On the regularization of reaction-diffusion equations by the Wright-Fisher white noise

Zhenyao Sun

Based on joint ongoing work with Clayton Barnes and Leonid Mytnik
Chinese Academy of Science
Nov, 2023

Regularization by Noise

- Consider the differential equation:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\left|X_{t}\right|^{\alpha} \mathrm{d} t, \quad t>0 \\
X_{0}=0
\end{array}\right.
$$

where $\alpha \in(0,1)$.

Regularization by Noise

- Consider the differential equation:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\left|X_{t}\right|^{\alpha} \mathrm{d} t, \quad t>0 \\
X_{0}=0
\end{array}\right.
$$

where $\alpha \in(0,1)$.

- The drift $b(x)=|x|^{\alpha}$ is not Lipschitz at 0
\Longrightarrow non-uniqueness of the solutions.

Regularization by Noise

- Consider the differential equation:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\left|X_{t}\right|^{\alpha} \mathrm{d} t, \quad t>0 \\
X_{0}=0
\end{array}\right.
$$

where $\alpha \in(0,1)$.

- The drift $b(x)=|x|^{\alpha}$ is not Lipschitz at 0
\Longrightarrow non-uniqueness of the solutions.
- One solution $X_{t} \equiv 0$.

Regularization by Noise

- Consider the differential equation:

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\left|X_{t}\right|^{\alpha} \mathrm{d} t, \quad t>0 \\
X_{0}=0
\end{array}\right.
$$

where $\alpha \in(0,1)$.

- The drift $b(x)=|x|^{\alpha}$ is not Lipschitz at 0
\Longrightarrow non-uniqueness of the solutions.
- One solution $X_{t} \equiv 0$.
- The other solution $X_{t}=C_{\alpha} t^{\frac{1}{1-\alpha}}, t \geq 0$.

Pathwise Regularization by Additive Noise

Zvonkin (1974), Veretennikov (1979)

Suppose that

- b is a bounded measurable function, and
- B is a Brownian motion,

Pathwise Regularization by Additive Noise

Zvonkin (1974), Veretennikov (1979)

Suppose that

- b is a bounded measurable function, and
- B is a Brownian motion,
then there exists a unique strong solution to SDE

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}, \quad t>0 \\
X_{0}=x \in \mathbb{R}
\end{array}\right.
$$

Pathwise Regularization by Additive Noise

Zvonkin (1974), Veretennikov (1979)

Suppose that

- b is a bounded measurable function, and
- B is a Brownian motion,
then there exists a unique strong solution to SDE

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\mathrm{d} B_{t}, \quad t>0 \\
X_{0}=x \in \mathbb{R}
\end{array}\right.
$$

- Zvonkin's transform is not available for SPDE.

Weak Regularization by Multiplicative Noise

- Weak uniqueness for one-dimensional SDE can be analyzed by Feller's test.

Weak Regularization by Multiplicative Noise

- Weak uniqueness for one-dimensional SDE can be analyzed by Feller's test.
- For example, consider non-negative solution to the SDE

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sqrt{2 X_{t}} \mathrm{~d} B_{t} ; \quad X_{0}=0
$$

where, with $\alpha>0$ and $\beta>0$,

$$
b(x):=\int_{e}^{\infty} \frac{1-e^{-x u}}{\alpha u(\log u)^{1+\beta}} \mathrm{d} u, \quad x \geq 0
$$

Weak Regularization by Multiplicative Noise

- Weak uniqueness for one-dimensional SDE can be analyzed by Feller's test.
- For example, consider non-negative solution to the SDE

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sqrt{2 X_{t}} \mathrm{~d} B_{t} ; \quad X_{0}=0
$$

where, with $\alpha>0$ and $\beta>0$,

$$
b(x):=\int_{e}^{\infty} \frac{1-e^{-x u}}{\alpha u(\log u)^{1+\beta}} \mathrm{d} u, \quad x \geq 0
$$

Clement (2019)

