SOLUTIONS TO THE SELECTED EXERCISES IN R. DURRETT'S PROBABILITY: THEORY AND EXAMPLES, II

ZHENYAO SUN

Exercise (6.5.1). To show that the convergence in (a) of Theorem 6.4.1. may occur arbitrarily slowly, let $X_{m, m+k}=f(k) \geq 0$, where $f(k) / k$ is decreasing, and check that $X_{m, m+k}$ is subaddditive.

Proof. Verify (i):

$$
\begin{aligned}
X_{0, m}+X_{m, n} & =f(m)+f(n-m)=m \frac{f(m)}{m}+(n-m) \frac{f(n-m)}{n-m} \\
& \geq m \frac{f(n)}{n}+(n-m) \frac{f(n)}{n}=f(n)=X_{0, n} .
\end{aligned}
$$

Verify (ii): For each k, $\left(X_{n k,(n+1) k}\right)_{n \geq 1}=(f(k))_{n \geq 1}$ is obviously a stationary sequence.
Verify (iii): The distribution of $\left(X_{m, m+k}\right)_{k \geq 1}=(f(k))_{k \geq 1}$ obviously does not depend on m.

Verify (iv): Obviously $E X_{0,1}^{+}=f(1)<\infty$. Denote by $\gamma_{0}:=\lim _{k \rightarrow \infty} f(k) / k \geq 0$, then we do have $E X_{0, n}=f(n) \geq \gamma_{0} n$ and $\gamma_{0}>-\infty$.

Exercise (6.5.2.). Consider the longest common subsequence problem, Example 6.4.4. when X_{1}, X_{2}, \ldots and Y_{1}, Y_{2}, \ldots are i.i.d. and take the values 0 and 1 with probability $1 / 2$ each. (a) Compute $E L_{1}$ and $E L_{2} / 2$ to get lower bounds on γ. (b) Show $\gamma<1$ by computing the expected number of i and j sequence of length $K=a n$ with the desired property.

Proof. (a) Since $L_{0,1} \in[0,1] \cap \mathbb{Z}$, we have

$$
E L_{0,1}=P\left(L_{0,1}=1\right)=P\left(X_{1}=Y_{1}\right)=1 / 2 .
$$

Similarly, since $L_{0,2} \in[0,2] \cap \mathbb{Z}$, we have

$$
\begin{aligned}
E L_{0,2} & =P\left(L_{0,2}=1\right)+2 P\left(L_{0,2}=2\right)=\left(1-P\left(L_{0,2}=0\right)-P\left(L_{0,2}=2\right)\right)+2 P\left(L_{0,2}=2\right) \\
& =1+P\left(L_{0,2}=2\right)-P\left(L_{0,2}=0\right)=1+P\left(X_{1}=Y_{1}, X_{2}=Y_{2}\right)-P\left(X_{1}=X_{2} \neq Y_{1}=Y_{2}\right) \\
& =1+1 / 4-1 / 8=9 / 8
\end{aligned}
$$

So we already know that

$$
\gamma=\sup _{m \geq 1} E\left(L_{0, m}\right) / m \geq 9 / 16 .
$$

(b) For each $k, n \in \mathbb{N}$ with $k \leq n$, denote by $\mathcal{I}_{n, k}:=\left\{\left(i_{1}, \ldots, i_{k}\right): 1<i_{1}<\cdots<\right.$ $\left.i_{k} \leq n\right\}$ the collection of all increasing multi-index with length k in the index space $\{1,2, \ldots, n\}$. For each $I=\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{n, k}$, denote by $X_{I}:=\left(X_{i_{1}}, X_{i_{2}}, \ldots, X_{i_{k}}\right)$ the I-subsequence of the process $\left(X_{k}\right)_{k \in \mathbb{N}}$. Similarly, we can define Y_{I} for each $I \in \mathcal{I}_{n, k}$. Note that there exists a constant $C>0$ such that for each integers $0<k<n$, we have

$$
\begin{aligned}
P\left(L_{0, n} \geq k\right) & =P\left(\exists I, J \in \mathcal{I}_{n, k} \text { s.t. } X_{I}=Y_{J}\right) \leq \sum_{I, J \in \mathcal{I}_{n, k}} P\left(X_{I}=Y_{J}\right) \\
& =\#\left\{I, J \in \mathcal{I}_{n, k}\right\} \cdot 2^{-k}=\left(\frac{n!}{k!(n-k)!}\right)^{2} 2^{-k} \\
& \leq C\left(\frac{n^{n+1 / 2} e^{-n}}{k^{k+1 / 2} e^{-k}(n-k)^{n-k+1 / 2} e^{-n-k}} 2^{-k}\right)^{2}, \quad \text { by Stirling's formula } \\
& \stackrel{a:=n / k}{=} C\left(\frac{n^{n+1 / 2}}{(a n)^{a n+1 / 2}((1-a) n)^{(1-a) n+1 / 2}} 2^{-n a}\right)^{2} \\
& =C \frac{1}{a(1-a) n} \exp \left(-2 n \ln \left(a^{a}(1-a)^{1-a} 2^{a}\right)\right) .
\end{aligned}
$$

Denote by $g(a)=a^{a}(1-a)^{1-a} 2^{a}$ for each $a \in(0,1)$, then it holds that $g(a) \underset{a \uparrow 1}{\longrightarrow} 2$, which says that there exists an $0<a_{0}<1$ such that $g\left(a_{0}\right)>1$. Now taking $k_{n}=\left\lfloor a_{0} n\right\rfloor$, according to $a_{n}:=k_{n} / n \rightarrow a_{0}$, we have

$$
\sum_{n \in \mathbb{N}} P\left(\frac{L_{0, n}}{n} \geq a_{0}\right) \leq \sum_{n \in \mathbb{N}} P\left(L_{0, n} \geq k_{n}\right) \leq C \sum_{n \in \mathbb{N}} \frac{1}{a_{n}\left(1-a_{n}\right) n} \exp \left(-2 n \ln g\left(a_{n}\right)\right)<\infty .
$$

Therefore, B-C lemma says that almost surely

$$
\gamma=\lim _{n \rightarrow \infty} \frac{L_{0, n}}{n} \leq a_{0}<1
$$

Exercise (6.5.3.). Given a rate one Poisson process in $[0, \infty) \times[0, \infty)$, let X_{1}, Y_{1} be the point that minimizes $x+y$. Let $\left(X_{2}, Y_{2}\right)$ be the point in $\left[X_{1}, \infty\right) \times\left[Y_{1}, \infty\right)$ that minimizes $x+y$, and so on. Use this construction to show that in Example 6.5.2. $\gamma \geq(8 / \pi)^{1 / 2}>$ 1.59.

