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Abstract. We consider the [0,1]-valued solution (ut,x : t ≥ 0, x ∈ R) to the one dimensional stochastic reaction diffusion equation
with Wright-Fisher noise ∂tu = ∂2

xu+f (u)+ ε
√

u(1 − u)Ẇ . Here, W is a space-time white noise, ε > 0 is the noise strength, and f is
a continuous function on [0,1] satisfying supz∈[0,1] |f (z)|/√z(1 − z) < ∞. We assume the initial data satisfies 1 − u0,−x = u0,x = 0
for x large enough. Recently, it was proved in (Comm. Math. Phys. 384 (2021) 699–732) that the front of ut propagates with a finite
deterministic speed Vf,ε , and under slightly stronger conditions on f , the asymptotic behavior of Vf,ε was derived as the noise strength
ε approaches ∞. In this paper we complement the above result by obtaining the asymptotic behavior of Vf,ε as the noise strength ε

approaches 0: for a given p ∈ [1/2,1), if f (z) is non-negative and is comparable to zp for sufficiently small z, then Vf,ε is comparable

to ε
−2 1−p

1+p for sufficiently small ε.

Résumé. Nous considérons la solution (ut,x : t ≥ 0, x ∈ R) à valeur dans l’intervalle [0,1] de l’équation stochastique de réaction-
diffusion unidimensionnelle avec un bruit de Wright-Fisher ∂tu = ∂2

xu + f (u) + ε
√

u(1 − u)Ẇ . Où W est un bruit blanc en espace
et en temps, ε > 0 est l’intensité du bruit et f est une fonction continue sur [0,1] telle que supz∈[0,1] |f (z)|/√z(1 − z) < ∞. Nous
supposons que la condition initiale satisfait 1 − u0,−x = u0,x = 0 pour x suffisamment grand. Il a été récemment prouvé dans (Comm.
Math. Phys. 384 (2021) 699–732) que le front de ut se propage à une vitesse Vf,ε déterministe finie et, sous des conditions légèrement
plus fortes pour f , le comportement asymptotique de Vf,ε est entièrement déterminé par l’intensité du bruit ε lorsqu’il tend vers
l’infini. Dans cet article, nous complétons ces résultats en décrivant le comportement asymptotique de Vf,ε lorsque ε tend vers 0 : pour

p ∈ [1/2,1), si f (z) est positif et se comporte comme zp pour z suffisamment petit, alors Vf,ε est équivalent à ε
−2 1−p

1+p quand ε est
suffisamment petit.
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1. Introduction

1.1. Background and motivation

In 1937, Fisher [12] and Kolmogorov, Petrovsky, Piskunov [18] independently studied the wave propagation properties
arising from the FKPP equation on R+ ×R

(1.1) ∂th = ∂2
xh + f (h).

Fisher was interested in how quickly an advantageous gene (or virus) would propagate through a population living in
a linear habitat, such as a shoreline (or train). The solution h measures the proportion of the population carrying this
advantageous gene as the biological system evolves. Under a mild assumption on the Lipschitz function f with f (0) =
f (1) = 0, for any velocity v greater or equal to the minimal velocity

(1.2) vmin =√
2f ′(0),
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there exists a traveling wave solution h(t, x) = Fv(x − vt) with wave profile denoted by Fv. With Heaviside initial data
h(0, x) = 1x≤0, the shifted solution h(t, x + m(t)) converges uniformly to the wave profile Fvmin with the shift m(t)

having asymptotic speed vmin. These results have been generalized to include a wider class of initial conditions, a more
detailed description of the lower order terms of the wave position, and tail behavior of the wave shape; see [3,4,19,20].

Because the FKPP equation is noiseless, it can be thought to represent a mean field approximation of a microscopic
reaction-diffusion process as motivated from a statistical physics perspective [6]. Consequently, there has been recent
interest in understanding analogous questions regarding propagating speed of waves for solutions to the FKPP equation
with Wright-Fisher noise, given by the SPDE on R+ ×R:

(1.3) ∂tu = ∂2
xu + f (u) + ε

√
u(1 − u)Ẇ ,

where f is a continuous function on [0,1] with f (0) = f (1) = 0 satisfying some regularity conditions, and W is a
space-time white noise on R+ ×R. Similar to (1.1), the solution u represents the proportion of the population exhibiting
the gene, but now the equation incorporates the random interaction among the populace. The noise term ε

√
u(1 − u)Ẇ

is motivated by the assumption that these interactions are affected by i.i.d. mean zero random variables independent of
time and space, while the variance of the outcome is proportional to the rate of interaction between those with the gene
and those without the gene, which is u(1 − u). The function f continues to describe the deterministic evolution of the
population exhibiting the gene.

The example of f (u) = u(1 − u) was extensively studied in the literature and weak uniqueness, compact interface
property, finite speed of the front propagation and other properties were established (see [8,23,26,28]). Moreover there
has been a great interest in the asymptotic behavior of the speed of the front propagation, Vf,ε . For a large class of
Lipschitz functions f , including f (u) = u(1 − u), and also for more general noise coefficients, Mueller, Mytnik, and
Quastel, in [21], proved the Brunet-Derrida conjecture (see [5]) on the asymptotic of Vf,ε for small ε.

Another motivation for the study of the stochastic reaction diffusion equation is its duality relation to the branching-
coalescing Brownian motion. Consider a system of particles moving as independent one-dimensional Brownian motions
on R with generator ∂2

x . Assume that each particle independently branches with rate 1 into a random number of particles
according to an offspring law (qk)k∈Z+ , and each pair of particles independently coalesce at rate ε2 according to their
intersection local time. Denote by (xi(t) : t ≥ 0, i ≤ Nt) the positions of the particles where Nt is the number of all
particles at time t ≥ 0. In the case of binary branching, i.e. q2 = 1, the following duality relation is due to [26] (see also
[10]): Let u be a solution to the SPDE (1.3) with f (u) = u(1 − u). Assume that the random field u, as well as its driving
noise W , is independent of the particle system. Then

(1.4) E

[
N0∏
i=1

(1 − ut,xi (0))

]
= E

[
Nt∏
i=1

(1 − u0,xi (t))

]
, t ≥ 0.

This duality relation was first constructed to study the weak uniqueness of the stochastic FKPP equation. It can also
be used to study the propagation of the extremal particle in the branching-coalescing Brownian motion. Assume that the
particle system starts with a single particle at the position 0. Let R(t) be the position of the rightmost particle in the system
at time t . From the above duality, by taking u0,· = 1(−∞,0) and using symmetry, one can get P(R(t) > x) = E[ut,x] for
every (t, x) ∈ R+ × R. Then from the existence of the speed of front propagation Vf,ε for u, one can derive the upper
bound on the speed of R(t): for any δ > 0,

P
(
R(t) ≤ (Vf,ε + δ)t

)−−−→
t→∞ 1.

One expects that the duality (1.4) holds also for more general drift function f when it takes the form

(1.5) f (z) = 1 − z − g(1 − z), z ∈ [0,1],
where g(z) = ∑∞

n=0 znqn, z ∈ [0,1], is the probability generating function of the offspring law in the branching-
coalescing system. This is established for some offspring laws with finite first moment, see [2, Theorem 1]. The case
of the offspring law being heavy-tailed, without existence of the first moment, is of particular interest. For example, if
one considers the following heavy-tailed offspring law

q0 = q1 = 0; qn = −1

(n − 1)!
n−2∏
k=0

(k − p), n ∈ Z∩ [2,∞),
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where p ∈ (0,1) is a given constant, then, the drift function f defined via (1.5) takes the form

(1.6) f (z) = zp(1 − z), z ∈ [0,1],
which is not Lipschitz at 0. This (qn)

∞
n=1 is also known (see [7] for example) as the law of 1 + Sp where Sp is a Sibuya

random variable with parameter p. As far as we know, the Shiga duality relation (1.4) for such cases has not been proved
yet. However, we do conjecture that this duality holds for some Hölder drift functions f having representation (1.5), and
this gives us another motivation to study the SPDE (1.3) with non-Lipschitz drift functions.

In fact, one of such cases has been studied recently in [22], where weak solutions u to the SPDE (1.3) are investigated
under the conditions that

(1.7) f is continuous, and sup
z∈[0,1]

|f (z)|√
z(1 − z)

< ∞

and that the initial value has compact interface, that is, u0,−x − 1 = u0,x = 0 for large enough x. This includes examples
like (1.6) with parameter p ∈ [1/2,1). Note that in the deterministic case of ε = 0, the solution to the reaction diffusion
equation (1.1), with f given by (1.6) and with a non-trivial initial value, does exist, but it does not exhibit propagating
waves with a finite linear speed as in the case when f is Lipschitz. Intuitively, this is clear from (1.2) as f ′(0) is in-
finite. In fact, such solutions h do not have super-linear speed either, as it follows from a similar argument in [1] that
infx∈R h(t, x) → 1 as t → ∞. However, this behavior changes drastically when introducing the Wright-Fisher noise. In
[22], the authors established the weak uniqueness, compact interface property, and finiteness of front propagation speed
for (1.3) when ε > 0. In particular, they proved that there exists a deterministic Vf,ε ∈ R, which only depends on the drift
function f and the noise strength ε, so that

(1.8)
sup{x ∈R : ut,x 
= 0}

t
−−−→
t→∞ Vf,ε, a.s.

It is then natural to study the asymptotics of the speed of this propagation in terms of the strength of the noise. In [22],
the authors studied the asymptotic behavior of Vf,ε , when ε goes to ∞, under a condition slightly stronger than (1.7). As
for the small ε, the case of Lipschitz f was treated already in [21], and it was shown there how fast Vf,ε converges to Vf,0
as ε ↓ 0. In this paper, we complement the above results and consider the asymptotic behavior of Vf,ε when ε converges
to 0 and f is not necessarily Lipschitz. According to our discussion about the deterministic case of ε = 0, it is intuitively
clear that if, for example, f is given by (1.6), then Vf,ε should converge to ∞ as ε ↓ 0. Our main result shows this, but
also answers the much more delicate question: At what rate does Vf,ε converge to ∞ as ε ↓ 0?

1.2. Main result

To state our main result we need to introduce the following conditions on f .

(1.9) f is non-negative and there exists p0 ∈ [1/2,1) such that lim infz↓0 f (z)/zp0 > 0.
(1.10) There exists p ∈ [1/2,1) such that lim supz↓0 f (z)/zp < ∞.

Note that (1.6) is an example of f satisfying (1.7)–(1.10) with p0 = p. Let us now state our main result.

Theorem 1.1. Suppose that f is a function on [0,1] satisfying (1.7). For every ε > 0, denote by Vf,ε the propagation
speed of the SPDE (1.3) given as in (1.8).

(a) If f satisfies (1.9), then lim infε↓0 ε
2

1−p0
1+p0 Vf,ε > 0.

(b) If f satisfies (1.10), then lim supε↓0 ε
2 1−p

1+p Vf,ε < ∞.

If the drift function f satisfies (1.7)–(1.10) with p0 = p, then Theorem 1.1 implies that there exists ε0 > 0 and c,C > 0
such that

cε
−2 1−p

1+p ≤ Vf,ε ≤ Cε
−2 1−p

1+p , ε ∈ (0, ε0).

Note that the exponent −2 1−p
1+p

shows up in both the upper bound and the lower bound, and therefore cannot be improved.
This exponent appears when we analyze the free-boundary travelling wave problem (1.11) below. In the next subsection,
we give some comments on the proof strategy for our main result.
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1.3. Proof strategy

For the lower bound, we simply replace the drift f by some smaller Lipschitz drift H ≤ f . The comparison principle
then gives us a lower bound VH,ε ≤ Vf,ε . Of course, by choosing different Lipschitz functions H , one can obtain a family
of lower bounds. To obtain the optimal one, we take H depending on the noise strength ε in a certain way so that H ′(0)

is comparable to ε
−4 1−p

1+p . (Recall that
√

2H ′(0) is the minimal traveling wave velocity for the FKPP equation (1.1) with
drift f being replaced by H .) We then use a known result on the propagation speed of stochastic FKPP equation [21] to
get the desired lower bound.