- If $\beta>1$, the weak uniqueness holds;
- If $\beta=1$ and $\alpha \geq 1$, the weak uniqueness holds;

Weak Regularization by Multiplicative Noise

- Weak uniqueness for one-dimensional SDE can be analyzed by Feller's test.
- For example, consider non-negative solution to the SDE

$$
\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\sqrt{2 X_{t}} \mathrm{~d} B_{t} ; \quad X_{0}=0
$$

where, with $\alpha>0$ and $\beta>0$,

$$
b(x):=\int_{e}^{\infty} \frac{1-e^{-x u}}{\alpha u(\log u)^{1+\beta}} \mathrm{d} u, \quad x \geq 0
$$

Clement (2019)

- If $\beta>1$, the weak uniqueness holds;
- If $\beta=1$ and $\alpha \geq 1$, the weak uniqueness holds;
- If $\beta=1$ and $\alpha<1$, the weak uniqueness fails;
- If $\beta<1$, the weak uniqueness fails.

Weak Regularization by Multiplicative Noise

- The shape of the "critical" drift $b(x)$:

Wright-Fisher SPDE

- Reaction-diffusion equations with Wright-Fisher white noise

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

Wright-Fisher SPDE

- Reaction-diffusion equations with Wright-Fisher white noise

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

- The noise coefficient $\sqrt{|u(1-u)|}$
- is non-Lipshitz at $u=0$ and $u=1$; and

Wright-Fisher SPDE

- Reaction-diffusion equations with Wright-Fisher white noise

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

- The noise coefficient $\sqrt{|u(1-u)|}$
- is non-Lipshitz at $u=0$ and $u=1$; and
- is degenerate at $u=0$ and $u=1$.

Wright-Fisher SPDE

- Reaction-diffusion equations with Wright-Fisher white noise

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

- The noise coefficient $\sqrt{|u(1-u)|}$
- is non-Lipshitz at $u=0$ and $u=1$; and
- is degenerate at $u=0$ and $u=1$.
- Challenging open problems:
- the strong uniqueness?

Wright-Fisher SPDE

- Reaction-diffusion equations with Wright-Fisher white noise

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

- The noise coefficient $\sqrt{|u(1-u)|}$
- is non-Lipshitz at $u=0$ and $u=1$; and
- is degenerate at $u=0$ and $u=1$.
- Challenging open problems:
- the strong uniqueness?
- the solution theory in higher dimensions?

Wright-Fisher SPDE

- Reaction-diffusion equations with Wright-Fisher white noise

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

- The noise coefficient $\sqrt{|u(1-u)|}$
- is non-Lipshitz at $u=0$ and $u=1$; and
- is degenerate at $u=0$ and $u=1$.
- Challenging open problems:
- the strong uniqueness?
- the solution theory in higher dimensions?
- Question: How strong is the regularization effect of the Wright-Fisher noise?

Motivation

- Shiga (1988): Wright-Fisher SPDE = scaling limit of "genetic stepping stone model."
- $b(u)=c_{1}(1-u)-c_{2} u+c_{3} u(1-u)$.
- $c_{1} \geq 0$ and $c_{2} \geq 0$ are mutation rates.
- $c_{3} \in \mathbb{R}$ is the selection rate.

Motivation

- Shiga (1988): Wright-Fisher SPDE = scaling limit of "genetic stepping stone model."
- $b(u)=c_{1}(1-u)-c_{2} u+c_{3} u(1-u)$.
- $c_{1} \geq 0$ and $c_{2} \geq 0$ are mutation rates.
- $c_{3} \in \mathbb{R}$ is the selection rate.
- Mueller-Tribe (1995), Durrett-Fan (2016)...: Wright-Fisher SPDE $=$ scaling limit of (biased) voter model.
- $b(u)=c_{3} u(1-u)$.
- Unbiased $\Longrightarrow c_{3}=0$.

