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Regularization by Noise

o Consider the differential equation:

dX; = [X,°dt, ¢ >0,
XO = 07

where a € (0,1).
@ The drift b(xz) = |z|* is not Lipschitz at 0
—> non-uniqueness of the solutions.

@ One solution X; = 0.

1
@ The other solution X; = Cpt1-=,t > 0.
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Pathwise Regularization by Additive Noise

Zvonkin (1974), Veretennikov (1979)
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Pathwise Regularization by Additive Noise

Zvonkin (1974), Veretennikov (1979)
Suppose that
@ b is a bounded measurable function, and
@ B is a Brownian motion,

then there exists a unique strong solution to SDE

Xo=z €R.

{dXt = b(X;)dt +dB,;, t>0,

@ Zvonkin’s transform is not available for SPDE.
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Weak Regularization by Multiplicative Noise

@ Weak uniqueness for one-dimensional SDE can be analyzed by
Feller’s test.
e For example, consider non-negative solution to the SDE

dX; = b(Xt)dt + 4/2X:dBy;  Xo=0.

where, with a > 0 and 3 > 0,
[eS) 1 — e~ Tu
b(z) := — d > 0.
(z) /e au(logu)i+h hor=

Clement (2019)
e If B > 1, the weak uniqueness holds;

o If =1 and a > 1, the weak uniqueness holds;
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Weak Regularization by Multiplicative Noise

@ Weak uniqueness for one-dimensional SDE can be analyzed by

Feller’s test.
e For example, consider non-negative solution to the SDE

dXt == b(Xt)dt + V 2XtdBt7 Xo =0.
where, with a > 0 and 3 > 0,

1 _ e—xu

b = ———d > 0.
() /e au(logu)i+h b T=

Clement (2019)
e If B > 1, the weak uniqueness holds;
o If =1 and a > 1, the weak uniqueness holds;
o If 5 =1 and a < 1, the weak uniqueness fails;

o If B < 1, the weak uniqueness fails.
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Weak Regularization by Multiplicative Noise

@ The shape of the “critical” drift b(z):

o L8 & K
N D
——di
fe u(logu)2 ¢
3 0 5
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Wright-Fisher SPDE

@ Reaction-diffusion equations with Wright-Fisher white noise

{(%u-2u+b +/|u 1—uW reR,t>0,

UO—f> z € R.
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Wright-Fisher SPDE

@ Reaction-diffusion equations with Wright-Fisher white noise

{(%u-2u+b +/|u 1—uW reR,t>0,

UO—f> z € R.

The noise coefficient \/|u(1 — u)]

e is non-Lipshitz at « = 0 and v = 1; and
o is degenerate at u = 0 and v = 1.

Challenging open problems:

e the strong uniqueness?
o the solution theory in higher dimensions?

Question: How strong is the regularization effect of the
Wright-Fisher noise?
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Motivation

e Shiga (1988): Wright-Fisher SPDE = scaling limit of “genetic
stepping stone model.”
o b(u) =c1(1 —u) — cou + cgu(l — u).
e ¢; > 0 and ¢y > 0 are mutation rates.
e c3 € R is the selection rate.
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Motivation

e Shiga (1988): Wright-Fisher SPDE = scaling limit of “genetic
stepping stone model.”
o b(u) =c1(1 —u) — cou + cgu(l — u).
e ¢; > 0 and ¢y > 0 are mutation rates.
e c3 € R is the selection rate.

@ Mueller-Tribe (1995), Durrett-Fan (2016)...: Wright-Fisher SPDE
= scaling limit of (biased) voter model.

o b(u) = czu(l —u).
e Unbiased = c¢3 = 0.
@ Brunet-Derrida (1997), Mueller-Mytnik-Quastel (2011)...: The
FKPP equation with Wright-Fisher white noise is related to the
Brunet-Derrida particle systems.
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Existence

Shiga (1994)

If f € C(R,[0,1]), b(-) is continuous and b(0) > 0 > b(1), then there
exists a C(R4,C(R, [0, 1]))-valued weak solution to

{&gU—Qu-i-b +/|u 1—uW xreR,t>0,

@ We assume the the red part throughout this talk.
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Weak Uniqueness: Duality Method

Shiga (1988)
The weak uniqueness holds provided
b(u) = c1(1 —u) — cou + cgu(l — u) where ¢; > 0,co > 0 and c3 € R.
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Weak Uniqueness: Duality Method

Shiga (1988)
The weak uniqueness holds provided
b(u) = c1(1 — u) — cou + cgu(l — u) where ¢; > 0,co > 0 and c3 € R.