For the upper bound, the strategy of replacing the drift by Lipschitz functions is not fruitful because for any Lipschitz
function H greater than a drift function f satisfying (1.7)–(1.10), it always holds that H(0) > 0. For a solution u cor-
responding to such a drift H , the state 0 is not locally stable anymore, and typically, sup{x : ut,x 
= 0} is not even finite.
Instead, we use a similar strategy as in [21] to decompose our solution u as

u = v + w,

where v is a weak solution to the SPDE (1.3) with a moving Dirichlet boundary condition on the line {(t, x) : x = vt}, i.e.{
∂tv = ∂2

xv + f (v) + ε
√

v(1 − v)Ẇ v, x < vt,

v = 0, x ≥ vt.

For the details on the above decomposition of u see Proposition 5.2. Let us just note that since u, v, w are defined on the
same probability space, then the white noises Wv and W are also defined on the same probability space. Also, note that
the velocity of the moving boundary v is left to be chosen.

It is intuitively clear that if one chooses v to be larger than Vf,ε then the deviation between u and v, which is w,
should be small and not propagate; and if one chooses v to be smaller than Vf,ε , then w will be large and will propagate.
Therefore, by searching for a balanced value v so that w lies in between those two phases, one can obtain a good estimation
on Vf,ε .

An insight from [21] suggests that such a value v can be predicted by finding the solution (F,v) to a free-boundary
travelling wave problem

(1.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�t,x = F(x − vt) ≥ 0,

∂t� = ∂2
x� + f (�), x < vt,

� = 0, x ≥ vt,

lim
x↑vt

∂x�t,x = −ε2.

Replacing the drift f in (1.11) by some approximating Lipschitz functions, the solution (F,v) is computable using a
similar argument used in [21, Proof of Proposition 2.1], and one can calculate that the balancing value v should be

comparable to ε
−2 1−p

1+p for small ε, which gives us another intuitive explanation for the exponent −2 1−p
1+p

.

To analyze the behavior of w under this balancing value v ∼ ε
−2 1−p

1+p , we observe that it satisfies the following equation

∂tw = ∂2
xw + f (u) − f (v) + ε

√
u(1 − u)Ẇ − ε

√
v(1 − v)Ẇ v + Ȧt δvt (x),

where At is the accumulated mass of v being “killed” at its boundary before time t ≥ 0; note that, as it is shown in
Proposition 5.2, up to a certain stopping time, w can be constructed in a way that it satisfies an SPDE similar to the above
but driven by a single noise Ww . Note that f is typically not Lipschitz, so unlike in [21] we cannot control the drift term
f (u)−f (v) by ‖f ‖Lipw. To overcome this, we use Dawson’s Girsanov transformation and remove this drift term under a
new probability measure. However, similarly to what often happens for finite dimensional diffusion processes, one cannot
control the Radon-Nikodym derivative in Dawson’s Girsanov transformation for a long time. So we need to chop off the
time into small intervals {[nT , (n+1)T ) : n ∈ Z+}, and only perform Dawson’s Girsanov transformation on each of those
intervals. By choosing the parameter T small enough, the transformed w will then serve as a good approximation of the
original w on each of those intervals. On the other hand, in order to get a reasonably good upper bound for the long time
propagation speed, we cannot take T too small either. So a balanced value has to be chosen for this interval length T .

Our philosophy of choosing such a value for T works as follows. Consider the random field w by standing at the
moving boundary {(t, x) : x = vt}, that is to say, consider the random field (wt,vt+x : (t, x) ∈R+ ×R). Say L is a typical
distance for the support of this random field to travel in a time interval of length T . We want our T to be chosen so that
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this L not only can be explained by the (parabolic) thermal diffusivity, but also does not give excess speed. That is, we

want both L ∼ √
T and L/T � v. Recalling our choice of v ∼ ε

−2 1−p
1+p , we end up choosing T ∼ ε

4 1−p
1+p . It turns out that

this is also a time span on which Dawson’s Girsanov transformation argument works. We hope this idea, of performing
Dawson’s Girsanov transformations on time intervals with a balanced length, can also be useful for finding propagation
speed in other spacial stochastic models.

Note that we only considered the Wright-Fisher noise
√

u(1 − u)Ẇ . It would be interesting to also consider more
general noise σ(u)Ẇ . We comment here that both in the proofs of our result Theorem 1.1 and of [22, Theorem 1.1], the
Wright-Fisher noise is not essential: what has been really used is the property that

√
z(1 − z) ∼ √

z for small z. However,
to explore the most general conditions for the noise term σ is out of the scope of the current paper.

1.4. Paper outline

The rest of the paper is organized as follows. In Section 2, we recall some preliminary terminology including the solution
concept for the SPDE (1.3). In Section 3, we give the proof of Theorem 1.1(a). We give the proof of Theorem 1.1(b) in
Section 4 while the proofs of the results used for its proof are given in Sections 5–10.

2. Preliminary

In this section, we recall some preliminary terminology including the solution concept to the SPDE (1.3). We first give
some notation. We say a filtered probability space (�,G, (Ft )t≥0,P) satisfies the usual hypotheses if (�,G,P) is a
complete probability space with right-continuous filtration (Ft )t≥0 satisfying {A ∈ G : P(A) = 0} ⊂ F0. We impose the
usual hypotheses on every filtered probability spaces that will be considered in this paper. Given such a space, denote
by Mloc the family of adapted continuous local martingales. For any continuous semi-martingale M , denote by 〈M〉 its
quadratic variation. Given two continuous semi-martingales M , N , let 〈M,N〉 denote their quadratic covariation. In this
paper, we say g is a random field if it is an R-valued stochastic process indexed by R+ ×R. Denote by L 2

loc the family
of predictable random fields g satisfying ∫∫ t

0
g2

s,y ds dy < ∞, t ≥ 0, a.s.

Let BF (R) be the collection of Borel subsets of R with finite Lebesgue measure. We say W = (Ws(A) : A ∈ BF (R), s ∈
R+) is a white noise if it is an adapted orthogonal martingale measure so that for any A,B ∈ BF (R) almost surely〈

W·(A),W·(B)
〉
t
= t · Leb(A ∩ B), t ≥ 0,

where Leb(·) is the Lebesgue measure on R. Given a white noise W , Walsh’s stochastic integral for W is a map from
L 2

loc to Mloc which will be denoted by

g �→
∫∫ ·

0
gs,yW(ds dy).

We refer our reader to [15,29] for more details.
Let us now be precise about the solution concept for the SPDE (1.3). Denote by Ctem the space of continuous functions

g on R such that

‖g‖(−λ) := sup
x∈R

∣∣e−λ|x|g(x)
∣∣< ∞, ∀λ > 0.

Let Ctem be equipped with the topology generated by the norms (‖ · ‖(−λ) : λ > 0), and set C+
tem as the collection of

non-negative elements in Ctem. Let C(R+,Ctem) be the space of continuous Ctem-valued paths with the topology of
uniform convergence on bounded time sets. We say a Borel function f on R satisfies the linear growth condition if
supz∈R |f (z)|/(1 + |z|) < ∞. Assume that Borel functions f and σ on R satisfy the linear growth condition. We say that
(�,G, (Ft )t≥0,P, u,W) is a weak solution to the SPDE

(2.1) ∂tu = ∂2
xu + f (u) + σ(u)Ẇ ,

if (�,G, (Ft )t≥0,P) is a filtered probability space on which a predictable random field u and a white noise W are defined
so that (ut,· : t ≥ 0) ∈ C(R+,Ctem) and

(2.2) ut,x =
∫∫ t

0
Gs,y;t,xMu(ds dy) a.s. (t, x) ∈ (0,∞) ×R,
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where

(2.3) Gs,y;t,x := e
− (x−y)2

4(t−s)√
4π(t − s)

1s<t , (s, y), (t, x) ∈R+ ×R

and

Mu(ds dy) := u0,yδ0(ds)dy + f (us,y)ds dy + σ(us,y)W(ds dy).

Here, the right hand side of (2.2) is a mixture of the classical integral and Walsh’s stochastic integral defined in an obvious
way using linearity. With some abuse of notation, we sometimes just use the random field u to represent the weak solution
if there is no risk of confusion. We refer our reader to [27, Theorem 2.1] for an equivalent definition.

Given a subset Ĉ ⊂ Ctem, we say a weak solution u to the SPDE (2.1) is a Ĉ-valued weak solution if (ut,· : t ≥ 0) is a
Ĉ-valued process. We say the weak existence of the SPDE (2.1) holds in Ĉ for an initial condition g ∈ Ĉ if there exists a
Ĉ-valued weak solution u to (2.1) such that u0,· = g. We say the weak uniqueness of the SPDE (2.1) holds in Ĉ for an
initial condition g ∈ Ĉ if, whenever u and u′ are two Ĉ-valued weak solutions to the SPDE (2.1) such that u0,· = g and
u′

0,· = g, the Ctem-valued processes (ut,· : t ≥ 0) and (u′
t,· : t ≥ 0) induce the same law on C(R+,Ctem).

The weak existence, weak uniqueness, and compact propagation property of the SPDE (1.3) under condition (1.7)
and ε > 0 is studied in [22]. Denote by C[0,1] the space of continuous functions on R taking values in [0,1]. Denote
by CI the family of functions g in C[0,1] with compact interface, i.e. g ∈ C[0,1] and −∞ < L(g) < R(g) < ∞ where
L(g) := inf{x ∈ R : g(x) 
= 1} and R(g) := sup{x ∈ R : g(x) 
= 0}.

Theorem 2.1 ([22]). For any ε > 0 and function f satisfying (1.7), the following holds.

(1) For any initial condition g ∈ CI , the weak existence and weak uniqueness of (1.3) holds in C[0,1].
(2) For any C[0,1]-valued weak solution u to (1.3) with u0,· ∈ CI , it holds that

E

[
sup

s∈[0,t]

∣∣R(us,·) − L(us,·)
∣∣]< ∞, t ≥ 0.

In particular, for any initial condition g ∈ CI , the weak existence and weak uniqueness of (1.3) holds in CI .
(3) There exists a deterministic Vf,ε ∈ R such that for any CI -valued weak solution u to (1.3),

lim
t→∞

R(ut )

t
= Vf,ε, a.s.

Remark 2.2. We refer to Vf,ε as the speed of the traveling front of the SPDE (1.3). We emphasize here that Vf,ε depends
only on the drift function f and the noise strength ε. To see that it is independent of the initial value g, we note that for
any other g̃ ∈ CI , there exists a constant c ∈ R such that

g(x + c) ≤ g̃(x) ≤ g(x − c), x ∈ R.

Therefore, using the comparison principle and the weak uniqueness, for any weak solutions u and ũ to the SPDE (2.1)
with u0,· = g and ũ0,· = g̃ respectively, random field ũ will be dominated stochastically by (ut,x−c : (t, x) ∈ R+ × R)

from above, and by (ut,x+c : (t, x) ∈ R+ ×R) from below. This indicates that the fronts of u and ũ have the same speed.

Note that in Remark 2.2 we used the comparison principle in the absence of the Lipschitz condition. This is justified
by the following lemma whose variants have already appeared in the literature, see [27, Theorem 2.6] and [21, p. 412] for
example.