Proof. The definition of rate one Poisson point process N is given by Example 3.7.7.. More precisely, $N(\omega, A)$ is a random measure on $[0, \infty)^{2}$ such that

- For each $w \in \Omega, N(w, \cdot)$ is a $\mathbb{N} \cap\{\infty\}$-valued measure on $[0, \infty)^{2}$.
- For each Borel subset $A \subset[0, \infty)^{2}, N(\cdot, A)$ is a Poisson distributed random variable with mean $\mu(A)$, the Lebesgue measure of A.
Note that N is a (random) atomic measure, therefore, it is valid to talk about the points of N. According to its definition, $\left(X_{1}, Y_{1}\right)$ is a point of the atomic measure N in $[0, \infty)^{2}$ which minimizes $x+y$. And $\left(X_{2}, Y_{2}\right)$ is the point in $\left[X_{1}, \infty\right) \times\left[Y_{1}, \infty\right)$ which minimizes $x+y$.

We claim the following fact: $\left(\left(X_{k+1}, Y_{k+1}\right)-\left(X_{k}, Y_{k}\right)\right)_{k \in \mathbb{N}}$ are i.i.d. random variables with the same distribution of $\left(X_{1}, Y_{1}\right)$. This fact is crucial. Its proof relies on the strong Markov property of the Poisson point processes. Here we omit the details.

Note that for each $t \geq 0$, we have

$$
\begin{aligned}
& P\left(X_{1}+Y_{1}>t\right)=P(N\{(x, y): x \geq 0, y \geq 0, x+y \leq t\}=0) \\
& =e^{-\int_{(x, y): x \geq 0, y \geq 0, x+y \leq t} \mu(d x, d y)}=e^{-\frac{t^{2}}{2}} .
\end{aligned}
$$

Therefore,

$$
E\left[X_{1}+Y_{1}\right]=\int_{0}^{\infty} P\left(X_{1}+Y_{1}>t\right) d t=\sqrt{\frac{\pi}{2}}
$$

which, thanks to the symmetry, says that $E X_{1}=E Y_{1}=\sqrt{\frac{\pi}{8}}$. Now, from Law of large numbers, we have almost surely

$$
\frac{Z_{n}}{n}:=\frac{\max \left(X_{n}, Y_{n}\right)}{n} \underset{n \rightarrow \infty}{ } \sqrt{\frac{\pi}{8}}
$$

On the other hand, denoted by $L_{0, s}$ length of the longest increasing path lying in the square $R_{0, n}$ with vertices $(0,0),(0, s),(s, 0)$ and (s, s). (Here the length of a path is simply the number of the 'Poisson' points on that path. So the length of a path is always an integer number.) It is now obvious that $\left(X_{1}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ forms an increasing path in the square $R_{0, Z_{n}}$. Therefore, we have $L_{0, Z_{n}} \geq n$. Using the result in Example 6.5.2., we have

$$
\gamma=\lim _{n \rightarrow \infty} \frac{L_{0, Z_{n}}}{Z_{n}} \geq \lim _{n \rightarrow \infty} \frac{n}{Z_{n}}=\sqrt{\frac{8}{\pi}} .
$$

Exercise (6.5.4.). Let π_{n} be a random permutation of $\{1, \ldots, n\}$ and let J_{k}^{n} be the number of subsets of $\{1, \ldots, n\}$ of size k so that the associated $\pi_{n}(j)$ form an increasing subsequence. Compute $E J_{k}^{n}$ and take $k \sim \alpha n^{1 / 2}$ to conclude that in Example 6.5.2. $\gamma \leq e$.

Proof. For each $k, n \in \mathbb{N}$ with $k \leq n$, denote by $\mathcal{H}_{n, k}$ the collection of all subset of $\{1, \ldots, n\}$ with length k. For each $h \in \mathcal{H}_{n, k}$, we write $h=\left\{h_{i}: i=1, \ldots, k\right\}$ such that $0<h_{1}<\cdots<h_{k} \leq n$. There exists a constant $C>0$ such that for each $0<k<n$, we have

$$
\begin{aligned}
& E J_{k}^{n}=\sum_{h \in \mathcal{H}_{n, k}} P\left(\left(\pi_{n}\left(h_{i}\right)\right)_{i=1}^{k} \text { is increasing }\right)=\# \mathcal{H}_{n, k} \cdot \frac{C_{n}^{k} \cdot(n-k)!}{n!} \\
& =\frac{n!}{k!(n-k)!k!} \leq \frac{n^{k}}{(k!)^{2}} \leq C\left(\frac{e \sqrt{n}}{k}\right)^{2 k}, \quad \text { by Stirling formula. }
\end{aligned}
$$

Therefore if $k \sim \alpha n^{1 / 2}$ with $\alpha>e$, we have

$$
\sum_{n \in \mathbb{N}} E J_{k}^{n}<\infty
$$

Now let $l\left(\pi_{n}\right)$ be the length of the longest increasing sequence in the random permutation π_{n}, then

$$
\begin{aligned}
& \sum_{n \in \mathbb{N}} P\left(\frac{l\left(\pi_{n}\right)}{n^{1 / 2}} \geq \alpha\right)=\sum_{n \in \mathbb{N}} P\left(J_{\left\lceil\alpha n^{1 / 2}\right\rceil}^{n} \geq 1\right) \\
& \leq \sum_{n \in \mathbb{N}} E J_{\left\lceil\alpha n^{1 / 2}\right\rceil}^{n}<\infty
\end{aligned}
$$

This, and B-C lemma says that

$$
\gamma:=\lim _{n \rightarrow \infty} \frac{l\left(\pi_{n}\right)}{n^{1 / 2}} \leq \alpha, \quad \text { almost surely. }
$$

Finally, since α is chosen arbitrarily in (e, ∞), we have that $\gamma \leq e$ almost surely.
Exercise (6.5.5.). Let $\phi(\theta)=E \exp \left(-\theta t_{i}\right)$ and

$$
Y_{n}=(\mu \phi(\theta))^{-n} \sum_{i=1}^{Z_{n}} \exp \left(-\theta T_{n}(i)\right)
$$

where the sum is over individuals in generation n and $T_{n}(i)$ is the i th person's birth time. Show that Y_{n} is a nonnegative martingale and use this to conclude that if $\exp (-\theta a) / \mu \phi(\theta)>$ 1 , then $P\left(X_{0, n} \leq a n\right) \rightarrow 0$. A little thought reveals that this bound is the same as the answer in the answer in the last exercise.