Athreya-Tribe (2000)

The weak uniqueness holds provided

b(u) = Zbkuk, and by < — Z |bx|RF! for some R > 1.
k=0 k=0,k#1

e Both Shiga (1988) and Athreya-Tribe (2000) used the duality
argument.
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Duality

e Suppose that (u¢(x))i>0,zcr is a [0, 1]-valued random field.

e Suppose that {X} :i € I;,t > 0} is a particle system in R where I
is the index of all the living particles at time t.

@ Suppose that the random field v and the particle system X are
independent.

@ We say the moment duality holds between v and X if

E | ] w(x0) :E[Huo(xg)], t>0.

i€lg i€l

e For example, we can take {(X})i>0:4=1,...,n} to be a sequence
of independent Brownian motions, and u to satisfy the heat
equation dyu = %u.

@ The formula characterizes the one-dimensional distributions for
both v and X.
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Weak Uniqueness: The Girsanov transformation

Mueller-Mytnik-Ryzhik (2021)

The weak uniqueness holds provided

b
[b(w) < oo, and f(z) =1— f(—x) =0 for large enough z.

sup ————
ue(0,1) v/u(l —u)
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Weak Uniqueness: The Girsanov transformation

Mueller-Mytnik-Ryzhik (2021)

The weak uniqueness holds provided

b
[b(w) < oo, and f(z) =1— f(—x) =0 for large enough z.

sup ————
ue(0,1) v/u(l —u)

@ When the blue part holds, we say the initial value f has a compact
interface.

@ The main tool is Girsanov transformation.
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Quantification of the regularization effect
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Quantification of the regularization effect

o Consider

@) {8tu:%u+u“(1—u)+mW, r €R,t>0,
ug = f, z € R,
where « € (0, 1].
e Shiga (1988) and Athreya-Tribe (2000):
a =1 = weak uniqueness.
e Mueller-Mytnik-Ryzhik (2021):
o€ [%, 1] & f has compact interface —> weak uniqueness.

@ Question: What happens when a € (0, %)7 What happens when
f doesn’t have compact interface?
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Propagation speed

Barnes-Mytnik-S. (2023a)

Suppose that € [1,1] and that f € C(R4, [0,1]) has compact
interface. Let u satisfy

{8tu—2u+u (1 —u)+ey/u l—uW reR,t>0,

uO_f7 z € R.

Then,
the front of u; := sup{z : u(z) > 0}

l—«
propagates with a deterministic speed V'(¢) ~ ¢ 2Tt for small e.
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Propagation speed

l—a.

l+a

@ Here is an image of the exponent

&
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Main Result
@ Recall AT’s condition:

b(u) = Zbkuk, and by < — Z |bp| R¥~1 for some R > 1.
k=0 ke{0}UN\{1}

15 /23



Main Result

@ Recall AT’s condition:

b(u) = Zbkuk, and by < — Z |bp| R¥~1 for some R > 1.
k=0 ke{0}UN\{1}

Barnes-Mytnik-S. (ongoing)

The weak existence and weak uniqueness holds for the 1-d
Wright-Fisher type SPDE provided the initial value f € C(R, |0, 1]),

and the drift term
b(u) = Z bru®

ke{0,00JUN
with b; < — Z |bk]Rk*1 for some R > 1.
ke{0,00 JUN\{1}

15 /23



Conclusion

Corollary 1 (expected)
The weak uniqueness holds for the SPDE

8tu:%u—i—ua(l—u)—i-\/u(l—u)W, z €R,t >0,
Up = fa z eR,
when a € (0,1] and f € C(R, [0, 1]).
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Conclusion

Corollary 1 (expected)
The weak uniqueness holds for the SPDE

8tu:%u—i—ua(l—u)—i-\/u(l—u)W, zeR,t>0,
ug = fa T € R,
when a € (0,1] and f € C(R, [0, 1]).