Lemma 2.3 (Comparison Principle). Let f , f̃ and σ be continuous functions on R satisfying the linear growth condi-
tion. Assume that f̃ ≤ f on R. Let g, g̃ ∈ Ctem satisfy g̃ ≤ g on R. Then, there exists a weak solution u to the SPDE (2.1)
with u0,· = g, and a weak solution ũ to the SPDE

(2.4) ∂t ũ = ∂2
x ũ2 + f̃ (ũ) + σ(ũ)W̃

with ũ0,· = g̃, so that the random field ũ is stochastically dominated by the random field u, i.e. ũ and u can be coupled in
one probability space so that ũt,x ≤ ut,x for every t ≥ 0 and x ∈ R almost surely.
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Remark. Under the condition of the above lemma, if we further assume that the weak uniqueness holds for both the
SPDEs (2.1) and (2.4), then the weak solution ũ to SPDE (2.4) with initial value g̃ is stochastically dominated by the
weak solution u to the SPDE (2.1) with initial value g.

One can prove the above lemma by following the routine arguments in the proof of [27, Theorem 2.6]. Note that when
f̃ (0) = σ(0) = 0 and g̃ ≡ 0, it actually follows directly from [27, Theorem 2.6].

Another general result that will be used very often is the following rescaling lemma of the SPDE (2.1) which can be
proved using a similar argument as in [22, Section 4.1].

Lemma 2.4 (Rescaling). Suppose that Borel functions f and σ on R satisfies the linear growth condition. Suppose that
u is a weak solution to the SPDE (2.1). Let α,β > 0, and vt,x := βuα−4t,α−2x for each (t, x) ∈ R+ ×R. Then there exists
a white noise Wv such that v is a weak solution to the SPDE

∂tv = ∂2
x v + α−4βf

(
β−1v

)+ α−1βσ
(
β−1v

)
Ẇ v.

We end this section by collecting some notations for function spaces. Given a locally compact separable metric space
E, we denote by C(E) the space of continuous functions on E. We write Cb(E), C0(E), and Cc(E), respectively, for the
space of continuous functions on E that are bounded, vanishing at ∞, and having compact support, respectively. Use
C•(E) to represent one of C(E), Cb(E), C0(E) or Cc(E). If E ⊂R

d , we define C0•(E) := C•(E), and inductively

Cn• (E) := {
φ ∈ C•(E) : ∂xk

φ ∈ Cn−1• (E),∀k = 1, . . . , d
}
, n ∈N,

and C∞• (E) :=⋂∞
n=1 Cn• (E). If E = T×R with the time interval T ⊂R+, we define

C1,2• (E) := {
φ ∈ C•(E) : ∂tφ, ∂2

xφ ∈ C•(E)
}
.

3. Proof of Theorem 1.1(a)

Note that we only have to prove the result for every f ∈ {f (δ) : δ ∈ (0,1/2]} where

f (δ)(z) := zp10≤z≤δ + (
2δp − δp−1z

)
1δ<z≤2δ, z ∈ [0,1].

This is because for any general function f satisfying (1.7) and (1.9), there exists c > 0 and 0 < δ ≤ 1/2 such that

f (z) ≥ cf (δ)(z), z ∈ [0,1].
Using Lemmas 2.3 and 2.4 we have

Vf,ε = c1/2Vc−1f,c−1/4ε ≥ c1/2Vf (δ),c−1/4ε .

Therefore, to show lim infε↓0 ε
2 1−p

1+p Vf,ε is positive we only have to show lim infε↓0 ε
2 1−p

1+p Vf (δ),ε is positive. So in the

remainder of this section, without loss of generality, let us fix an arbitrary δ ∈ (0,1/2] and assume that f ≡ f (δ).
The idea of the proof is to use the comparison principle and the rescaling lemma for the SPDEs to replace our non-

Lipschitz drift f by some continuous tent function

H(z; l, h) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z ∈ (−∞,0],
h

l
z, z ∈ (0, l),

h, z = l,

2h − h

l
z, z ∈ (l,2l),

0, z ∈ [l,∞).

Here, the parameters l ∈ (0,1/2] and h > 0 of this tent function will be chosen more precisely later. This will allow us to
analyze the speed of the system using the following result from [21]. For any β > 0, define CI,β := {βg : g ∈ CI }.

Lemma 3.1 ([21]). There exists a γ0 > 0 so that the following statement holds. Suppose that



Effect of noise on RDE with non-Lipschitz drift 2389

• γ ∈ (0, γ0) and β > 0;
• σ is a non-negative function on R+ such that σ 2 is Lipschitz and that σ 2(z) ≤ z for every z ∈ R+;
• for any initial condition g ∈ CI,β , the weak existence and the weak uniqueness of the SPDE

(3.1) ∂tv = ∂2
x v + H(v;1/2,1/2) + γ σ(v)Ẇ

holds in CI,β .

Then for any CI,β -valued weak solution v to (3.1), it holds that

(3.2) lim inf
t→∞

R(vt,·)
t

≥ 2 − π2

| logγ 2|2 − 2π2[11 log | logγ | − log(1/2)]
| logγ 2|3 , a.s.

Remark 3.2. Lemma 3.1 is a corollary of [21, Theorem 1.1] except that now the function σ is not required to satisfy [21,
(1.5)] and the parameter γ0 is universal. We justify this by observing that condition [21, (1.5)] is actually not needed in
the proof of the lower bound of [21, Theorem 1.1], and that the parameter γ0, chosen as the ε0 from [21, Lemma 4.1], is
only related to the drift function f , which, in our case, is the fixed tent function H(·;1,1/2).

Proof of Theorem 1.1(a). Step 1. Let us fix the value γ := min{γ0, e
−4} where γ0 is given as in Lemma 3.1. One can

easily check now the right hand side of (3.2) is larger than 1.
Step 2. Let q := 4/(1 + p) and define ε0 > 0 so that (ε0/(

√
2γ ))q = δ. Fix an arbitrary ε ∈ (0, ε0) and define ε :=

ε/(
√

2γ ). Observe that εq ≤ δ. As a consequence, we have that the tent function H(·; εq, εqp) ≤ f (·).
Step 3. Let u be a CI -valued weak solution to the SPDE (1.3). Now, from Step 2 and the comparison principle, we can

construct a CI -valued weak solution u to the SPDE

(3.3) ∂tu = ∂2
xu + H

(
u; εq, εqp

)+ ε
√

u(1 − u)Ẇu,

where Wu is a white noise, so that the random field u is stochastically dominated by u.
Step 4. Define the random field

vt,x := βuα−4t,α−2x, (t, x) ∈R+ ×R,

where α := ε−(1−p)q/4 and β := 1/(2εq). Then, we can easily verify from Lemma 2.4 that there exists a white noise Wv

such that v is a CI,β -valued weak solution to the SPDE

(3.4) ∂tv = ∂2
xv + H(v;1/2,1/2) + γ

√
v
(
1 − 2εqv

)
Ẇ v.

Step 5. We now verify from Lemma 3.1 and Step 1 that lim inft→∞ R(vt,·)
t

≥ 1 almost surely. Note that the weak
uniqueness of the SPDE (3.4) in CI,β is inherited from the weak uniqueness of the SPDE (3.3) in CI , which is justified by
Theorem 2.1(2).

Final Step. Note that for any t ≥ 0,

R(ut,·) = sup{x ∈ R : ut,x 
= 0} = sup
{
α−2x ∈ R : βuα−4(α4t),α−2x 
= 0

}
= α−2 sup{x ∈ R : vα4t,x 
= 0} = α−2R(vα4t,·).

Therefore,

Vf,ε = lim
t→∞

R(ut,·)
t

Step 3≥ lim inf
t→∞

R(ut,·)
t

= lim inf
t→∞

α−2R(vα4t,·)
t

= lim inf
t→∞

α2R(vα4t,·)
α4t

Step 5≥ α2 = ε
−2 1−p

1+p = (
√

2γ )
2 1−p

1+p · ε−2 1−p
1+p .

Finally, noticing that ε is arbitrarily chosen from (0, ε0), and that γ = min{γ0, e
−4} is independent of the choice of this

ε, by taking ε ↓ 0, we get

lim inf
ε↓0

ε
2 1−p

1+p Vf,ε ≥ (
√

2γ )
2 1−p

1+p > 0. �
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4. Proof of Theorem 1.1(b)

From now on, we write σ(z) = √
z(1 − z) for z ∈ [0,1] since we will only consider the Wright-Fisher noise. We first

assume without loss of generality that f = f̃ where

f̃ (z) := zp ∧ √
1 − z, z ∈ [0,1].

We can do this because for any general f satisfying (1.7) and (1.10), it holds that

K := sup
z∈[0,1]

f (z)/f̃ (z) < ∞.

By using Lemmas 2.3 and 2.4, we can then verify that

ε
2 1−p

1+p Vf,ε = ε
2 1−p

1+p
√

KVf/K,ε/K1/4 ≤ K
1

1+p ε̃
2 1−p

1+p V
f̃ ,ε̃

,

where ε̃ = ε/K1/4. From here, it is clear that if Theorem 1.1(b) holds for f = f̃ , then it also holds for every f satisfying
(1.7) and (1.10).

To get an upper bound for the speed, we will construct a sequence of updating frontiers and control the propagation
of u using an updating procedure. The updating frontiers are shifts of a non-increasing function F̃ ∈ CI which will be
specified below in (4.7). More precisely, the n-th updating frontier will be defined as

F̃ (n)(x) := F̃ (x − ndvT ), x ∈ R, n ∈ Z+,

where d,v, T > 0 are parameters that will be specified below in (4.4) and (4.5). Define ξ0 = 0, and inductively for each
n ∈ Z+, construct a stopping time ξn+1 and a CI -valued process t �→ ũt on [ξn, ξn+1), with a driving space-time white
noise Wũ, such that ⎧⎪⎨⎪⎩

∂t ũ = ∂2
x ũ + f (ũ) + εσ (ũ)Ẇ ũ, t ∈ [ξn, ξn+1),

ũξn,· = F̃ (n)(·),
ξn+1 = (ξn + T ) ∧ inf

{
t ≥ ξn : ũt,x > F̃ (n+1)(x) for some x ∈R

}
.

Note that the CI -valued process (ũt )t≥0 is not continuous anymore, because it may jump at the stopping times (ξn)n∈N.
By the comparison principle, ũ will travel faster than the original process. This allows us to get an upper bound of Vf (ε)

by calculating the speed of the new process ũ. However, in order to get a reasonably good upper bound, we need to
choose F̃ , d , v and T , parameters in this updating procedure, carefully according to the noise strength ε. So, for the
sake of precision, let us first give our choice of F̃ , d , v and T here, along with several other quantities that will be used
throughout the rest of the paper.

(4.1) Let us fix a constant θ ∈ (1/2,1) and define

κ := (
p

p
1−p − p

1
1−p
)
θ

p
p−1 (1 − θ)

1
p−1 .

Since p ∈ [1/2,1) we can verify that κ > 0 and κp−1 ≤ 1.
(4.2) Fix a K > 0 large enough so that

25
∞∑

n=1

exp
(−2−22e−2θ(2−θ)Ke(2θ−1)n

)≤ 1/8.

(4.3) Let us fix a constant γ > 0 small enough so that

27√γ exp{3γ ν} ≤ 1/8; νp ≤ ν/4; K/γ ≥ 2,

where ν := 24 + (25K + 214K1/2)γ −1.
(4.4) Define k := K/γ and d := k + ν + 1.
(4.5) For each ε > 0 let us define ε, v, T and L so that the following hold:

ε = γ ε2, ε = κv
p+1
p−1 , T = v−2, L = v−1.
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(4.6) Let us fix an ε0 > 0 small enough so that for any ε ∈ (0, ε0),

νεL ≤ 1/4 and 213
√

ε2L ≤ 1/4.