Motivation

- Shiga (1988): Wright-Fisher SPDE = scaling limit of "genetic stepping stone model."
- $b(u)=c_{1}(1-u)-c_{2} u+c_{3} u(1-u)$.
- $c_{1} \geq 0$ and $c_{2} \geq 0$ are mutation rates.
- $c_{3} \in \mathbb{R}$ is the selection rate.
- Mueller-Tribe (1995), Durrett-Fan (2016)...: Wright-Fisher SPDE $=$ scaling limit of (biased) voter model.
- $b(u)=c_{3} u(1-u)$.
- Unbiased $\Longrightarrow c_{3}=0$.
- Brunet-Derrida (1997), Mueller-Mytnik-Quastel (2011)...: The FKPP equation with Wright-Fisher white noise is related to the Brunet-Derrida particle systems.

Existence

Shiga (1994)

If $f \in \mathcal{C}(\mathbb{R},[0,1]), b(\cdot)$ is continuous and $b(0) \geq 0 \geq b(1)$, then there exists a $\mathcal{C}\left(\mathbb{R}_{+}, \mathcal{C}(\mathbb{R},[0,1])\right)$-valued weak solution to

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+b(u)+\sqrt{|u(1-u)|} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

- We assume the the red part throughout this talk.

Weak Uniqueness: Duality Method

Shiga (1988)

The weak uniqueness holds provided
$b(u)=c_{1}(1-u)-c_{2} u+c_{3} u(1-u)$ where $c_{1} \geq 0, c_{2} \geq 0$ and $c_{3} \in \mathbb{R}$.

Weak Uniqueness: Duality Method

Shiga (1988)

The weak uniqueness holds provided
$b(u)=c_{1}(1-u)-c_{2} u+c_{3} u(1-u)$ where $c_{1} \geq 0, c_{2} \geq 0$ and $c_{3} \in \mathbb{R}$.

Athreya-Tribe (2000)
The weak uniqueness holds provided

$$
b(u)=\sum_{k=0}^{\infty} b_{k} u^{k}, \text { and } b_{1}<-\sum_{k=0, k \neq 1}^{\infty}\left|b_{k}\right| R^{k-1} \text { for some } R>1
$$

Weak Uniqueness: Duality Method

Shiga (1988)

The weak uniqueness holds provided
$b(u)=c_{1}(1-u)-c_{2} u+c_{3} u(1-u)$ where $c_{1} \geq 0, c_{2} \geq 0$ and $c_{3} \in \mathbb{R}$.

Athreya-Tribe (2000)
The weak uniqueness holds provided

$$
b(u)=\sum_{k=0}^{\infty} b_{k} u^{k}, \text { and } b_{1}<-\sum_{k=0, k \neq 1}^{\infty}\left|b_{k}\right| R^{k-1} \text { for some } R>1
$$

- Both Shiga (1988) and Athreya-Tribe (2000) used the duality argument.

Duality

- Suppose that $\left(u_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ is a $[0,1]$-valued random field.

Duality

- Suppose that $\left(u_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ is a $[0,1]$-valued random field.
- Suppose that $\left\{X_{t}^{i}: i \in I_{t}, t \geq 0\right\}$ is a particle system in \mathbb{R} where I_{t} is the index of all the living particles at time t.

Duality

- Suppose that $\left(u_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ is a $[0,1]$-valued random field.
- Suppose that $\left\{X_{t}^{i}: i \in I_{t}, t \geq 0\right\}$ is a particle system in \mathbb{R} where I_{t} is the index of all the living particles at time t.
- Suppose that the random field u and the particle system X are independent.