Proof. Let \mathcal{F}_{n} be the filtration which contains all the information about the birth times of all the persons whose generations are smaller than or equal to n. Denote by $Z_{1}^{(n, i)}$ the number of children of i-th particle in generation n. Denote by $T_{1}^{(n, i)}(k)$ the birth time of the k-th child of the i-th particle in generation n. It can be verified from the independence of the birth of each particles that

$$
\begin{aligned}
& E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[(\mu \phi(\theta))^{-(n+1)} \sum_{i=1}^{Z_{n}} \sum_{k=1}^{Z_{1}^{(n, i)}} \exp \left(-\theta T_{1}^{(n, i)}(k)\right) \mid \mathcal{F}_{n}\right] \\
& =(\mu \phi(\theta))^{-(n+1)} \sum_{i=1}^{Z_{n}} \exp \left(-\theta T_{n}(i)\right) E\left[\sum_{k=1}^{Z_{1}^{(n, i)}} \exp \left(-\theta\left(T_{1}^{(n, i)}(k)-T_{n}(i)\right)\right) \mid \mathcal{F}_{n}\right] \\
& =(\mu \phi(\theta))^{-(n+1)} \sum_{i=1}^{Z_{n}} \exp \left(-\theta T_{n}(i)\right) E\left[\sum_{k=1}^{Z_{1}} \exp \left(-\theta T_{1}(k)\right)\right]=Y_{n} .
\end{aligned}
$$

This says that Y_{n} is a non-negative martingale. Therefore, it has a finite almost sure limit, say Y_{∞}. Observe that, we always have

$$
\frac{e^{-\theta X_{0, n}}}{(\mu \phi(\theta))^{n}} \leq \frac{1}{(\mu \phi(\theta))^{n}} \sum_{i=1}^{Z_{n}} \exp \left(-\theta T_{n}(i)\right)
$$

Therefore, if $\exp (-\theta a) / \mu \phi(\theta)>1$, then

$$
\begin{aligned}
P\left(X_{0, n} \leq a n\right) & =P\left(e^{-\theta X_{0, n}} \geq e^{-\theta a n}\right) \leq \frac{E e^{-\theta X_{0, n}}}{e^{-\theta a n}} \\
& \leq \frac{E\left[\sum_{i=1}^{Z_{n}} e^{-\theta T_{n}(i)}\right]}{\mu^{n} \phi(\theta)^{n}}\left(\frac{\mu \phi(\theta)}{e^{-\theta a}}\right)^{n}=Y_{n}(1-\epsilon)^{n} \rightarrow 0 .
\end{aligned}
$$

Exercise (7.1.1.). Given $s<t$ fine $P(B(s)>0, B(t)>0)$.
Proof.

$$
\begin{aligned}
& P(B(s)>0, B(t)>0)=P(B(s)>0, B(t)-B(s)>-B(s)) \\
& =\int_{0}^{\infty} d x \int_{-x}^{\infty} \frac{1}{\sqrt{2 \pi s}} \cdot e^{-\frac{x^{2}}{2 s}} \frac{1}{\sqrt{2 \pi(t-s)}} e^{-\frac{y^{2}}{2(t-s)}} d y \\
& =\frac{1}{4}+\frac{1}{2 \pi} \arcsin \sqrt{\frac{s}{t}} .
\end{aligned}
$$

Exercise (7.1.2.). Find $E\left(B_{1}^{2} B_{2} B_{3}\right)$

$$
\begin{aligned}
& E\left[B_{1}^{2} B_{2} B_{3}\right]=E\left[B_{1}^{2}\left(B_{1}+\left(B_{2}-B_{1}\right)\right)\left(B_{1}+\left(B_{2}-B_{1}\right)+\left(B_{3}-B_{2}\right)\right)\right] \\
& =E\left[B_{1}^{4}\right]+E\left[B_{1}^{2}\left(B_{2}-B_{1}\right)^{2}\right] \\
& =E\left[B_{1}^{4}\right]+E\left[B_{1}^{2}\right] E\left[\left(B_{2}-B_{1}\right)^{2}\right] \\
& =4 .
\end{aligned}
$$

Exercise (7.1.4.). $A \in \mathcal{F}_{o}$ if and only if there is a sequence of times t_{1}, t_{2}, \cdots in $[0, \infty)$ and a $B \in \mathcal{R}^{\{1,2, \cdots\}}$ so that $A=\left\{w:\left(w\left(t_{1}\right), w\left(t_{2}\right), \cdots\right) \in B\right\}$. In words, all events in \mathcal{F}_{o} depend on only countably many coordinates.
Proof. Let $\Omega=\mathbb{R}^{[0, \infty)}$. Define coordinate process:

$$
X^{\omega}(t)=\omega(t), \forall \omega \in \Omega, t \geq 0
$$

Denote by

$$
\mathcal{I}=\left\{I=\left(t_{k}\right)_{k \in \mathbb{N}}: \forall k \in \mathbb{N}, t_{k} \in[0, \infty)\right\}
$$

the collection of all the time sequence. For each time sequence $I=\left(t_{k}\right)_{k \in \mathbb{N}} \in \mathcal{I}$, define a map ψ_{I} from Ω to $\mathbb{R}^{\mathbb{N}}$ such that

$$
\psi_{I}(\omega):=\left(X^{\omega}\left(t_{k}\right)\right)_{k \in \mathbb{N}} .
$$

Define $[I]:=\left\{t_{k}: k \in \mathbb{N}\right\}$. Consider a σ-field on Ω given by $\mathcal{F}_{[I]}=\sigma(X(t): t \in[I])$. Then by standard measure theory, we have

$$
\begin{equation*}
\mathcal{F}_{[I]}=\left\{\psi_{I}^{-1} B: B \in \mathcal{R}^{\mathbb{N}}\right\} . \tag{0.1}
\end{equation*}
$$

Define the family of subsets of Ω by

$$
\mathcal{G}:=\left\{A \subset \Omega: \exists I \in \mathcal{I}, B \in \mathcal{R}^{\mathbb{N}} \text { s.t. } A=\psi_{I}^{-1} B\right\} .
$$

What we needs to proof for this exercise is that $\mathcal{G} \subset \mathcal{F}_{o}$ and $\mathcal{F}_{o} \subset \mathcal{G}$.