(4.7) For each ε > 0, define F(x) := ε
θv (e−θvx − 1)1x≤0 and F̃ (x) := 1 ∧ F(x) for every x ∈ R.

Remark. The constants θ , κ , K, γ , ν, k, d and ε0 above are independent of the noise strength ε. We are choosing those
constants in a technical way, far from their optimal choice, in order to simplify several formulations below.

Remark. The variables ε, v, T , L, F(·) and F̃ (·) are chosen depending on the noise strength ε. The intended intu-
ition behind those variables are discussed in Section 1.3. In particular, one can verify from (4.5) that the speed of the

moving boundary is v = (κ−1γ )
− 1−p

1+p ε
−2 1−p

1+p , the length of the time interval to apply the Girsanov transformation is

T = (κ−1γ )
2 1−p

1+p ε
4 1−p

1+p , and the typical distance for the solution to travel in a time interval of length T is L = √
T = vT .

With the choice of the above quantities, we can verify the following proposition whose proof is postponed to Section 5.

Proposition 4.1. For any ε ∈ (0, ε0) and any CI -valued weak solution u to the SPDE (1.3) on a filtered probability space
(�,G, (Ft )t≥0,P) with u0,· = F̃ , it holds that

P
(∀(t, x) ∈ [0, T ] ×R, ut,x ≤ F̃ (1)(x)

)≥ 1/2.

Below we show that this proposition is sufficient for the proof of Theorem 1.1(b).

Proof of Theorem 1.1(b). Fix an arbitrary ε ∈ (0, ε0), and let u be a CI -valued weak solution to the SPDE (1.3) with
u0,· = F̃ . Let the process ũ be constructed using the updating procedure described at the beginning of this section with
parameters F̃ , d , v and T given as in (4.1)–(4.7). The corresponding updating times are denoted by (ξn)n≥0. By the
comparison principle, without loss of generality, we assume that ũ and u are constructed on the same filtered probability
space (�,G, (Ft )t≥0,P) such that ũt,x ≥ ut,x for each (t, x) ∈ R+ × R. Note, from the strong Markov property, that
(ξn+1 − ξn)n∈Z+ is a sequence of i.i.d. random variables. Also note from Proposition 4.1 that

P(ξ1 = T ) ≥ P
(∀(t, x) ∈ [0, T ] ×R, ut,x ≤ F̃ (1)(x)

)≥ 1/2.

So by the strong law of large numbers, we have almost surely

lim
n→∞

ξn

n
= E[ξ1] ≥ T · P(ξ1 = T ) ≥ T/2.

Also observe that from the way ũ is constructed, we always have

R(ũξn,·) = R
(
F̃ (n)

)= ndvT , n ∈ N.

Now we can verify that

Vf,ε := lim
t→∞

R(ut )

t
≤ lim inf

t→∞
R(ũt )

t
≤ lim inf

n→∞
R(ũξn)

ξn

≤ 2dv = 2d
(
κ−1γ ε2)− 1−p

1+p .

Finally, note that d , κ and γ are independent of the choice of ε ∈ (0, ε0), and hence we are done. �

5. Proof of Proposition 4.1

Let us fix an arbitrary ε ∈ (0, ε0). Let ε, v, L, T , F , k and ν be given as in (4.1)–(4.7). The function F plays an important
role in the updating procedure described in Section 4. The main reason we choose F as in (4.7) is given by the following
analytical lemma. Let us define

(5.1) �t,x := F(x − vt), t ≥ 0, x ∈R; f̄ (z) := (1 − θ)θv2z + (1 − θ)vε, z ∈R+.

As explained in the beginning of Section 4, we only consider the case f = f̃ .
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Lemma 5.1. For every z ∈ [0,1], it holds that f̄ (z) ≥ f (z). Moreover, (�t,x : t ≥ 0, x ∈R) is the solution to the PDE

(5.2)

{
∂t� = ∂2

x� + f̄ (�), x < vt,

� = 0, x ≥ vt,

with initial condition �0,· = F .

Proof. Step 1. It can be verified directly that � satisfies (5.2).
Step 2. To finish the proof, we show that f̄ (z) ≥ zp for all z ≥ 0. Note that

• f̄ is a linear function with slope (1 − θ)θv2; and
• z �→ zp is a concave function on [0,∞).

So we only have to show that f̄ (z0) ≥ z
p

0 where z0 > 0 solves ∂zz
p|z=z0 = (1− θ)θv2. Actually, it is easy to calculate that

z0 = (p−1(1− θ)θv2)
1

p−1 . From this, and how κ and ε are defined in (4.1) and (4.5), we can verify that f̄ (z0)− z
p

0 = 0. �

Recall that σ(z) = √
z(1 − z) for z ∈ [0,1]. To build a connection between � and u we use the following two SPDEs:

(5.3)

{
∂tv = ∂2

x v + f (v) + εσ (v)Ẇ v, x < vt,

v = 0, x ≥ vt;
and

(5.4)

{
∂t v̄ = ∂2

x v̄ + f̄ (v̄) + εσ (v̄)Ẇ v̄, x < vt,

v̄ = 0, x ≥ vt.

Let us be precise about the solution concept of (5.3) and (5.4) by first introducing a kernel G(v). For each (s, y) ∈
R+ × R, let B = (Bt )t≥s be a one dimensional Brownian motion with generator ∂2

x initiated at time s and position y

defined on a filtered probability space with probability measure denoted as �s,y . In the sequel, we will use �s,y for the
expectation with respect to the measure �s,y in addtion to for the measure itself. Let us define

(5.5) ρ := inf{t : Bt ≥ vt}.
Denote by bB(R) the space of all bounded Borel functions on R. It can be verified that for each 0 ≤ s < t < ∞ and
y < vs there exists a unique continuous map x �→ G

(v)
s,y;t,x from (−∞,vt) to (0,∞) such that∫ vt

−∞
G

(v)
s,y;t,xϕ(x)dx = �s,y

[
ϕ(Bt ); t < ρ

]
, ϕ ∈ bB(R).

The precise expression of G(v) can be calculated using the reflection principle and the Girsanov transformation for the
Brownian motion (see [21, Proof of Lemma 6.2]). We define G

(v)
s,y;t,x = 0 on {(s, y; t, x) : 0 ≤ s < t, y < vs, x < vt}c for

convention.
We say (�,G, (Ft )t≥0,P, v,Wv) is a weak solution to the SPDE (5.3), if (�,G, (Ft )t≥0,P) is a filtered probability

space on which a predictable random field v and a white noise Wv are defined so that (vt,· : t ≥ 0) is a Ctem-valued
continuous process satisfying

vt,x =
∫∫ t

0
G

(v)
s,y;t,xM

v(ds dy), a.s. t > 0, x ∈R,

where

(5.6) Mv(ds dy) := v0,yδ0(ds)dy + f (vs,y)ds dy + σ(vs,y)W
v(ds dy).

With some abuse of notation, we sometimes only use the random field v to represent a weak solution to the SPDE (5.3)
if there is no risk of confusion. Given a subset Ĉ ⊂ Ctem, we say a weak solution v to the SPDE (5.3) is a Ĉ-valued weak
solution if (vt,· : t ≥ 0) is a Ĉ-valued process. The concept of weak solution to the SPDE (5.4) is given in a similar way.

The main idea behind the proof of Proposition 4.1 is that v can be shown to satisfy the property which is similar to
that desired for u in Proposition 4.1; and if u and v have the same initial value F̃ then they can be coupled in such a way
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that they don’t deviate from each other “too much” before time T . This coupling is described in the following proposition
whose proof is postponed to Section 6. The difference between u and v in the coupling will be controlled by a random
field w.

Proposition 5.2. There exists (v,Wv; v̄,W v̄;w,Ww;u,Wu) defined on a filtered probability space (�,G, (Ft )t≥0,P)

such that the followings holds.

(1) Wv , Wv̄ , Ww and Wu are space-time white noises adapted to the same filtration (Ft )t≥0. Furthermore, Wv and Ww

are independent of each other, that is to say, the two families of random variables {Wv
t (A) : t ≥ 0,A ∈ BF (R)} and

{Ww
t (A) : t ≥ 0,A ∈ BF (R)} are independent.

(2) v is a C[0,1]-valued weak solution to the SPDE (5.3) with v0,· = F̃ .
(3) v̄ is a C+

tem-valued weak solution to the SPDE (5.4) with v̄0,· = F .
(4) Almost surely v̄ ≥ v on R+ ×R.
(5) u is a CI -valued weak solution to the SPDE (1.3) with W = Wu and u0,· = F̃ .
(6) w is a non-negative predictable random field such that (wt,· : t ≥ 0) is a Ctem-valued continuous process, and for

every φ ∈ C∞
c (R+ ×R) and t ≥ 0,

(5.7)

∫
φt,xwt,x dx =

∫∫ t

0
ws,y

(
∂sφs,y + ∂2

yφs,y

)
ds dy +

∫ t

0
φs,vs dAs

+
∫∫ t

0
φs,y

(
f w

s,y ds dy + εσw
s,yW

w(ds dy)
)
, a.s.

Here, f w and σw are random fields defined as follows: for every (s, y) ∈ R+ ×R,

f w
s,y := ∣∣f (vs,y + ws,y) − f (vs,y)

∣∣1y∈[−L,vT +L],vs,y+ws,y≤νεL,

σw
s,y :=

√∣∣σ(vs,y + ws,y)2 − σ(vs,y)2
∣∣∨ ws,y

2
;

and (At )t≥0 is an adapted non-decreasing continuous process such that for every t ≥ 0,

At =
∫∫ t

0
�s,y(ρ ≤ t)Mv(ds dy), a.s.,

where Mv is defined in (5.6).
(7) It holds almost surely that

u = v + w on [0, τ ] ×R.

Here the optional time

τ := min{T , τ1, τ2}
is defined using

τ1 := inf

{
t ∈ [0, T ] :

∫ t

0
ds

∫
[−L,vT +L]c

ws,y dy > 0

}
,

τ2 := inf
{
t ∈ [0, T ] : vt,x + wt,x ≥ νεL for some x ∈ [−L,vT + L]},

with the convention that the infimum of the empty set is infinite.

Remark. In the above proposition, τ1 and τ2 are the stopping times for the field w getting too large. In particular, τ1 is
the stopping time when the support of w can not be contained in [−L,vT +L], and τ2 is the stopping when the maximum
of v + w on [−L,vT + L] exceeds the level νεL.

We will show that v satisfies a similar property which we desired for u. This is done in the following proposition
whose proof is postponed to Section 9.
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Proposition 5.3. Let v be given by Proposition 5.2. Then P(τ3 < T ) < 1/8 where

τ3 := inf
{
t ∈ [0, T ] : vt,x ≥ F(x − vt) + kεLe−θv(x−vt)1x≤vt for some x ∈ (−∞,vt]}.

From Proposition 5.2 (7), the difference between u and v can be controlled by the process w up to the stopping time
τ . We use the following two propositions to control this stopping time. Their proofs are postponed later to Sections 7 and
10 respectively.

Proposition 5.4. Let τ1 be given by Proposition 5.2. Then it holds that P(τ1 < T ) < 1/8.

Proposition 5.5. Let τ1 and τ2 be given by Proposition 5.2. Let τ3 be given by Proposition 5.3. Then it holds that
P(τ2 < T,τ3 ≥ T , τ1 ≥ T ) < 1/8.

We are now ready to give the proof of Proposition 4.1 using Propositions 5.2–5.5.

