k=1

∫ t

0

B(k)
s dB(k)

s +
d∑

k=1

∫ t

0

ds

]
= td.

�

Exercise (8.1.1.). (In the context of the proof of Theorem 8.1.1.,) use Exercise 7.5.4. to
conclude that E(T 2

U,V ) ≤ 4EX4.

Proof. Recall the Exercise 7.5.4. which says that if Ta,b = inf{t : Bt 6∈ (a, b)} where
a < 0 < b, then ET 2 ≤ 4E(B4

T ) and EB4
T ≤ 36ET 2. Now, noting that for each a < 0 < b

Ta,b, B(Ta,b) ∈ FB is independent of U and V , and that from Theorem 8.1.1 B(TU,V )
d
= X,

we have

E
[
T 2
U,V

]
=

∫
E0

[
T 2
u,v

]
P (U ∈ du, V ∈ dv)
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≤ 4

∫
E0

[
B4
Tu,v

]
P (U ∈ du, V ∈ dv) = 4E0

[
B4

(TU,V )

]
= 4EX4.

�

Exercise (8.1.2.). Suppose Sn is one-dimensional simple random walk and let
Rn = 1 + max

m≤n
Sm −min

m≤n
Sm

be the number of points visited by time n. Show that

Rn/
√
n

d−−−→
t→∞

something.

Proof. For each continuous function f on [0, 1], consider functional Rf := supt∈[0,1] f(t)−
inft∈[0,1] f(t). Then R is a continuous map from C[0, 1] to R. Now Theorem 8.1.5. says
that

R
(
S(n·)/

√
n
) d−−−→

n→∞
RB,

where B is a Brownian motion on [0, 1], and therefore RB is a random variable. Finally,
note that

(Rn − 1)/
√
n = R(S(n·)/

√
n), n ≥ 0.

�
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