1. We claim that $\mathcal{G} \subset \mathcal{F}_{o}$. In fact for each $A \in \mathcal{G}$, there is an $I \in \mathcal{I}$ and $B \in \mathcal{R}^{\mathbb{N}}$ such that $A=\psi_{I}^{-1} B$. Therefore $A \in \mathcal{F}_{[I]} \subset \mathcal{F}_{o}$.
2. We claim that \mathcal{G} is a σ-field. In fact, if $\left(A_{k}\right)_{k \in \mathbb{N}}$ is a sequence of elements in \mathcal{G}, then there exists a sequence of \mathcal{I}-elements $\left(I_{k}\right)_{k \in \mathbb{N}}$ and a sequence of $\mathcal{R}^{\mathbb{N}}$-elements $\left(B_{k}\right)_{k \in \mathbb{N}}$ such that

$$
A_{k}=\psi_{I_{k}}^{-1} B_{k}, \quad k \in \mathbb{N} .
$$

We also have that there exists a $J \in \mathcal{I}$ such that

$$
[J]=\bigcup_{k \in \mathbb{N}}\left[I_{k}\right]
$$

simply because the right hand side is countable. Now, from (0.1), we have $\bigcup_{k \in \mathbb{N}} A_{k} \in$ $\sigma\left(\mathcal{F}_{\left[I_{k}\right]}: k \in \mathbb{N}\right)=\mathcal{F}_{[J]} \subset \mathcal{G}$. The rest of this claim is elementary.
3. We claim that $\mathcal{F}_{o} \subset \mathcal{G}$. In fact, for each $t \in[0, \infty)$, we have $X(t)$ is \mathcal{G}-measurable simply because $\mathcal{F}_{t} \subset \mathcal{G}$.
Exercise (7.1.5.). Looking at the proof of Theorem 7.1.6. carefully shows that if $\gamma>5 / 6$ then B_{t} is not Hölder continuous with exponent γ at any point in $[0,1]$. Show, by considering k increments instead of 3 , that the last conclusion is true for all $\gamma>1 / 2+1 / k$.
Proof. Fix a constant $C<\infty$. Let $A_{n}=\left\{w: \exists s \in[0,1]\right.$ s.t. $\forall|t-s| \leq \frac{k}{n},\left|B_{t}-B_{s}\right| \leq$ $\left.C|t-s|^{\gamma}\right\}$. For $1 \leq i \leq n-k+1$, let

$$
Y_{i, n}=\max \left\{\left|B\left(\frac{i+j}{n}\right)-B\left(\frac{i+j-1}{n}\right)\right|: j=0,1, \ldots, k-1\right\} .
$$

and

$$
B_{n}=\left\{\text { at least one } Y_{k, n} \leq \frac{(2 k-1) C}{n^{\gamma}}\right\} .
$$

Then it can be verified that $A_{n} \subset B_{n}$. Therefore

$$
\begin{aligned}
P\left(A_{n}\right) & \leq P\left(B_{n}\right) \leq n P\left(\left|B\left(\frac{1}{n}\right)\right| \leq \frac{(2 k-1) C}{n^{\gamma}}\right)^{k} \\
& \leq n P\left(|B(1)| \leq \frac{(2 k-1) C}{n^{\gamma-\frac{1}{2}}}\right)^{k} \\
& \leq n\left(\frac{2(2 k-1) C}{\sqrt{2 \pi} n^{\gamma-\frac{1}{2}}}\right)^{k} \rightarrow 0 .
\end{aligned}
$$

Rest is the same as Theorem 7.1.6.
Exercise (7.1.6.). Fix t and let $\Delta_{m, n}=B\left(t m 2^{-n}\right)-B\left(t(m-1) 2^{-n}\right)$. Compute

$$
E\left[\left(\sum_{m \leq 2^{n}} \Delta_{m, n}^{2}-t\right)^{2}\right]
$$

and use Borel-Cantelli to conclude that $\sup _{m \leq 2^{n}} \Delta_{m, n}^{2} \rightarrow t$ a.s. as $n \rightarrow \infty$.
Proof.

$$
\begin{aligned}
& E\left[\left(\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}-t\right)^{2}\right]=\sum_{m=1}^{2^{n}} E\left(\Delta_{m, n}^{2}-\frac{t}{2^{n}}\right)^{2} \\
& =2^{n} E\left[\left(B\left(\frac{t}{2^{n}}\right)-\frac{t}{2^{n}}\right)^{2}\right]=t^{2} 2^{-n+1}
\end{aligned}
$$

Therefore,

$$
P\left(\left|\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}-t\right|>\frac{1}{n}\right) \leq n^{2} t^{2} 2^{-n+1} .
$$

This says that

$$
P\left(\left|\sum_{m=1}^{2^{n}} \Delta_{m, n}^{2}-t\right|>\frac{1}{n} i . o .\right)=0
$$

So we get the desired result by BC Lemma.
Exercise (7.2.1.). Let $T_{0}=\inf \left\{s>0: B_{s}=0\right\}$ and let $R=\inf \left\{t>1: B_{t}=0\right\} . R$ is for right or return. Use the Markov property at time 1 to get

$$
P_{x}(R>1+t)=\int p_{1}(x, y) P_{y}\left(T_{0}>t\right) d y
$$

Proof. Notice that $R=T_{0} \circ \theta_{1}+1$, therefore from Theorem 7.2.1. we have

$$
\begin{aligned}
& E_{x}\left(\mathbf{1}_{R(\cdot)>1+t} \mid \mathcal{F}_{1}^{+}\right)=E_{x}\left(\mathbf{1}_{\left(T_{0} \circ \theta_{1}\right)>t} \mid \mathcal{F}_{1}^{+}\right) \\
& =E_{x}\left[\left(\mathbf{1}_{T_{0}>t} \circ \theta_{1}\right)(\omega) \mid \mathcal{F}_{1}^{+}\right] \\
& =E_{B_{1}}\left[\mathbf{1}_{T_{0}>t}\right]=\int p_{1}(x, y) P_{y}\left(T_{0}>t\right) d y .
\end{aligned}
$$