Proof of Proposition 4.1. Thanks to the weak uniqueness, we only have to prove the desired result for a specific CI -
valued weak solutions with initial value F̃ . So, let us take the weak solution u to the SPDE (1.3) given as in Proposi-
tion 5.2. Let also v, w, τ1, τ2 be as in Proposition 5.2, and τ3 as in Proposition 5.3. To get the desired result we only have
to verify that

(5.8)
⋂

i=1,2,3

{τi ≥ T } ⊂ {∀(t, x) ∈ [0, T ] ×R, ut,x ≤ F̃ (1)(x)
}
,

since by Propositions 5.3–5.5,

P

( ⋂
i=1,2,3

{τi ≥ T }
)

= 1 − P
({τ1 < T } ∪ {τ2 < T,τ1 ≥ T , τ3 ≥ T } ∪ {τ3 < T })

≥ 1 − (
P(τ1 < T ) + P(τ2 < T,τ1 ≥ T , τ3 ≥ T ) + P(τ3 < T )

)≥ 1/2.

In the rest of the proof, we verify (5.8). First note that for any x ∈ R and l > 0,

F(x − l) − F(x) = ε

θv

(
e−θv(x−l) − 1

)
1x−l≤0 − ε

θv

(
e−θvx − 1

)
1x≤0

≥ ε

θv
e−θvx

(
eθvl − 1

)
1x≤0 ≥ εle−θvx1x≤0 ≥ εl1x≤0.

(5.9)

Then notice that almost surely on the event
⋂

i=1,2,3{τi ≥ T }, we have

ut,x = vt,x + wt,x, t ∈ [0, T ], x ∈ R;
wt,x ≤ νεL1x∈[−L,vT +L], t ∈ [0, T ], x ∈R;
vt,x ≤ F(x − vt) + kεLe−θv(x−vt)1x≤vt , t ∈ [0, T ], x ∈R.

Therefore, almost surely on event
⋂

i=1,2,3{τi ≥ T }, we have that for any (t, x) ∈ [0, T ] ×R,

ut,x = vt,x + wt,x ≤ F(x − vt − kL) + νεL1x∈[−L,vT +L]
≤ F(x − vT − kL) + νεL1x−vT −kL≤0 ≤ F

(
x − vT − (k + ν)L

)
.

In the second inequality above, we used the fact that F is non-increasing and that k ≥ 1. The third inequality follows
easily by (5.9).

Finally, noticing that ut,x ≤ 1 and according to (4.5) that L = vT , (5.8) follows. �

6. Proof of Proposition 5.2

The main idea is that the SPDE (5.3) can be written equivalently as

∂tv = ∂2
x v + f (v) + εσ (v)Ẇ v − δvt (x)Ȧt ,
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where (At )t≥0 is this adapted, real-valued, continuous, non-decreasing process for Proposition 5.2 (6). We will refer to
(At )t≥0 as the killing process of v at its boundary. The existence of this killing process is given by the next lemma. Recall
that, under probability �s,y , (Br)r≥s is a Brownian motion with generator ∂2

x initiated at time s and position y, and ρ is
given by (5.5).

Lemma 6.1. Suppose that v is a C[0,1]-valued weak solution to the SPDE (5.3) with v0,· = F̃ . Then

(1) for each φ ∈ C1,2
c (R+ ×R) and t ≥ 0 it holds almost surely that,

(6.1)

∫
φt,xvt,x dx =

∫∫ t

0
φs,yM

v(ds dy) +
∫∫ t

0
vs,y

(
∂sφs,y + ∂2

yφs,y

)
ds dy

−
∫∫ t

0
�s,y[φρ,Bρ ; t ≥ ρ]Mv(ds dy),

where Mv is given by (5.6) and ρ is defined in (5.5);
(2) there exists an adapted, real-valued, almost surely non-decreasing continuous process (At )t≥0 satisfying that for each

t ≥ 0 and bounded Borel measurable function ψ on R+,

(6.2)
∫ t

0
ψs dAs =

∫∫ t

0
�s,y[ψρ; t ≥ ρ]Mv(ds dy), a.s.

Proof of Lemma 6.1(1). Step 1. Using the stochastic Fubini theorem (cf. [15, Lemma 2.4] for example) we can verify
that for all t ≥ 0∫

vt,xφt,x dx =
∫

dx

∫∫ t

0
φt,xG

(v)
s,y;t,xM

v(ds dy) =
∫∫ t

0
Mv(ds dy)

∫
φt,xG

(v)
s,y;t,x dx, a.s.

Step 2. Using the stochastic Fubini theorem again we can verify that for all t ≥ 0∫∫ t

0

(
∂rφr,x + ∂2

xφr,x

)
vr,x dr dx =

∫∫ t

0
dr dx

∫∫ r

0

(
∂rφr,x + ∂2

xφr,x

)
G

(v)
s,y;r,xM

v(ds dy)

=
∫∫ t

0
Mv(ds dy)

∫∫ t

s

G
(v)
s,y;r,x

(
∂rφr,x + ∂2

xφr,x

)
dr dx, a.s.

Step 3. We show that for each (s, y) ∈ R+ ×R,∫
G

(v)
s,y;t,xφt,x dx + �s,y[φρ,Bρ ; t ≥ ρ] = φs,y +

∫∫ t

s

G
(v)
s,y;r,x

(
∂rφr,x + ∂2

xφr,x

)
dr dx.

In fact, according to Ito’s formula (see [24, p. 147] for example), we know that under probability �s,y ,

φt,Bt − φs,y −
∫ t

s

(
∂rφr,x + ∂2

xφr,x

)|x=Br dr =
∫ t

s

∂xφr,x |x=Br dBr, t ≥ s,

is a zero-mean L2-martingale. Then, according to optional sampling theorem (see [16, Theorem 7.29] for example) we
have

�s,y[φt∧ρ,Bt∧ρ ] = φs,y +
∫ t

s

�s,y

[(
∂rφr,x + ∂2

xφr,x

)|x=Br ; r < ρ
]

dr.

Step 4. We note from the fact φ ∈ C1,2
c (R+ ×R) and that v, f , σ take values in [0,1], the following stochastic integral∫∫ t

0
φs,yM

v(dsdy) =
∫

φ0,yv0,y dy +
∫∫ t

0
φs,yf (vs,y)ds dy +

∫∫ t

0
φs,yσ (vs,y)W

v(ds dy)

is well-defined.
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Final Step. We verify that almost surely,∫
vt,xφt,x dx

Step 1=
∫∫ t

0
Mv(ds dy)

∫
G

(v)
s,y;t,xφt,x dx

Step 3=
∫∫ t

0
Mv(ds dy)

(
φs,y +

∫∫ t

s

G
(v)
s,y;r,x

(
∂rφr,x + ∂2

xφr,x

)
dr dx − �s,y[φρ,Bρ ; t ≥ ρ]

)
Steps 2 and 4=

∫∫ t

0
φs,yM

v(ds dy) +
∫∫ t

0

(
∂rφr,x + ∂2

xφr,x

)
vr,x dr dx

−
∫∫ t

0
�s,y[φρ,Bρ ; t ≥ ρ]Mv(ds dy)

as desired. �

Proof of Lemma 6.1(2). For each t ≥ 0, choose a φ ∈ C1,2
c (R+ ×R) such that φs,vs = 1 for every s ∈ [0, t]. Use this φ

in (6.1) to get that for each t ≥ 0 the following random variable is well defined:

Ãt :=
∫∫ t

0
�s,y[t ≥ ρ]Mv(ds dy)

= −
∫

φt,xvt,x dx +
∫∫ t

0
φs,yM

v(ds dy) +
∫∫ t

0
vs,y

(
∂sφs,y + ∂2

yφs,y

)
ds dy.

It’s easy to see that (Ãt )t≥0 has a continuous modification which will be denoted by (At )t≥0. To see that (At )t≥0 is almost
surely non-decreasing, define

φ
(m)
t,x := ϕ(x−vt)m, (t, x) ∈ R+ ×R,m ∈N,

where

ϕx :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ∈ [1,∞),(
18x2 + 6x + 1

)
(1 − x)3, x ∈ [0,1],

(x + 1)3, x ∈ [−1,0],
0, x ∈ (−∞,−1].

Use φ(m) instead of φ in (6.1) to get that, for each m ∈ N and t ≥ 0,

At = I(m)
t + II(m)

t , a.s.,

where

I(m)
t :=

∫∫ t

0
φ(m)

s,y Mv(ds dy) −
∫

φ
(m)
t,x vt,x dx

and

II(m)
t :=

∫∫ t

0
vs,y

(
∂sφ

(m)
s,y + ∂2

yφ(m)
s,y

)
ds dy.

Observe that φ
(m)
s,y ↓ 0 as m ↑ ∞ on {(s, y) ∈ R+ ×R : y < vs}. This allows us to use the monotone convergence theorem

and [16, Proposition 17.6] to get that for each t ≥ 0, I(m)
t converges to 0 in probability as m → ∞. Fix arbitrary r < t

in R+. [16, Lemma 4.2] allows us to choose an unbounded N ⊂ N so that I(m)
t − I(m)

r convergence to 0 almost surely as
m → ∞, m ∈ N. Now we have almost surely

(6.3)

At − Ar = lim
m→∞,m∈N

(
II(m)

t − II(m)
r

)
= lim

m→∞,m∈N

∫ t

r

ds

∫ vs

vs− 1
m

vs,y · 3
(
1 + (y − vs)m

)(−vm
(
1 + (y − vs)m

)+ 2m2)dy

≥ lim
m→∞,m∈N

∫ t

r

ds

∫ vs

vs− 1
m

vs,y · 3
(
1 + (y − vs)m

)(−vm + 2m2)dy ≥ 0.
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From this and the fact that (At )t≥0 has continuous sample path, we have that t �→ At is non-decreasing almost
surely.

Denote by bB(R+) the space of bounded Borel functions on R+. Fix a time t ≥ 0 and define H := {ψ ∈ bB(R+) :
(6.2) holds for ψ}. From the definition of (At )t≥0 and the fact that it has non-decreasing sample path almost surely, we
can verify that K ⊂ H where K is given by (7.5). One can verify from monotone convergence theorem and [16,
Proposition 17.6] that H is a monotone vector space in the sense of [25, p. 364]. Also observe that K is closed under
multiplication. Therefore using monotone class theorem ([25, Theorem A0.6]) we get bB(R+) = σ(K ) ⊂ H . �

Proof of Proposition 5.2. Step 1. Using a strategy similar to the proof of [21, Proposition 5.1], we can verify that there
exists a filtered probability space (�,G, (Ft )t≥0,P) and stochastic elements (v,Wv; v̄,W v̄;w,Ww) on it such that

• Wv , Wv̄ and Ww are white noises where Ww is independent of Wv ; and
• (2), (3), (4) and (6) of Proposition 5.2 hold.

Lemma 6.1 is used here to justify that the second term on the right hand side of (5.7) is well-defined.
Step 2. Define optional time τ as in Proposition 5.2 (7) using v and w constructed in Step 1. Extending the space

(�,G, (Ft )t≥0,P) if necessary, we can construct a pair (u, W̃ ) so that

• W̃ is a white noise independent of (v,Wv; v̄,W v̄;w,Ww);
• u is a C[0,1]-valued weak solution to the SPDE{

u = v + w, on [0, τ ] ×R,

∂tu = ∂2
xu + f (u) + εσ (u) ˙̃W, on [τ,∞) ×R.

The existence of such u after the optional time τ is due to [27, Theorem 2.6].
Step 3. We will show that almost surely

(6.4) σw
s,y =

√
σ(vs,y + ws,y)2 − σ(vs,y)2, (s, y) ∈ [0, τ ] ×R

and

f w
s,y = f (vs,y + ws,y) − f (vs,y), (s, y) ∈ [0, τ ] ×R.