Duality

- Suppose that $\left(u_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ is a $[0,1]$-valued random field.
- Suppose that $\left\{X_{t}^{i}: i \in I_{t}, t \geq 0\right\}$ is a particle system in \mathbb{R} where I_{t} is the index of all the living particles at time t.
- Suppose that the random field u and the particle system X are independent.
- We say the moment duality holds between u and X if

$$
\mathbb{E}\left[\prod_{i \in I_{0}} u_{t}\left(X_{0}^{i}\right)\right]=\mathbb{E}\left[\prod_{i \in I_{t}} u_{0}\left(X_{t}^{i}\right)\right], \quad t \geq 0
$$

Duality

- Suppose that $\left(u_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ is a $[0,1]$-valued random field.
- Suppose that $\left\{X_{t}^{i}: i \in I_{t}, t \geq 0\right\}$ is a particle system in \mathbb{R} where I_{t} is the index of all the living particles at time t.
- Suppose that the random field u and the particle system X are independent.
- We say the moment duality holds between u and X if

$$
\mathbb{E}\left[\prod_{i \in I_{0}} u_{t}\left(X_{0}^{i}\right)\right]=\mathbb{E}\left[\prod_{i \in I_{t}} u_{0}\left(X_{t}^{i}\right)\right], \quad t \geq 0
$$

- For example, we can take $\left\{\left(X_{t}^{i}\right)_{t \geq 0}: i=1, \ldots, n\right\}$ to be a sequence of independent Brownian motions, and u to satisfy the heat equation $\partial_{t} u=\frac{\Delta}{2} u$.

Duality

- Suppose that $\left(u_{t}(x)\right)_{t \geq 0, x \in \mathbb{R}}$ is a $[0,1]$-valued random field.
- Suppose that $\left\{X_{t}^{i}: i \in I_{t}, t \geq 0\right\}$ is a particle system in \mathbb{R} where I_{t} is the index of all the living particles at time t.
- Suppose that the random field u and the particle system X are independent.
- We say the moment duality holds between u and X if

$$
\mathbb{E}\left[\prod_{i \in I_{0}} u_{t}\left(X_{0}^{i}\right)\right]=\mathbb{E}\left[\prod_{i \in I_{t}} u_{0}\left(X_{t}^{i}\right)\right], \quad t \geq 0
$$

- For example, we can take $\left\{\left(X_{t}^{i}\right)_{t \geq 0}: i=1, \ldots, n\right\}$ to be a sequence of independent Brownian motions, and u to satisfy the heat equation $\partial_{t} u=\frac{\Delta}{2} u$.
- The formula characterizes the one-dimensional distributions for both u and X.

Weak Uniqueness: The Girsanov transformation

Mueller-Mytnik-Ryzhik (2021)
The weak uniqueness holds provided
$\sup _{u \in(0,1)} \frac{|b(u)|}{\sqrt{u(1-u)}}<\infty$, and $f(x)=1-f(-x)=0$ for large enough x.

Weak Uniqueness: The Girsanov transformation

Mueller-Mytnik-Ryzhik (2021)

The weak uniqueness holds provided
$\sup _{u \in(0,1)} \frac{|b(u)|}{\sqrt{u(1-u)}}<\infty$, and $f(x)=1-f(-x)=0$ for large enough x.

- When the blue part holds, we say the initial value f has a compact interface.

Weak Uniqueness: The Girsanov transformation

Mueller-Mytnik-Ryzhik (2021)

The weak uniqueness holds provided
$\sup _{u \in(0,1)} \frac{|b(u)|}{\sqrt{u(1-u)}}<\infty$, and $f(x)=1-f(-x)=0$ for large enough x.

- When the blue part holds, we say the initial value f has a compact interface.
- The main tool is Girsanov transformation.

Quantification of the regularization effect

- Consider
(2) $\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0, \\ u_{0}=f, & x \in \mathbb{R},\end{cases}$
where $\alpha \in(0,1]$.

Quantification of the regularization effect

- Consider
(2)

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

where $\alpha \in(0,1]$.

- Shiga (1988) and Athreya-Tribe (2000):
$\alpha=1 \Longrightarrow$ weak uniqueness.

Quantification of the regularization effect

- Consider

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \tag{2}\\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

where $\alpha \in(0,1]$.

- Shiga (1988) and Athreya-Tribe (2000): $\alpha=1 \Longrightarrow$ weak uniqueness.
- Mueller-Mytnik-Ryzhik (2021):
$\alpha \in\left[\frac{1}{2}, 1\right] \& f$ has compact interface \Longrightarrow weak uniqueness.