Exercise (7.2.3.). Let $a<b$, then with probability one a is the limit of local maximum of B_{t} in (a, b). So the set of local maxima of B_{t} is almost surely a dense set. However, unlike the zero set it is countable.
Proof. From Theorem 7.2.5., we know that $T_{0}:=\inf \left\{t \in(a, b): B_{t}=B_{a}\right\}=a$ almost surely. This says that there exists a Ω_{0} with probability 1 such that for any $\omega \in \Omega_{0}$, there exists a strictly decreasing sequence of t_{n} with $B_{t_{n}}=B_{a}$ and $t_{n} \downarrow a$.
From Theorem 7.2.4., we know that $T_{1}:=\inf \left\{t \in(a, b): B_{t}>B_{a}\right\}=a$ almost surely. This says that there exists a Ω_{1} with probability 1 such that for any $\omega \in \Omega_{1}$, there exists a strictly decreasing sequence of s_{n} with $B_{s_{n}}>B_{a}$ and $s_{n} \downarrow a$.

Therefore, by chosen suitable subsequence, we know that for each $\omega \in \Omega_{0} \cap \Omega_{1}$, there exists a strictly decreasing sequence

$$
t_{1}>s_{1}>t_{2}>s_{2}>\ldots
$$

such that $B_{t_{k}}=B_{a}$ and $B_{s_{k}}>B_{a}$ for each $k \in \mathbb{N}$ and that both $t_{k} \downarrow a$ and $s_{k} \downarrow a$ hold. Now since the Brownian path are continuous, there will be a sequence of $\left(r_{k}\right)_{k \in \mathbb{N}}$ such that

$$
t_{1}>r_{1}>t_{2}>r_{2}>\ldots
$$

and each r_{k} is a local maxima. (Simply chose $r_{k} \in\left(t_{k}, t_{k+1}\right)$ such that $B_{r_{k}}=\max \left\{B_{r}\right.$: $\left.r \in\left[t_{k}, t_{k+1}\right]\right\}$.)
To summarize, for each $a<b$, we have almost surely that a is the limit of local maximum of B_{t} in (a, b). Therefore, almost surely, for each $q \in \mathbb{Q}$, we have q is in the closure of the set of local maximum of the Brownian path. In another word, almost surely, the set of local maxima of Brownian path is a dense set.

Exercise (7.2.4.). (i) Suppose $f(t)>0$ for all $t>0$. Use Theorem 7.2.3. to conclude that $\lim \sup _{t \downarrow 0} B(t) / f(t)=c, P_{0}$ a.s., where $c \in[0, \infty]$ is a constant. (ii) Show that if $f(t)=\sqrt{t}$ then $c=\infty$, so with probability one Brownian paths are not Hölder continuous of order $1 / 2$ at 0 .

Proof. (i). Define $C=\lim \sup _{t \downarrow 0} B(t) / f(t)$, then C is a random variable which is \mathcal{F}_{0}^{+}measurable. It can also be verified that C takes values in $[0, \infty]$ from Theorem 7.2.4., since there exists a sequence of strictly decreasing $t_{0} \downarrow 0$ with $B\left(t_{0}\right)>0$.

Now use Theorem 7.2.3. we know that C almost surely is a constant.
(ii). Define $X_{t}=t B(1 / t)$, then by Theorem 7.2.6. and Theorem 7.2.8 we have

$$
\begin{aligned}
& \limsup _{t \downarrow 0} \frac{B(t)}{\sqrt{t}}=\limsup _{t \downarrow 0} \frac{t X(1 / t)}{\sqrt{t}} \\
& =\limsup _{u \rightarrow \infty} \frac{X(u)}{\sqrt{u}}=\infty .
\end{aligned}
$$

Exercise (7.3.1.). Let A be an F_{σ}, that is, a countable union of closed sets. Show that $T_{A}=\inf \left\{t: B_{t} \in A\right\}$ is a stopping time.

Proof. Let

$$
A=\bigcup_{n \in \mathbb{N}} K_{n}
$$

where K_{n} are closed sets. Define closed sets $A_{n}=\bigcup_{k=1}^{n} K_{k}$, then we have

$$
A=\bigcup_{n \in \mathbb{N}} A_{n}
$$

Define $T_{\left(A_{n}\right)}=\inf \left\{t: B_{t} \in A_{n}\right\}$ which by Theorem 7.3.4. are stopping times. Now notice that

$$
\bigcup_{n \in \mathbb{N}}\left\{t: B_{t} \in A_{n}\right\}=\left\{t: B_{t} \in A\right\}
$$

So we must have

$$
T_{A}=\inf _{n \in \mathbb{N}} T_{\left(A_{n}\right)}=\lim _{n \rightarrow \infty} T_{\left(A_{n}\right)} .
$$

Theorem 7.3.2. then says that T_{A} is a stopping time.
Exercise (7.3.2.). If S and T are stopping times, then $S \wedge T=\min \{S, T\}, S \vee T=$ $\max \{S, T\}$, and $S+T$ are also stopping times. In particular, if $t \geq 0$, then $S \wedge t, S \vee t$ and $S+t$ are stopping times.
Proof. It can be verified that for each $t>0$,

$$
\{S \wedge T>t\}=\{S>t\} \cap\{T>t\} \in \mathcal{F}_{t}
$$

and

$$
\{S \vee T>t\}=\{S>t\} \cup\{T>t\} \in \mathcal{F}_{t}
$$

and

$$
\begin{aligned}
& \{S+T<t\}=\left\{\exists q_{1}, q_{2} \in \mathbb{Q}, \text { s.t. } S \leq q_{1}, T \leq q_{2}, q_{1}+q_{2}<t\right\} \\
& =\bigcup_{q_{1}, q_{2} \in \mathbb{Q}: 0 \leq q_{1}+q_{2} \leq t}\left\{S \leq q_{1}, T \leq q_{2}\right\} \in \mathcal{F}_{t} .
\end{aligned}
$$

Exercise (7.3.4.). Let S be a stopping time, let $A \in \mathcal{F}_{S}$, and let $R=S$ on A and $R=\infty$ on A^{c}. Show that R is a stopping time.
Proof. It can be verified that for each $t \in[0, \infty)$

$$
\{R \leq t\}=\{A, S \leq t\} \in \mathcal{F}_{t} .
$$

Exercise (7.3.5.). Let S and T be stopping times. $\{S<T\},\{S>T\}$, and $\{S=T\}$ are in \mathcal{F}_{S} (and in \mathcal{F}_{T}).