o This is expected, since the weak uniqueness holds for the SDE

dX; = X{l(l — Xt)dt + Xt(l — Xt)dBt, Xo=x € [0, 1]

e Note that u*(1 —u) T 1{y50y(1 — u) when a | 0 for u € [0,1].
@ The weak uniqueness fails for the SDE

dXt = 1{Xt>0}(1 — Xt)dt + vV Xt(]. - Xt)dBt, X() =T c [0, 1]
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Conclusion

Corollary 2 (unexpected)
The weak uniqueness holds for the SPDE

8tu:%u+1{u>0}(1—u)—i—\/u(l—u)W, z eR,t>0,
u0:f7 r € R,
when f € C(R, [0, 1]).
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Conclusion
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Conclusion

Corollary 2 (unexpected)
The weak uniqueness holds for the SPDE

8tu:%u+1{u>0}(1—u)—i—\/u(l—u)W, zeR,t>0,
u0:f7 CBGR,

when f € C(R, [0, 1]).

@ The solution u of the above SPDE does not satisfy

A .
atu:§u+(1_u)+\/MW, zEeR,t>0,

@ Conjecture: The weak existence and weak uniqueness holds for
the 1d SPDE with Wright-Fisher white noise, arbitrary initial
value f € C(R,[0,1]), and arbitrary bounded measurable drift b
satisfying b(0) > 0 > b(1).
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Strategy: Dual particle system

@ By constructing the dual particle system, the weak uniqueness
follows.
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Strategy: Dual particle system

By constructing the dual particle system, the weak uniqueness

follows.

@ The moment dual of Wright-Fisher type SPDEs are
coalescing-branching Brownian motions (CBBMs).

e Two parameters:

e Branching rate p > 0.
o Offspring distribution (p)xefo,00}UnN-

Three dynamics:

e Spatial movement: Particle move as independent Brownian motions.

e Branching: Each particle branches into a random number of
particles with the rate pu. The offspring number is sampled
according to the distribution (px)ie{o,00}uN-

e Coalescing: Each pair of particles coalesces as one particle with rate
1/2 according to their intersection local time.
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An illustration of the dual particle system

AR

=

Coan,sdnj
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Explosion in CBBM

@ To build a duality relation between CBBMs and the Wright-Fisher
SPDEs, we take

o0

pi= > |kl

ke{0,00}JUN\{1}
and p; := 0, p := |bg|/p for k € {0,00} UN\ {1}.
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Explosion in CBBM

To build a duality relation between CBBMs and the Wright-Fisher
SPDEs, we take

o0

pi= > |kl

ke{0,00}JUN\{1}
and p; := 0, p := |bg|/p for k € {0,00} UN\ {1}.

The dynamic is well-defined up to the explosion time

Too := lim inf{t > 0 : #particles > n}.
n—oo

(by) satisfies AT’s condition == poc = 0 and (pj) has exponential
moment = T, = 00 a.s.

If AT’s condition does not hold (especially when poo = |boo|/pt > 0)
the explosion might happen in finite time.

The definition of the particle system needs more justification!
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@ A coalescing Brownian motion (CBM) is CBBM with p; = 1.

@ We can define a CBM with infinitely many initial particles as the
weak limit of a sequence of CBMs with finite initial particles.

@ Denote by Z;(A) the number of particles in a domain A at time ¢
of a CBM with infinitely many initial particles, i.e. Zy(R) = oo.

Barnes-Mytnik-S. (2023b)

The total population Z;(R) < co for every ¢ > 0
<= Zy(-) is compactly supported.
Moreover, in this case

Z(R)
J vi(z)da Iy L 40

where v;(z) is the unique non-negative solution to the 1d PDE

2000 = Av — v?;,  vo(z)dz = Zo(dz).

- = = Yo
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Reflecting from infinity

@ Now, we can justify the definition of the CBBM for arbitrary
offspring distribution (allowing ps > 0).
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Reflecting from infinity

@ Now, we can justify the definition of the CBBM for arbitrary
offspring distribution (allowing ps > 0).

o It is defined as the weak limit of a sequence of CBBMs with
truncated offspring distributions.

@ Denote by X;(R) the total population of a CBBM with arbitrary
branching rate and arbitrary offspring distribution.

Barnes-Mytnik-S. (ongoing)
If Xo(R) < oo, then X;(R) is reflecting from oo.

+0a +oQ

X¢(IR)
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«O>» «F»r «E» < -

Thanks!
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