Quantification of the regularization effect

- Consider

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \tag{2}\\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

where $\alpha \in(0,1]$.

- Shiga (1988) and Athreya-Tribe (2000): $\alpha=1 \Longrightarrow$ weak uniqueness.
- Mueller-Mytnik-Ryzhik (2021): $\alpha \in\left[\frac{1}{2}, 1\right] \& f$ has compact interface \Longrightarrow weak uniqueness.
- Question: What happens when $\alpha \in\left(0, \frac{1}{2}\right)$? What happens when f doesn't have compact interface?

Propagation speed

Barnes-Mytnik-S. (2023a)

Suppose that $\alpha \in\left[\frac{1}{2}, 1\right]$ and that $f \in \mathcal{C}\left(\mathbb{R}_{+},[0,1]\right)$ has compact interface. Let u satisfy

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\epsilon \sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

Then,

$$
\text { the front of } u_{t}:=\sup \left\{x: u_{t}(x)>0\right\}
$$

propagates with a deterministic speed $V(\epsilon) \approx \epsilon^{-2 \frac{1-\alpha}{1+\alpha}}$ for small ϵ.

Propagation speed

- Here is an image of the exponent $\frac{1-\alpha}{1+\alpha}$:

Main Result

- Recall AT's condition:

$$
b(u)=\sum_{k=0}^{\infty} b_{k} u^{k}, \text { and } b_{1}<-\sum_{k \in\{0\} \cup \mathbb{N} \backslash\{1\}}\left|b_{k}\right| R^{k-1} \text { for some } R>1
$$

Main Result

- Recall AT's condition:

$$
b(u)=\sum_{k=0}^{\infty} b_{k} u^{k} \text {, and } b_{1}<-\sum_{k \in\{0\} \cup \mathbb{N} \backslash\{1\}}\left|b_{k}\right| R^{k-1} \text { for some } R>1
$$

Barnes-Mytnik-S. (ongoing)

The weak existence and weak uniqueness holds for the 1-d Wright-Fisher type SPDE provided the initial value $f \in \mathcal{C}(\mathbb{R},[0,1])$, and the drift term

$$
\begin{gathered}
b(u)=\sum_{k \in\{0, \infty\} \cup \mathbb{N}} b_{k} u^{k} \\
\text { with } b_{1} \leq-\sum_{k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}}^{\infty}\left|b_{k}\right| R^{k-1} \text { for some } R \geq 1
\end{gathered}
$$

Conclusion

Corollary 1 (expected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $\alpha \in(0,1]$ and $f \in \mathcal{C}(\mathbb{R},[0,1])$.

Conclusion

Corollary 1 (expected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $\alpha \in(0,1]$ and $f \in \mathcal{C}(\mathbb{R},[0,1])$.

- This is expected, since the weak uniqueness holds for the SDE

$$
\mathrm{d} X_{t}=X_{t}^{\alpha}\left(1-X_{t}\right) \mathrm{d} t+\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} ; \quad X_{0}=x \in[0,1] .
$$

Conclusion

Corollary 1 (expected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $\alpha \in(0,1]$ and $f \in \mathcal{C}(\mathbb{R},[0,1])$.

- This is expected, since the weak uniqueness holds for the SDE

$$
\mathrm{d} X_{t}=X_{t}^{\alpha}\left(1-X_{t}\right) \mathrm{d} t+\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} ; \quad X_{0}=x \in[0,1] .
$$

- Note that $u^{\alpha}(1-u) \uparrow \mathbf{1}_{\{u>0\}}(1-u)$ when $\alpha \downarrow 0$ for $u \in[0,1]$.

Conclusion

Corollary 1 (expected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+u^{\alpha}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $\alpha \in(0,1]$ and $f \in \mathcal{C}(\mathbb{R},[0,1])$.