Proof. It can be verified that, for each $s>0$,

$$
\begin{aligned}
& \{S<T\} \cap\{S<s\}=\{\exists q \in \mathbb{Q} \cap(0, s), \text { s.t. } S<q<T\} \\
& =\bigcup_{q \in \mathbb{Q} \cap(0, s)}\{S<q, T>q\} \in \mathcal{F}_{s} .
\end{aligned}
$$

This shows that $\{S<T\} \in \mathcal{F}_{S}$. It can also be verified that, for each $s>0$,

$$
\begin{aligned}
& \{S>T\} \cap\{S<s\}=\{\exists q \in \mathbb{Q}, \text { s.t. } T<q<S<s\} \\
& =\bigcup_{q \in \mathbb{Q}: 0<q<s}(\{T<q\} \cup\{q<S<s\}) \in \mathcal{F}_{s} .
\end{aligned}
$$

This says that $\{S>T\} \in \mathcal{F}_{S}$. Finally

$$
\{S=T\}=(\{S>T\} \cup\{S<T\})^{c} \in \mathcal{F}_{S} .
$$

Exercise. Let $B_{t}=\left(B_{t}^{1}, B_{t}^{2}\right)$ be a two-dimensional Brownian motion starting from 0 . Let $T_{a}=\inf \left\{t: B_{t}^{2}=a\right\}$. Show that (1) $B^{1}\left(T_{a}\right), a \geq 0$ has independent (stationary) increments and (2) $B^{1}\left(T_{a}\right)={ }_{d} a B^{1}\left(T_{1}\right)$. Use this to conclude that $B^{1}\left(T_{a}\right)$ has a Cauchy distribution.

Proof. (1) Suppose that $0=a_{0}<a_{1}<\ldots a_{n}=u<a_{n+1}=v$. Thanks to induction, in order to show that increments $\left\{B^{1}\left(T_{\left(a_{(k+1)}\right)}\right)-B^{1}\left(T_{\left(a_{k}\right)}\right): k=0, \ldots, n\right\}$ are mutually independent with each other, we only have to show that the last increment $B^{1}\left(T_{v}\right)-$ $B^{1}\left(T_{u}\right)$ is independent of the previous increments $\left\{B^{1}\left(T_{\left(a_{(k+1)}\right)}\right)-B^{1}\left(T_{\left(a_{k}\right)}\right): k=0, \ldots, n-\right.$ 1\}. Notice that all $\left(T_{a}\right)_{a \geq 0}$ are stopping times of the two-dimensional Brownian motion $\left(B_{t}\right)_{t \geq 0}$ whose corresponding filtration will be denote by $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. Then it is easy to see that the previous increments $\left\{B^{1}\left(T_{\left(a_{k+1}\right)}\right)-B^{1}\left(T_{\left(a_{k}\right)}\right): k=0, \ldots, n-1\right\}$ are $\mathcal{F}_{\left(T_{u}\right)}$-measurable. So we only have to show that $B^{1}\left(T_{v}\right)-B^{1}\left(T_{u}\right)$ is independent of the σ-field $\mathcal{F}_{\left(T_{u}\right)}$. Now from the strong Markov property: for any bounded function f,

$$
\begin{aligned}
& E\left[f\left(B^{1}\left(T_{v}\right)-B^{1}\left(T_{u}\right)\right) \mid \mathcal{F}_{\left(T_{u}\right)}\right]=E_{\left(B^{1}\left(T_{u}\right), u\right)}\left[f\left(B^{1}\left(T_{v}\right)-B^{1}(0)\right)\right] \\
& =E_{(0,0)}\left[f\left(B^{1}\left(T_{v-u}\right)\right)\right] .
\end{aligned}
$$

The RHS is non-random, so $B^{1}\left(T_{v}\right)-B^{1}\left(T_{u}\right)$ is independent of the σ-field $\mathcal{F}_{\left(T_{u}\right)}$. The RHS also says that the distribution of $B^{1}\left(T_{u}\right)-B^{1}\left(T_{v}\right)$ is only dependent on $v-u$. This is the stationary part.
(2) Note that from (7.1.1.) we have for each $a>0$

$$
\left(X_{s}\right)_{s \geq 0}:=\left(a^{-1} B_{a^{2} s}\right)_{s \geq 0} \stackrel{d}{=}\left(B_{s}\right)_{s \geq 0}
$$

Therefore,

$$
\begin{aligned}
B^{1}\left(T_{a}\right) & =B^{1}\left(\inf \left\{t: B^{2}(t)=a\right\}\right)=B^{1}\left(a^{2} \inf \left\{s: a^{-1} B^{2}\left(a^{2} s\right)=1\right\}\right) \\
& =a \cdot X^{1}\left(\inf \left\{s: X_{s}^{2}=1\right\}\right) \stackrel{d}{=} a B^{1}\left(T_{1}\right)
\end{aligned}
$$

(3). From (1) we have that

$$
B^{1}\left(T_{n}\right) \stackrel{d}{=} \sum_{k=0}^{n} Y_{k}
$$

where $\left(Y_{k}\right)_{k \in \mathbb{Z}_{+}} \stackrel{d}{=}\left(B\left(T_{k+1}\right)-B\left(T_{k}\right)\right)_{k \in \mathbb{Z}_{+}}$are i.i.d. random variables. So now, we have that

$$
B^{1}\left(T_{1}\right) \stackrel{d}{=} n^{-1} B^{1}\left(T_{n}\right) \stackrel{d}{=} n^{-1} \sum_{k=1}^{n} Y_{k} \underset{n \rightarrow \infty}{\longrightarrow} B^{1}\left(T_{1}\right)
$$

Simply notice that $\left(B_{t}^{1}, B_{t}^{2}\right)_{t \geq 0} \stackrel{d}{=}\left(-B_{t}^{1}, B_{t}^{2}\right)$, one can verify that $\left(Y_{k}\right)_{k \in \mathbb{Z}_{+}}$actually have symmetric distribution. So $B^{1}\left(T_{1}\right)$ must have symmetric α-stable distribution with $\alpha=1$, which by its definition, is Cauchy distribution.