This is obvious for (s, y) ∈ [0, τ ] × [−L,vT + L]c since in this case ws,y = 0. Let us now consider the case (s, y) ∈
[0, τ ] × [−L,vT + L]. Note that in this case, from the definition of τ and (4.6) we have vs,y + ws,y ≤ νεL ≤ 1/4. We
also observe that for any v,w ∈ [0,1] satisfying v+w ≤ 1/4, we have w/2 ≤ σ(v+w)2 −σ(v)2 and 0 ≤ f (v+w)−f (v),
and therefore √∣∣σ(v + w)2 − σ(v)2

∣∣∨ w

2
=
√

σ(v + w)2 − σ(v)2

and |f (v + w) − f (v)| = f (v + w) − f (v). Thus, the desired result in this step follows.
Step 4. We can verify that there exists a white noise Wu so that for any g ∈ L 2

loc,

(6.5)

∫∫ t

0
gs,yW

u(ds dy) =
∫∫ t

0

gs,y1Bs,y

σ (vs,y + ws,y)

(
σ(vs,y)W

v(ds dy) + σw
s,yW

w(ds dy)
)

+
∫∫ t

0
gs,y1Bc

s,y
W̃ (ds dy), t ≥ 0, a.s.,

where for each (s, y) ∈ R+ ×R the event Bs,y := {s ≤ τ, σ (vs,y + ws,y) > 0}. To see this, one only have to calculate the
quadratic variation of the right hand side of (6.5) using (6.4) and the fact that Ww , Wv and W̃ are mutually independent.

Final step. Observe from Step 4 that for any (t, x) ∈ R+ ×R,∫∫ t

0
Gs,y;t,xσ (us,y)W

u(ds dy) =
∫∫ t

0
Gs,y;t,x

(
σ(vs,y)W

v(ds dy) + σw
s,yW

w(ds dy)
)

holds almost surely on the event {t ≤ τ }; also∫∫ t

τ

Gs,y;t,xσ (us,y)W
u(ds dy) =

∫∫ t

τ

Gs,y;t,xσ (us,y)W̃ (ds dy)
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holds almost surely on the event {t > τ }. We can then verify that u is a C[0,1]-valued weak solution to the SPDE (1.3) with
W = Wu, u0,· = F̃ . Thus, Proposition 5.2(5) follows from Theorem 2.1(2). �

7. Proof of Proposition 5.4

Let us write (5.7) in the following short form:

∂tw = ∂2
xw + f w + σwẆw + δvt (x)Ȧt .

The first step of the proof is to remove the drift term f w using Dawson’s Girsanov transformation. We summarize this
transformation in the following lemma. We refer the reader to [9, Section 10.2.1] for its proof. Notice that in this section,
since we are dealing with more than one probability measure, we sometimes write “P-

∫∫
” for the stochastic integral to

emphasize the underlying probability measure P.

Lemma 7.1. Suppose that W is a white noise defined on a filtered probability space (�,G, (Ft )t≥0,P). Suppose that h

is a real-valued predictable random field satisfying

E

[
exp

{
1

2

∫∫ ∞

0
h2

s,y ds dy

}]
< ∞.

Then under the probability measure Q given by

dQ := exp

{∫∫ ∞

0
hs,yW(ds dy) − 1

2

∫∫ ∞

0
h2

s,y ds dy

}
dP,

there exists a white noise W̃ satisfying that for each g ∈ L 2
loc almost surely

Q-
∫∫ t

0
gs,yW̃ (ds dy) = P-

∫∫ t

0
gs,yW(ds dy) −

∫∫ t

0
hs,ygs,y ds dy.

Remark. Let Q and P be the probability measure in Lemma 7.1. One can verify that Q and P are mutually absolute
continuous. In other word, A ⊂ � is a Q-null set if and only if A is a P-null set. Therefore, the filtered probability space
(�,G, (Ft )t≥0,Q) also satisfies the usual hypotheses; and there is no need to distinguish between “P-a.s.” and “Q-a.s.”.

Later in the proof of Proposition 5.4, we will construct a new probability measure Q, using Lemma 7.1, under which
w will satisfy

∂tw = ∂2
xw + σw ˙̃

Ww + δvt (x)Ȧt , t ∈ [0, T ], x ∈ R,

where W̃w is a white noise under Q. In order to study the support of w under this new probability, we will need the
following proposition. In what follows, we say that a random measure μ on a Polish space S has finite mean if its mean
measure (Eμ)(·) := E[μ(·)] is a finite measure on S. For more on random measures see [17].

Proposition 7.2. Let T̃ > 0 be arbitrary. Suppose that w̃ is an adapted non-negative continuous random field, defined on
a filtered probability space (�,G, (Ft )t≥0,Q), such that (w̃t,· : t ≥ 0) is a Ctem-valued continuous process, and for each
t ∈ [0, T̃ ] and φ ∈ C∞

c ([0, T̃ ] ×R),

(7.1)
∫

φt,xw̃t,x dx =
∫∫ t

0
w̃s,y

(
∂sφs,y + ∂2

yφs,y

)
ds dy +

∫∫ t

0
φs,y

(
σ̃s,yW(ds dy) + μ(ds dy)

)
, a.s.

Here σ̃ is a predictable random field, W is a white noise, and μ is a random measure on [0, T̃ ] × R with finite mean.
Suppose that there exist deterministic ϑ̃ ≥ ϑ > 0 satisfying that almost surely ϑ̃

√
w̃ ≥ σ̃ ≥ ϑ

√
w̃ on R+ × R. Then for

each −∞ ≤ a < b ≤ ∞ it holds that

Q

(∫ T̃

0
ds

∫
[a,b]c

w̃s,y dy > 0

)
≤ E

Q
[∫∫ T̃

0

(
ζϑ

T̃ −s,b−y
+ ζϑ

T̃ −s,y−a

)
μ(ds dy)

]
,
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where

ζϑ
s,y :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s ≥ 0, y = ∞;
28√s

ϑ2y3
e
− y2

24s , s ≥ 0, y > 0;
∞, s ≥ 0, y ≤ 0.

The proof of Proposition 7.2 will be given in Section 8. In order to control the support of w using the above proposition,
we will investigate the expectation of At under the new probability measure Q which is absolutely continuous with respect
to the original probability measure. Recall that At is given in Lemma 6.1(2) and can be considered as the amount of mass
of v killed at the line {(s, y) ∈ R+ ×R : y = vs, s ≤ t}. We will show that under the new probability Q, v is still a weak
solution to the SPDE (5.3), and, in fact, for any such weak solution, we can derive the upper bound on the expectation of
At using the following lemma.

Lemma 7.3. Suppose that v is a C[0,1]-valued weak solution to the SPDE (5.3) defined on a filtered probability space
(�,G, (Ft )t≥0,Q) with v0,· = F̃ . Let (At )t≥0 be given as in Lemma 6.1(2). Then,

E
Q[At − Ar ] ≤ ε(t − r), 0 ≤ r ≤ t < ∞.

Proof. Step 1. Let � be given as in (5.1). Note that from Lemma 5.1, � is a solution to PDE (5.2). We define

A
�
t :=

∫∫ t

0
�s,y[ρ ≤ t]M�(ds dy), t ≥ 0,

the killing process of � at its boundary, where M�(ds dy) := �0,yδ0(ds)dy + f̄ (�s,y)ds dy. Similar to Lemma 6.1, we can
verify that t �→ A

�
t is a real-valued non-decreasing continuous function on R+, and for each t ≥ 0 and φ ∈ C1,2

c (R+ ×R),
it holds that

(7.2)
∫

φt,x�t,x dx =
∫∫ t

0
φs,yM

�(ds dy) +
∫∫ t

0
�s,y

(
∂sφs,y + ∂2

yφs,y

)
ds dy −

∫ t

0
φs,vs dA

�
s .

Step 2. We show that A
�
t = εt for each t ∈ R+. To do this, we use an argument similar to the one we used for (6.3),

and obtain from (7.2) that

A
�
t = lim

m→∞

∫ t

0
ds

∫ vs

vs− 1
m

�s,y · 3
(
1 + (y − vs)m

)(−vm
(
1 + (y − vs)m

)+ 2m2)dy.

Now we can verify from bounded convergence theorem that

A
�
t = lim

m→∞

∫ t

0
ds

∫ 0

−1
F(u/m) · 3(1 + u)

(−v(1 + u) + 2m
)

du

=
∫ t

0
ds

∫ 0

−1
F ′(0−) · 6(1 + u)udu = εt.

For the following Steps 3–5, we fix an arbitrary t ∈R+ and x ∈ (−∞,vt].
Step 3. It holds that EQ[vt,x] ≤ E

Q[I] where

I :=
∫∫ t

0
Gv

s,y;t,x
(
v0,yδ0(ds)dy + f (vs,y)ds dy

)
.

In fact note that almost surely vt,x = I + IIt where

IIu := ε

∫∫ u

0
Gv

s,y;t,xσ (vs,y)W
v(ds dy), u ≥ 0

is a local martingale. Therefore, we can choose a sequence of stopping time (ρn)n∈N so that for each n ∈ N, (IIu∧ρn)u≥0
is a martingale; and almost surely ρn ↑ ∞ when n ↑ ∞. Now from the fact that vt,x is non-negative, we can verify from
Fatou’s lemma that EQ[vt,x] ≤ lim infn→∞ E

Q[I + IIt∧ρn ] = E
Q[I].
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Step 4. We show that EQ[vt,x] ≤ ṽt,x where

ṽt,x :=
∫∫ t

0
Gv

s,y;t,x
(
v0,yδ0(ds)dy + f̄

(
E

Q[vs,y]
)

ds dy
)
.

In fact, noticing from Lemma 5.1 that f̄ ≥ f , we have

ṽt,x = E
Q
[∫∫ t

0
Gv

s,y;t,x
(
v0,yδ0(ds)dy + f̄ (vs,y)ds dy

)]≥ E
Q[I],

where I is given as in Step 3. Now the desired result in this step follows from Step 3.
Step 5. It holds that EQ[vt,x] ≤ �t,x . To see this, we first observe from Lemma 5.1 that � admits the following mild

form

�t,x =
∫∫ t

0
G

(v)
s,y;t,x

(
�0,yδ0(ds)dy + (α�s,y + β)ds dy

)
,

where α := θ(1 − θ)v2 and β := (1 − θ)vε. Using Feynman-Kac formula (cf. [11, Lemma 1.5. on p. 1211]) we have that

�t,x = eαt

∫∫ t

0
G

(v)
s,y;t,xe

−αs
(
�0,yδ0(ds)dy + β ds dy

)
.

Similarly, using Feynman-Kac formula for ṽ, we get

ṽt,x := eαt

∫∫ t

0
G

(v)
s,y;t,xe

−αs
(
v0,yδ0(ds)dy + (−αṽs,y + αEQ[vs,y] + β

)
ds dy

)
.

Observing from the above two equations and Step 4, we have that ṽt,x ≤ �t,x . Using Step 4 again, we get the desired
result in this step.

Step 6. We show that for any 0 ≤ r < t < ∞, it holds that EQ[At − Ar ] ≤ A
�
t − A

�
r . To do this, note that almost surely

0 ≤ At − Ar = III + IVt where

III :=
∫∫ t

r

�s,y[ρ ≤ t](v0,yδ0(ds)dy + f (vs,y)ds dy
);

IVu :=
∫∫ u∧t

r

�s,y[ρ ≤ t]σ(vs,y)W
v(ds dy), u ≥ r.

Since (IVu)u≥r is a local martingale, we can choose a sequence of stopping time (ρ̃n)n∈N so that for each n ∈ N,
(IVu∧ρ̃n

)u≥r is a martingale; and almost surely ρ̃n ↑ ∞ when n ↑ ∞. From Fatou’s Lemma we have E
Q[At − Ar ] ≤

lim infn→∞ E
Q[III + IVt∧ρ̃n

] = E
Q[III]. From Lemma 5.1 that f̄ ≥ f , Steps 1 and 5, we can verify that

E
Q[III] ≤

∫∫ t

r

�s,y[ρ ≤ t](�0,yδ0(ds)dy + f̄ (�s,y)ds dy
)= A

�
t − A

�
r .