- This is expected, since the weak uniqueness holds for the SDE

$$
\mathrm{d} X_{t}=X_{t}^{\alpha}\left(1-X_{t}\right) \mathrm{d} t+\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} ; \quad X_{0}=x \in[0,1] .
$$

- Note that $u^{\alpha}(1-u) \uparrow \mathbf{1}_{\{u>0\}}(1-u)$ when $\alpha \downarrow 0$ for $u \in[0,1]$.
- The weak uniqueness fails for the SDE

$$
d X_{t}=\mathbf{1}_{\left\{X_{t}>0\right\}}\left(1-X_{t}\right) \mathrm{d} t+\sqrt{X_{t}\left(1-X_{t}\right)} \mathrm{d} B_{t} ; \quad X_{0}=x \in[0,1]
$$

Conclusion

Corollary 2 (unexpected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+1_{\{u>0\}}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $f \in \mathcal{C}(\mathbb{R},[0,1])$.

Conclusion

Corollary 2 (unexpected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+1_{\{u>0\}}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $f \in \mathcal{C}(\mathbb{R},[0,1])$.

- The solution u of the above SPDE does not satisfy

$$
\partial_{t} u=\frac{\Delta}{2} u+(1-u)+\sqrt{u(1-u)} \dot{W}, \quad x \in \mathbb{R}, t \geq 0
$$

Conclusion

Corollary 2 (unexpected)

The weak uniqueness holds for the SPDE

$$
\begin{cases}\partial_{t} u=\frac{\Delta}{2} u+1_{\{u>0\}}(1-u)+\sqrt{u(1-u)} \dot{W}, & x \in \mathbb{R}, t \geq 0 \\ u_{0}=f, & x \in \mathbb{R}\end{cases}
$$

when $f \in \mathcal{C}(\mathbb{R},[0,1])$.

- The solution u of the above SPDE does not satisfy

$$
\partial_{t} u=\frac{\Delta}{2} u+(1-u)+\sqrt{u(1-u)} \dot{W}, \quad x \in \mathbb{R}, t \geq 0
$$

- Conjecture: The weak existence and weak uniqueness holds for the 1d SPDE with Wright-Fisher white noise, arbitrary initial value $f \in \mathcal{C}(\mathbb{R},[0,1])$, and arbitrary bounded measurable drift b satisfying $b(0) \geq 0 \geq b(1)$.

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.
- The moment dual of Wright-Fisher type SPDEs are coalescing-branching Brownian motions (CBBMs).

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.
- The moment dual of Wright-Fisher type SPDEs are coalescing-branching Brownian motions (CBBMs).
- Two parameters:
- Branching rate $\mu>0$.

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.
- The moment dual of Wright-Fisher type SPDEs are coalescing-branching Brownian motions (CBBMs).
- Two parameters:
- Branching rate $\mu>0$.
- Offspring distribution $\left(p_{k}\right)_{k \in\{0, \infty\} \cup \mathbb{N}}$.

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.
- The moment dual of Wright-Fisher type SPDEs are coalescing-branching Brownian motions (CBBMs).
- Two parameters:
- Branching rate $\mu>0$.
- Offspring distribution $\left(p_{k}\right)_{k \in\{0, \infty\} \cup \mathbb{N}}$.
- Three dynamics:
- Spatial movement: Particle move as independent Brownian motions.

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.
- The moment dual of Wright-Fisher type SPDEs are coalescing-branching Brownian motions (CBBMs).
- Two parameters:
- Branching rate $\mu>0$.
- Offspring distribution $\left(p_{k}\right)_{k \in\{0, \infty\} \cup \mathbb{N}}$.
- Three dynamics:
- Spatial movement: Particle move as independent Brownian motions.
- Branching: Each particle branches into a random number of particles with the rate μ. The offspring number is sampled according to the distribution $\left(p_{k}\right)_{k \in\{0, \infty\} \cup \mathbb{N}}$.