Exercise (7.4.2.). Use (7.2.3) to show that $R:=\inf \left\{t>1: B_{t}=0\right\}$ has probability density

$$
P_{0}(R-1 \in d t)=\frac{1}{\left(\pi t^{1 / 2}(1+t)\right)} d t
$$

Proof. According to (7.2.3.) and (7.4.6), we have

$$
\begin{aligned}
& P_{0}(R-1 \in d t)=\int_{y \in \mathbb{R}} p_{1}(0, y) P_{y}\left(T_{0} \in d t\right) d y \\
& =\int_{y \in \mathbb{R}} p_{1}(0, y) P_{0}\left(T_{y} \in d t\right) d y=\int_{y \in \mathbb{R}} p_{1}(0, y) \frac{1}{\sqrt{2 \pi s^{3}}} y e^{-\frac{y^{2}}{2 t}} d t d y \\
& =\frac{1}{\pi t^{1 / 2}(1+t)} d t .
\end{aligned}
$$

Exercise (7.4.4.). Let $A_{s, t}$ be the event Brownian motion has at least one zero in $[s, t]$. Show that $P_{0}\left(A_{s, t}\right)=\frac{2}{\pi} \arccos (\sqrt{s / t})$.
Proof. According to 7.4.6., note that

$$
\begin{aligned}
& P_{0}\left(A_{s, t}\right)=2 \int_{0}^{\infty} p_{s}(0, x) P_{x}\left(T_{0} \leq t-s\right) d x \\
& =2 \int_{0}^{\infty}(2 \pi s)^{-1 / 2 s} e^{-x^{2} / 2} \int_{0}^{t-s}\left(2 \pi u^{3}\right)^{-1 / 2} x e^{-x^{2} / 2 u} d u d x \\
& =\frac{2}{\pi} \arccos (\sqrt{s / t}) .
\end{aligned}
$$

Exercise (7.5.1.). Let $T=\inf \left\{B_{t} \notin(-a, a)\right\}$. Show that

$$
E_{0} \exp (-\lambda T)=1 / \cosh (a \sqrt{2 \lambda})
$$

Proof. According to the fact that $e^{\theta B_{t}-\frac{1}{2} \theta^{2} t}$ is a martingale, and the fact (from symmetry) that conditionally given $T, B_{T}=a$ or $B_{T}=-a$ with $1 / 2$ probability, we have that

$$
\begin{aligned}
1 & =E_{0}\left[e^{\theta B_{T}-\frac{1}{2} \theta^{2} T}\right] \\
& =E_{0}\left[e^{-\frac{1}{2} \theta^{2} T}\right] \cdot \frac{e^{\theta a}+e^{-\theta a}}{2} .
\end{aligned}
$$

This implies the desired result.
Exercise (7.5.3). Let $\sigma=\inf \left\{t: B_{t} \notin(a, b)\right\}$ and let $\lambda>0$.
(1) Use the strong Markov property to show

$$
E_{x} \exp -\lambda T_{a}=E_{x}\left(e^{-\lambda \sigma} ; T_{a}<T_{b}\right)+E_{x}\left(e^{-\lambda \sigma} ; T_{b}<T_{a}\right) E_{b} \exp \left\{-\lambda T_{a}\right\} .
$$

(2) Interchange the roles of a and b to get a second equation, use Theorem 7.5.7. to get

$$
E_{x}\left[e^{-\lambda \sigma} ; T_{a}<T_{b}\right]=\sinh (\sqrt{2 \lambda}(b-x)) / \sinh (\sqrt{2 \lambda}(b-a)) .
$$

Proof. (1). We have that $E_{x}\left[e^{-\lambda\left(T_{a}-\sigma\right)} \mid \mathcal{F}_{\sigma}\right]=E_{B_{\sigma}}\left[e^{-\lambda T_{a}}\right]$. Therefore,

$$
\begin{aligned}
& E_{x} e^{-\lambda T_{a}}=E_{x}\left[e^{-\lambda \sigma} E\left[e^{-\lambda\left(T_{a}-\sigma\right)} \mid \mathcal{F}_{\sigma}\right]\right] \\
& =E_{x}\left[e^{-\lambda \sigma}, T_{a}<T_{b}\right]+E_{x}\left[e^{-\lambda \sigma}, T_{a}>T_{b}\right] E_{b} e^{-\lambda T_{a}} .
\end{aligned}
$$

(2). Change a and b in the above, we have

$$
E_{x}\left[e^{-\lambda T_{b}}\right]=E_{x}\left[e^{-\lambda \sigma} ; T_{b}<T_{a}\right]+E_{x}\left[e^{-\lambda \sigma} ; T_{a}<T_{b}\right] E_{a}\left[e^{-\lambda T_{b}}\right] .
$$

According to Theorem 7.5.7., we have

$$
\begin{aligned}
E_{x}\left[e^{-\lambda T_{a}}\right] & =\exp (-(a-x) \sqrt{2 \lambda}) ; \\
E_{x}\left[e^{-\lambda T_{b}}\right] & =\exp (-(x-b) \sqrt{2 \lambda}) ; \\
E_{a}\left[e^{-\lambda T_{b}}\right] & =E_{b}\left[e^{-\lambda T_{a}}\right]=\exp (-(b-a) \sqrt{2 \lambda}) .
\end{aligned}
$$

From those, we can obtain the desired result by solving a linear equation.
Exercise (7.5.5.). Find a martingale of the form $B_{t}^{6}-c_{1} t B_{t}^{4}+c_{2} t^{2} B_{t}^{2}-c_{3} t^{3}$ and use it to compute the third moment of $T=\inf \left\{t: B_{t} \neq(-a, a)\right\}$.