The desired result in this step then follows.
Final Step. The desired result in this lemma follows from Steps 2 and 6. �

As for showing that v is a weak solution to the SPDE (5.3), under the new probability Q, this will be done with the
help of the following lemma whose proof is standard and therefore is omitted (one can replicate the analogous classical
proof for Brownian motions).

Lemma 7.4. Suppose the conditions of Lemma 7.1 hold. Further suppose that there exists another (Ft )t≥0-adapted
space-time white noise W ′ which, under the probability P, is independent of W . Then W ′ is still a white noise under the
probability Q. Moreover, for each t ≥ 0 and g ∈ L 2

loc, it holds that

Q-
∫∫ t

0
gs,yW

′(ds dy) = P-
∫∫ t

0
gs,yW

′(ds dy) a.s.
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We are now ready to give the proof of Proposition 5.4.

Proof of Proposition 5.4. Step 1. Noticing from (4.6) that νεL ≤ 1/4, and the fact that for any x, y ∈ [0,1/4],
∣∣f (y) − f (x)

∣∣= ∣∣yp − xp
∣∣= ∣∣∣∣∫ y

x

pzp−1 dz

∣∣∣∣≤ ∫ |y−x|

0
pzp−1 dz = |y − x|p,

we have almost surely for each (t, x) ∈ R+ ×R,

ht,x := f w
t,x

εσw
t,x

1σw
t,x>0,t≤T

≤ |f (vt,x + wt,x) − f (vt,x)|1x∈(−L,vT +L),vt,x+wt,x≤νεL

ε
√

wt,x/2
1wt,x>0,t≤T

≤ √
2ε−1w

p− 1
2

t,x 1x∈(−L,vT +L),wt,x≤νεL,t≤T ≤ √
2ε−1(νεL)p− 1

2 1x∈(−L,vT +L),t≤T .

Step 2. We construct a probability measure Q on (�,G) such that

dQ = exp

{
−
∫∫ ∞

0
hs,yW

w(ds dy) − 1

2

∫∫ ∞

0
h2

s,y ds dy

}
dP.(7.3)

We can do this thanks to Step 1 that gives

E
P
[

exp

{
1

2

∫∫ ∞

0
h2

s,y ds dy

}]
< ∞.

Step 3. We verify that for any φ ∈ C∞
c (R+ ×R) and t ∈ [0, T ], almost surely∫

φt,xwt,x dx =
∫∫ t

0
ws,y

(
∂sφs,y + ∂2

yφs,y

)
ds dy +

∫ t

0
φs,vs dAs

+ Q-
∫∫ t

0
φs,yεσ

w
s,yW̃

w(ds dy),

where W̃w is a white noise on the filtered probability space (�,G, (Ft )t≥0,Q) given as in Lemma 7.1 so that

Q-
∫∫ ·

0
gs,yW̃

w(ds dy) = P-
∫∫ ·

0
gs,yW

w(ds dy) +
∫∫ ·

0
hs,ygs,y ds dy, a.s. g ∈ L 2

loc.

Step 4. We will show that for each t ≥ 0 and non-negative continuous function ψ on R+ the following holds:

(7.4) E
Q
[∫ t

0
ψs dAs

]
≤ ε

∫ t

0
ψs ds.

To see this, we verify from Lemma 7.4 that with respect to the filtered probability space (�,G, (Ft )t≥0,Q):

• Wv is still a white noise;
• v is still a weak solution to the SPDE (5.3) with v0,· = F̃ ;
• (At )t≥0 is still the killing process of v; see Lemma 6.1(2).

Therefore from Lemma 7.3, we have E
Q[At − Ar ] ≤ ε(t − r) for each 0 ≤ r ≤ t < ∞. From this we can verify that (7.4)

holds for each t ≥ 0 and each non-negative ψ ∈ K where

(7.5)

K :=
{∑

k∈N
nk1(tk,tk+1] : (nk)k∈N ⊂R is bounded,

(tk)k∈N ⊂R+ is unbounded and strictly increasing

}
.
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Now the desired result in this step follows from monotone convergence theorem and the fact that for any non-negative
continuous function ψ on R+ there exists a non-negative sequence (ψ(n))n∈N ⊂ K such that ψ(n) ↑ ψ pointwise as
n ↑ ∞.

Step 5. We will show that Q(τ1 < T ) ≤ 214γ . Note that almost surely

ε
√

wt,x ≥ εσw
t,x ≥ ε√

2

√
wt,x, t ≥ 0, x ∈R.

So from Step 3, Step 4, and Proposition 7.2, we get that

Q(τ1 < T ) ≤ E
Q
[∫∫ T

0

(
ζ

ε/
√

2
T −s,(vT +L)−x + ζ

ε/
√

2
T −s,x−(−L)

)
δvs(dx)dAs

]
≤ ε

∫ T

0

(
ζ

ε/
√

2
T −s,(vT +L)−vs + ζ

ε/
√

2
T −s,vs−(−L)

)
ds ≤ 2ε

∫ T

0
ζ

ε/
√

2
T −s,L ds.

Here in the last inequality, we used the fact that for any given s ≥ 0, the map x �→ ζ
ε/

√
2

s,x is non-increasing on R. Now we
have

Q(τ1 < T ) ≤ 2ε

∫ T

0

29(T − s)1/2

ε2L3
e
− L2

24(T −s) ds = 210γ

L3

∫ T

0
s1/2e− L2

8s ds

≤ 210γ T 5/2

L3

24

L2

∫ s=T

s=0
e
− L2

24s d

(
− L2

24s

)
≤ 214γ T 5/2

L5
e
− L2

24T ≤ 214γ.

Final Step. Noticing that W̃w is a white noise under Q, we can verify that for each q ∈ [1,∞) the expectation of

m(q) := exp

{
q

∫∫ ∞

0
hs,yW̃

w(ds dy) − q2

2

∫∫ ∞

0
h2

s,y ds dy

}
under Q equals to 1. Also note from (7.3) and Lemma 7.1 we have that

dP

dQ
= exp

{∫∫ ∞

0
hs,yW

w(ds dy) + 1

2

∫∫ ∞

0
h2

s,y ds dy

}
= exp

{∫∫ ∞

0
hs,yW̃

w(ds dy) − 1

2

∫∫ ∞

0
h2

s,y ds dy

}
= m(1).

Now we can verify using Cauchy–Schwartz inequality that

P(τ1 < T ) = E
Q[1{τ1<T }m(1)

]≤ Q(τ1 < T )
1
2 E

Q[(m(1)
)2] 1

2

= Q(τ1 < T )
1
2 E

Q
[
m(2) exp

{∫∫ ∞

0
h2

s,y ds dy

}] 1
2

.

Finally, using (4.1), (4.3), (4.5) and Steps 1, 5 we have that

P(τ1 < T ) ≤ Q(τ1 < T )
1
2 exp

{
(vT + 2L)T ε−2(νεL)2p−1}

= Q(τ1 < T )
1
2 exp

{
3γ κ2p−2ν2p−1}≤ 27√γ exp{3γ ν} ≤ 1/8. �

8. Proof of Proposition 7.2

In this section we will give the proof of Proposition 7.2 following a strategy similar to that used in [28, Proof of Proposi-
tion 3.2]. Notice that, in the special case when σ = √

w̃, the solution w̃ to the SPDE (7.1) can be considered as the density
of a super-Brownian motion with space-time immigration μ. Next lemma deals with properties of the solutions to the so-
called log-Laplace equations which play very important role in studying properties of superprocesses (see e.g. [13]). In
the general case when the noise coefficient σ is comparable to

√
w̃, we can still use this log-Laplace equation to obtain

properties of the random field w̃.
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Lemma 8.1. Let T̃ > 0, ϑ > 0 and ψ ∈ C2
0(R) be non-negative. There exists a unique non-negative φ ∈ C1,2

b ([0, T̃ ] ×R)

such that

(8.1)

⎧⎨⎩∂tφt,x = −∂2
xφt,x + 1

2
(ϑφt,x)

2 − ψx, (t, x) ∈ [0, T̃ ] ×R;
φ

T̃ ,x
= 0, x ∈R.

Furthermore, if b ∈R and ψ = 0 on (−∞, b], then

(8.2) φt,x ≤ ζϑ

T̃ −t,b−x
, (t, x) ∈ [0, T̃ ] ×R,

where

ζϑ
s,y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, s ≥ 0, y = ∞;
28√s

ϑ2y3
e
− y2

24s , s ≥ 0, y > 0;
∞, s ≥ 0, y ≤ 0.

Proof. The existence and uniqueness for (8.1) is given in [13]. Note that although the proof of the upper bound (8.2) is
also pretty standard (see e.g. derivation of (5) in the proof of Proposition 3.2 in [28], or the relevant steps in the proof of
Lemma 2.6 in [22]), we decided to include it for the sake of completeness.

We give the upper bound for φ in (8.2) provided ψ = 0 on (−∞, b] for an arbitrary b ∈ R. First, using the connection
between solutions to (8.2) and super-Brownian motion and due to [14, Theorem 1] we can derive

(8.3)
1

2
ϑ2φs,y ≤ 9

(y − b)2
, (s, y) ∈ [0, T ] × (−∞, b).

Now, let (Bt )t≥s be a one-dimensional Brownian motion with generator ∂2
x initiated at time s and position y; it induces

the probability measure �s,y on the canonical path space. Then, from the fact that φ ∈ C1,2
b ([0, T ] ×R), we can use Ito’s

formula and the optional sampling theorem to get

(8.4) φs,y = �s,y

[
φρ̃,Bρ̃

−
∫ ρ̃

s

(
1

2
ϑφ2

r,Br
− ψBr

)
dr

]
for each optional time ρ̃ ∈ [s, T ], defined on the probability space where B is defined. Choose an arbitrary z ∈ (y, b).
Denote by ρz the first time for the Brownian motion B hitting {z}. Replacing ρ̃ in (8.4) by T ∧ ρz, we get from (8.3) that

(8.5) φs,y ≤ �s,y[φT ∧ρz,BT ∧ρz
] ≤ 18

ϑ2(z − b)2
�s,y(ρz < T ).

From the reflecting principle we have

�s,y(ρz < T ) = 2�0,0[BT −s ≥ z − y] = 2
∫ ∞

z−y

1√
4π(T − s)

e
− u2

4(T −s) du

≤ 2
∫ ∞

z−y

1√
4π(T − s)

u

z − y
e
− u2

4(T −s) du ≤ 2√
π

√
T − s

z − y
e
− (z−y)2

4(T −s) .

(8.6)

Note that z ∈ (y, b) is chosen arbitrarily. So taking z = y+b
2 in (8.5) and (8.6), we get

φs,y ≤ 18

ϑ2(z − b)2

2√
π

√
T − s

z − y
e
− (z−y)2

4(T −s) ≤ 28

ϑ2

√
T − s

(b − y)3
e
− (b−y)2

24(T −s) . �

In order to study the property of w̃ using the above testing function φ, we need the following lemma.

Lemma 8.2. Under the conditions of Proposition 7.2, it holds that

sup
t∈[0,T̃ ]

E
Q
[∫

w̃t,x dx

]
< ∞.

Furthermore, (7.1) holds almost surely for each t ∈ [0, T̃ ] and φ ∈ C1,2
b ([0, T̃ ] ×R).
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Proof. Step 1. It is routine (cf. [27, Theorem 2.1]) to verify that

w̃t,x =
∫∫ t

0
Gs,y;t,x

(
σ̃s,yW(ds dy) + μ(ds dy)

)
, a.s. (t, x) ∈ [0, T̃ ] ×R.