Strategy: Dual particle system

- By constructing the dual particle system, the weak uniqueness follows.
- The moment dual of Wright-Fisher type SPDEs are coalescing-branching Brownian motions (CBBMs).
- Two parameters:
- Branching rate $\mu>0$.
- Offspring distribution $\left(p_{k}\right)_{k \in\{0, \infty\} \cup \mathbb{N}}$.
- Three dynamics:
- Spatial movement: Particle move as independent Brownian motions.
- Branching: Each particle branches into a random number of particles with the rate μ. The offspring number is sampled according to the distribution $\left(p_{k}\right)_{k \in\{0, \infty\} \cup \mathbb{N}}$.
- Coalescing: Each pair of particles coalesces as one particle with rate $1 / 2$ according to their intersection local time.

An illustration of the dual particle system

Explosion in CBBM

- To build a duality relation between CBBMs and the Wright-Fisher SPDEs, we take

$$
\begin{gathered}
\mu:=\sum_{k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}}^{\infty}\left|b_{k}\right| \\
\text { and } p_{1}:=0, p_{k}:=\left|b_{k}\right| / \mu \text { for } k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\} .
\end{gathered}
$$

Explosion in CBBM

- To build a duality relation between CBBMs and the Wright-Fisher SPDEs, we take

$$
\begin{gathered}
\mu:=\sum_{k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}}^{\infty}\left|b_{k}\right| \\
\text { and } p_{1}:=0, p_{k}:=\left|b_{k}\right| / \mu \text { for } k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\} .
\end{gathered}
$$

- The dynamic is well-defined up to the explosion time

$$
\tau_{\infty}:=\lim _{n \rightarrow \infty} \inf \{t \geq 0: \# \text { particles } \geq n\}
$$

Explosion in CBBM

- To build a duality relation between CBBMs and the Wright-Fisher SPDEs, we take

$$
\mu:=\sum_{k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}}^{\infty}\left|b_{k}\right|
$$

and $p_{1}:=0, p_{k}:=\left|b_{k}\right| / \mu$ for $k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}$.

- The dynamic is well-defined up to the explosion time

$$
\tau_{\infty}:=\lim _{n \rightarrow \infty} \inf \{t \geq 0: \# \text { particles } \geq n\}
$$

- $\left(b_{k}\right)$ satisfies AT's condition $\Longrightarrow p_{\infty}=0$ and $\left(p_{k}\right)$ has exponential moment $\Longrightarrow \tau_{\infty}=\infty$ a.s.

Explosion in CBBM

- To build a duality relation between CBBMs and the Wright-Fisher SPDEs, we take

$$
\mu:=\sum_{k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}}^{\infty}\left|b_{k}\right|
$$

and $p_{1}:=0, p_{k}:=\left|b_{k}\right| / \mu$ for $k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}$.

- The dynamic is well-defined up to the explosion time

$$
\tau_{\infty}:=\lim _{n \rightarrow \infty} \inf \{t \geq 0: \# \text { particles } \geq n\}
$$

- $\left(b_{k}\right)$ satisfies AT's condition $\Longrightarrow p_{\infty}=0$ and $\left(p_{k}\right)$ has exponential moment $\Longrightarrow \tau_{\infty}=\infty$ a.s.
- If AT's condition does not hold (especially when $\left.p_{\infty}=\left|b_{\infty}\right| / \mu>0\right)$ the explosion might happen in finite time.

Explosion in CBBM

- To build a duality relation between CBBMs and the Wright-Fisher SPDEs, we take

$$
\mu:=\sum_{k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}}^{\infty}\left|b_{k}\right|
$$

and $p_{1}:=0, p_{k}:=\left|b_{k}\right| / \mu$ for $k \in\{0, \infty\} \cup \mathbb{N} \backslash\{1\}$.

- The dynamic is well-defined up to the explosion time

$$
\tau_{\infty}:=\lim _{n \rightarrow \infty} \inf \{t \geq 0: \# \text { particles } \geq n\}
$$

- $\left(b_{k}\right)$ satisfies AT's condition $\Longrightarrow p_{\infty}=0$ and $\left(p_{k}\right)$ has exponential moment $\Longrightarrow \tau_{\infty}=\infty$ a.s.
- If AT's condition does not hold (especially when $\left.p_{\infty}=\left|b_{\infty}\right| / \mu>0\right)$ the explosion might happen in finite time.
- The definition of the particle system needs more justification!