Proof. It can be verified that when $c_{1}=15, c_{2}=45, c_{3}=15$, function

$$
u(x, t):=x^{6}-c_{1} t x^{4}+c_{2} t^{2} x^{2}-c_{3} t^{3}
$$

solves equations

$$
\frac{\partial u}{\partial t}+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

Therefore $B_{t}^{6}-c_{1} t B_{t}^{4}+c_{2} t^{2} B_{t}^{2}-c_{3} t^{3}$ is a martingale. Now it can be calculated from bounded convergence and monotone convergence that

$$
\begin{aligned}
E\left[T^{3}\right] & =\lim _{t \rightarrow \infty} E\left[(T \wedge t)^{3}\right] \\
& =\lim _{t \rightarrow \infty} c_{3}^{-1} E\left[B_{T \wedge t}^{6}-c_{1}(T \wedge t) B_{T \wedge t}^{4}+c_{2}(T \wedge t)^{2} B_{T \wedge t}^{2}\right] \\
& =c_{3}^{-1} E\left[a^{6}-c_{1} T a^{4}+c_{2} T^{2} a^{2}\right]=\frac{61}{15} a^{6} .
\end{aligned}
$$

Exercise (7.6.5.). Show that $B_{t}^{3}-\int_{0}^{t} 3 B_{s} d s$ is a martingale.
Proof. According to Ito's formula,

$$
d\left(B_{t}^{3}-\int_{0}^{t} 3 B_{s} d s\right)=3 B_{t}^{2} d B_{t}+\frac{1}{2} \cdot 6 B_{t} d t-3 B_{t} d t=3 B_{t}^{2} d B_{t} .
$$

This and Theorem 7.6.4. imply that $B_{t}^{3}-\int_{0}^{t} 3 B_{s} d s$ is a martingale.

Exercise (7.6.3.). Let $\beta_{2 k}(t)=E_{0} B_{t}^{2 k}$. Use Ito's formula to relate $\beta_{2 k}(t)$ to $\beta_{2 k-2}(t)$ and use this relationship to derive a formula for $\beta_{2 k}(t)$.

Proof. According to Ito's formula:

$$
d B_{t}^{2 k}=2 k B_{t}^{2 k-1} d B_{t}+\frac{1}{2} 2 k(2 k-1) B_{t}^{2 k-2} d t .
$$

Therefore,

$$
\begin{aligned}
& \beta_{2 k}(t)=E\left[B_{t}^{2 k}\right]=E\left[\int_{0}^{t} 2 k B_{s}^{2 k-1} d B_{s}+\frac{2 k(2 k-1)}{2} \int_{0}^{t} B_{s}^{2 k-2} d s\right] \\
& =\frac{2 k(2 k-1)}{2} \int_{0}^{t} E\left[B_{s}^{2 k-2}\right] d s=\frac{2 k(2 k-1)}{2} \int_{0}^{t} E\left[B_{s}^{2 k-2}\right] d s \\
& =\frac{2 k(2 k-1)}{2} \int_{0}^{t} \beta_{2(k-1)}(s) d s .
\end{aligned}
$$

Now, it is trivial to verify that

$$
\beta_{2 k}(t)=(2 k-1)!!\cdot t^{k} .
$$

Exercise (7.6.5.). Apply Ito's formula to (d-dimensional) $\left|B_{t}\right|^{2}$. Use this to conclude that $E_{0}\left|B_{t}\right|^{2}=t d$.

Proof. According to Ito's formula Theorem 7.6.7., let $f(x)=|x|^{2}, x \in \mathbb{R}^{d}$, we have

$$
\begin{aligned}
& d f\left(B_{t}\right)=\sum_{k=1}^{d} D_{k} f\left(B_{s}\right) d B_{s}^{(k)}+\frac{1}{2} \sum_{k=1}^{d} D_{k k} f\left(B_{s}\right) d s \\
& =\sum_{k=1}^{d} 2 B_{s}^{(k)} d B_{s}^{(k)}+\sum_{k=1}^{d} d s
\end{aligned}
$$

Therefore, thanks to Theorem 7.6.4.,

$$
E_{0}\left[\left|B_{t}\right|^{2}\right]=E_{0}\left[2 \sum_{k=1}^{d} \int_{0}^{t} B_{s}^{(k)} d B_{s}^{(k)}+\sum_{k=1}^{d} \int_{0}^{t} d s\right]=t d .
$$

Exercise (8.1.1.). (In the context of the proof of Theorem 8.1.1.,) use Exercise 7.5.4. to conclude that $E\left(T_{U, V}^{2}\right) \leq 4 E X^{4}$.

Proof. Recall the Exercise 7.5.4. which says that if $T_{a, b}=\inf \left\{t: B_{t} \notin(a, b)\right\}$ where $a<0<b$, then $E T^{2} \leq 4 E\left(B_{T}^{4}\right)$ and $E B_{T}^{4} \leq 36 E T^{2}$. Now, noting that for each $a<0<b$ $T_{a, b}, B_{\left(T_{a, b}\right)} \in \mathcal{F}^{B}$ is independent of U and V, and that from Theorem 8.1.1 $B_{\left(T_{U, V}\right)} \stackrel{d}{=} X$, we have

$$
E\left[T_{U, V}^{2}\right]=\int E_{0}\left[T_{u, v}^{2}\right] P(U \in d u, V \in d v)
$$

$$
\leq 4 \int E_{0}\left[B_{T_{u, v}}^{4}\right] P(U \in d u, V \in d v)=4 E_{0}\left[B_{\left(T_{U, V}\right)}^{4}\right]=4 E X^{4}
$$

Exercise (8.1.2.). Suppose S_{n} is one-dimensional simple random walk and let

$$
R_{n}=1+\max _{m \leq n} S_{m}-\min _{m \leq n} S_{m}
$$

be the number of points visited by time n. Show that

$$
R_{n} / \sqrt{n} \xrightarrow[t \rightarrow \infty]{d} \text { something. }
$$

Proof. For each continuous function f on $[0,1]$, consider functional $R f:=\sup _{t \in[0,1]} f(t)-$ $\inf _{t \in[0,1]} f(t)$. Then R is a continuous map from $C[0,1]$ to \mathbb{R}. Now Theorem 8.1.5. says that

$$
R(S(n \cdot) / \sqrt{n}) \xrightarrow[n \rightarrow \infty]{d} R B \text {, }
$$

where B is a Brownian motion on $[0,1]$, and therefore $R B$ is a random variable. Finally, note that

$$
\left(R_{n}-1\right) / \sqrt{n}=R(S(n \cdot) / \sqrt{n}), \quad n \geq 0
$$

Zhenyao Sun, School of Mathematical Sciences, Peking University, Beijing, P. R. China, 100871

Email address: zhenyao.sun@pku.edu.cn