Coming down from infinity

- A coalescing Brownian motion (CBM) is CBBM with $p_{1}=1$.

Coming down from infinity

- A coalescing Brownian motion (CBM) is CBBM with $p_{1}=1$.
- We can define a CBM with infinitely many initial particles as the weak limit of a sequence of CBMs with finite initial particles.

Coming down from infinity

- A coalescing Brownian motion (CBM) is CBBM with $p_{1}=1$.
- We can define a CBM with infinitely many initial particles as the weak limit of a sequence of CBMs with finite initial particles.
- Denote by $Z_{t}(A)$ the number of particles in a domain A at time t of a CBM with infinitely many initial particles, i.e. $Z_{0}(\mathbb{R})=\infty$.

Coming down from infinity

- A coalescing Brownian motion (CBM) is CBBM with $p_{1}=1$.
- We can define a CBM with infinitely many initial particles as the weak limit of a sequence of CBMs with finite initial particles.
- Denote by $Z_{t}(A)$ the number of particles in a domain A at time t of a CBM with infinitely many initial particles, i.e. $Z_{0}(\mathbb{R})=\infty$.

Barnes-Mytnik-S. (2023b)
The total population $Z_{t}(\mathbb{R})<\infty$ for every $t>0$
$\Longleftrightarrow Z_{0}(\cdot)$ is compactly supported.

Coming down from infinity

- A coalescing Brownian motion (CBM) is CBBM with $p_{1}=1$.
- We can define a CBM with infinitely many initial particles as the weak limit of a sequence of CBMs with finite initial particles.
- Denote by $Z_{t}(A)$ the number of particles in a domain A at time t of a CBM with infinitely many initial particles, i.e. $Z_{0}(\mathbb{R})=\infty$.

Barnes-Mytnik-S. (2023b)
The total population $Z_{t}(\mathbb{R})<\infty$ for every $t>0$
$\Longleftrightarrow Z_{0}(\cdot)$ is compactly supported.
Moreover, in this case

$$
\frac{Z_{t}(\mathbb{R})}{\int v_{t}(x) \mathrm{d} x} \underset{L^{1}}{\longrightarrow} 1, \quad t \downarrow 0
$$

where $v_{t}(x)$ is the unique non-negative solution to the 1 d PDE

$$
2 \partial_{t} v=\Delta v-v^{2} ; \quad v_{0}(x) \mathrm{d} x=Z_{0}(\mathrm{~d} x)
$$

Reflecting from infinity

- Now, we can justify the definition of the CBBM for arbitrary offspring distribution (allowing $p_{\infty}>0$).

Reflecting from infinity

- Now, we can justify the definition of the CBBM for arbitrary offspring distribution (allowing $p_{\infty}>0$).
- It is defined as the weak limit of a sequence of CBBMs with truncated offspring distributions.

Reflecting from infinity

- Now, we can justify the definition of the CBBM for arbitrary offspring distribution (allowing $p_{\infty}>0$).
- It is defined as the weak limit of a sequence of CBBMs with truncated offspring distributions.
- Denote by $X_{t}(\mathbb{R})$ the total population of a CBBM with arbitrary branching rate and arbitrary offspring distribution.

Reflecting from infinity

- Now, we can justify the definition of the CBBM for arbitrary offspring distribution (allowing $p_{\infty}>0$).
- It is defined as the weak limit of a sequence of CBBMs with truncated offspring distributions.
- Denote by $X_{t}(\mathbb{R})$ the total population of a CBBM with arbitrary branching rate and arbitrary offspring distribution.

```
Barnes-Mytnik-S. (ongoing)
If }\mp@subsup{X}{0}{}(\mathbb{R})<\infty\mathrm{ , then }\mp@subsup{X}{t}{}(\mathbb{R})\mathrm{ is reflecting from }\infty\mathrm{ .
```


Thanks!