Step 2. For an arbitrary fixed (t, x) ∈ [0, T̃ ] ×R, we will show that

E
Q[w̃t,x] ≤ E

Q
[∫∫ t

0
Gs,y;t,xμ(ds dy)

]
.

To do this, for each r ≥ 0, define Ir := IIr + IIIr where

IIr :=
∫∫ r

0
Gs,y;t,xμ(ds dy); IIIr :=

∫∫ r

0
Gs,y;t,x σ̃s,yW(ds dy).

We can verify that if r ≥ t , then Ir = w̃t,x , and if r ∈ [0, t), then from stochastic Fubini theorem we get

Ir =
∫

Gt,x;r,zw̃r,z dz, a.s.

In particular, (Ir )r≥0 is a non-negative process. Note that (IIIr )r≥0 is a local martingale. So there exists a sequence of
stopping time (ρn)n∈N such that for each n ∈ N, (IIIr∧ρn)r≥0 is a martingale, and ρn ↑ ∞ almost surely as n ↑ ∞.
Now for any fixed r ≥ 0 we can verify from Fatou’s lemma that Q[Ir ] ≤ lim infn→∞ Q[Ir∧ρn ] ≤ Q[IIr ]. In particular
Q[w̃t,x] = Q[It ] ≤ Q[IIt ] as desired.

Step 3. From Fubini’s theorem we can verify from Step 2 that for each t ∈ [0, T̃ ],

E
Q
[∫

w̃t,x dx

]
≤ E

Q
[∫∫ t

0
μ(ds dy)

∫
Gs,y;t,x dx

]
≤ E

Q
[∫∫ T̃

0
μ(ds dy)

]
< ∞.

This proves the first part of the lemma.
Step 4. Let g and sequence (gn)n∈N be R-valued Borel functions on a Polish space S. We say (gn)n∈N converges to

g bounded pointwise if (gn)n∈N converges to g pointwise, and supn∈N,s∈S |gn(s)| < ∞. Fix any φ ∈ C1,2
b ([0, T̃ ] × R).

Then it is easy to get that there exists a sequence of (φ(n) : n ∈ N) in C∞
c ([0, T̃ ] × R) such that, (φ(n))n∈N, (∂tφ

(n))n∈N,
(∂xφ

(n))n∈N and (∂2
xφ(n))n∈N converges bounded pointwise to φ, ∂tφ, ∂xφ and ∂2

xφ, respectively.
Final Step. From Steps 3, 4, bounded convergence theorem, [16, Proposition 17.6] and the fact that σ̃ 2 ≤ ϑ̃w̃ on

[0, T̃ ] ×R, we can verify that (7.1) holds almost surely for each t ∈ [0, T̃ ] and φ ∈ C1,2
b ([0, T̃ ] ×R). �

We are now ready to give the proof of Proposition 7.2.

Proof of Proposition 7.2. Step 1. We only need to prove the desired result for the case −∞ = a < b < ∞. In fact, in the
case of a = −∞, b = ∞, nothing needs to be proved. And if the desired result holds for the case −∞ = a < b < ∞, then
by symmetry, it also holds for the case −∞ < a < b = ∞. For the only remaining case −∞ < a < b < ∞, we use

Q

(∫ T̃

0
ds

∫
(a,b)c

w̃s,y dy > 0

)
≤ Q

(∫ T̃

0
ds

∫ a

−∞
w̃s,y dy > 0

)
+ Q

(∫ T̃

0
ds

∫ ∞

b

w̃s,y dy > 0

)
.

Step 2. Fix b ∈ R and a non-negative ψ ∈ C2
0(R) with support {x ∈ R : ψx > 0} = (b,∞). For each n > 0, let φ(n) ∈

C1,2
b ([0, T̃ ] × R) be given by Lemma 8.1 with ψ replaced by nψ and ϑ from Proposition 7.2. For any n > 0, define

process

M
(n)
t := n

∫∫ t

0
w̃s,yψy ds dy +

∫
w̃t,xφ

(n)
t,x dx, t ∈ [0, T̃ ].

We note that

Q

(∫ T̃

0
ds

∫ ∞

b

w̃s,y dy > 0

)
= Q

(∫∫ T̃

0
w̃s,yψy ds dy > 0

)

= lim
n→∞E

Q
(

1 − exp

{
−n

∫∫ T̃

0
w̃s,yψy ds dy

})
= lim

n→∞E
Q(1 − e

−M
(n)

T̃

)
.
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Step 3. We will verify that

E
Q(1 − e

−M
(n)

T̃

)≤ E
Q
[∫∫ T̃

0
φ(n)

s,yμ(ds dy)

]
, n > 0.

In fact, from Lemma 8.2 we have for each t ∈ [0, T̃ ] almost surely

M
(n)
t

(7.1)= n

∫∫ t

0
w̃s,yψy ds dy +

∫∫ t

0
w̃s,y

(
∂2
yφ(n)

s,y + ∂sφ
(n)
s,y

)
ds dy

+
∫∫ t

0
σ̃s,yφ

(n)
s,yW(ds dy) +

∫∫ t

0
φ(n)

s,yμ(ds dy).

Therefore, we have almost surely

〈
M(n)

〉
t
=
∫∫ t

0

(
σ̃s,yφ

(n)
s,y

)2 ds dy, t ∈ [0, T̃ ].

Now, we use Itô’s formula and get that for any t ∈ [0, T̃ ] almost surely,

e−M
(n)
t − 1 =

∫ t

0

(−e−M
(n)
s
)

dM(n)
s + 1

2

∫ t

0
e−M

(n)
s d

〈
M(n)

〉
s

=
∫∫ t

0

(−e−M
(n)
s
)(

nw̃s,yψy + w̃s,y

(
∂2
yφ(n)

s,y + ∂sφ
(n)
s,y

))
ds dy

+
∫∫ t

0

(−e−M
(n)
s φ(n)

s,y

)(
σ̃s,yW(ds dy) + μ(ds dy)

)+ 1

2

∫∫ t

0
e−M

(n)
s
(
σ̃s,yφ

(n)
s,y

)2 ds dy

(8.1)= 1

2

∫∫ t

0
e−M

(n)
s
(
φ(n)

s,y

)2(
σ̃ 2

s,y − ϑ2w̃s,y

)
ds dy

+
∫∫ t

0

(−e−M
(n)
s φ(n)

s,y

)
σ̃s,yW(ds dy) +

∫∫ t

0

(−e−M
(n)
s φ(n)

s,y

)
μ(ds dy).

(8.7)

Note that the second integral on the right hand side of (8.7) is a L2-bounded martingale on [0, T̃ ] since from Lemma 8.2,

E
Q
[∫∫ T̃

0

(−e−M
(n)
s φ(n)

s,y

)2
(σ̃s,y)

2 ds dy

]
≤ ∥∥φ(n)

∥∥2
∞ϑ̃2

E
Q
[∫∫ T̃

0
w̃s,y ds dy

]
< ∞.

Noticing that σ̃ 2 ≥ ϑ2w̃ on R+ ×R, we can take expectation on (8.7) and get that

E
Q[1 − e

−M
(n)

T̃

]
= E

Q
[

1

2

∫∫ T̃

0
e−M

(n)
s
(
φ(n)

s,y

)2(
ϑ2w̃s,y − (σ̃s,y)

2)ds dy +
∫∫ T̃

0
e−M

(n)
s φ(n)

s,yμ(ds dy)

]

≤ E
Q
[∫∫ T̃

0
e−M

(n)
s φ(n)

s,yμ(ds dy)

]
≤ E

Q
[∫∫ T̃

0
φ(n)

s,yμ(ds dy)

]
.

Final step. The desired result now follows from Steps 3, 4 and Lemma 8.1. �

9. Proof of Proposition 5.3

We first need the following lemma to control the small time fluctuation of certain random fields. This lemma is modified
from [21, Lemma 6.1] in order to incorporate the small time intervals. Its proof follows the lines of the proof of [21,
Lemma 6.1] and therefore is omitted.

Lemma 9.1. Suppose that
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(1) T̃ > 0, L̃ > 0, a ∈ R are arbitrary and H := [0, T̃ ] × [a, a + L̃];
(2) (gs,y;t,x : (s, y), (t, x) ∈R+ ×R) and (ηt,x : (t, x) ∈R+ ×R) are deterministic non-negative functions satisfying

B := sup
(t ′,x′),(t,x)∈H

∫∫∞
0 (gs,y;t ′,x′ − gs,y;t,x)2ηs,y ds dy

| x′−x

L̃
| + | t ′−t

T̃
|1/2

< ∞;

(3) W is a white noise defined on a filtered probability space (�,G, (Ft )t≥0,P);
(4) σ̃ is a predictable random field on � such that almost surely σ̃ 2 ≤ η on R+ ×R;
(5) Z is a continuous random field on � such that for all (t, x) ∈ H,

Zt,x =
∫∫ ∞

0
gs,y;t,x σ̃s,yW(ds dy) a.s.

Then for each z ≥ 0,

P
(

sup
(t,x),(t ′,x′)∈H

|Zt ′,x′ − Zt,x | > z
√

B
)

≤ 25e−z2/212
.

Next result is a simple corollary of the above lemma.

Corollary 9.2. Lemma 9.1 still holds if its conditions (1) and (2) are replaced by:

(1′) ṽ > 0 and a ∈R are arbitrary and

H := {
(t, x) ∈ R+ ×R : t ∈ [0, ṽ−2], x − ṽt ∈ [a, a + ṽ−1]};

(2′) (gs,y;t,x : (s, y), (t, x) ∈ R+ ×R) and (ηt,x : (t, x) ∈ R+ ×R) are (deterministic) non-negative functions satisfying

B := sup
(t ′,x′),(t,x)∈H

ṽ−1
∫∫∞

0 (gs,y;t ′,x′ − gs,y;t,x)2ηs,y ds dy

|(x′ − ṽt ′) − (x − ṽt)| + |t ′ − t |1/2
< ∞.

In order to control the quantity B in Lemma 9.1 and Corollary 9.2 we will be using the following analytical lemma.

Lemma 9.3. For any ṽ > 0 and (t, x), (t ′, x′) ∈R+ ×R satisfying

(9.1) t, t ′ ∈ [0, ṽ−2]; x − ṽt, x′ − ṽt ′ ∈ (−∞,0]; ∣∣(x′ − ṽt ′
)− (x − ṽt)

∣∣≤ ṽ−1,

it holds that ∫∫ ∞

0

(
G

(ṽ)

s,y;t ′,x′ − G
(ṽ)
s,y;t,x

)2
e−ṽ(y−ṽs) ds dy

≤ 29e−ṽ(x−ṽt)
(∣∣(x′ − ṽt ′

)− (x − ṽt)
∣∣+ ∣∣t ′ − t

∣∣1/2)
.

Proof. Let us fix an arbitrary ṽ > 0 and arbitrary (t, x), (t ′, x′) ∈ R+ × R satisfying (9.1). Define z := x − ṽt and z′ :=
x′ − ṽt ′. By the symmetry between (t, x) and (t ′, x′), we can assume without loss of generality that ṽ

2 (z′ −z)+ ṽ2

4 (t ′ − t) ≥
0.

Step 1. Note that one can give the precise expression of G(ṽ) using the reflection principle and Girsanov transformation
for the Brownian motion (see [21, Proof of Lemma 6.2]). In fact, for each (s, y) ∈ R+ ×R, we have

G
(ṽ)
s,y;t,x = ρ

(1)

s,y−ṽs;t,z − ρ
(−1)

s,y−ṽs;t,z,

where

ρ
(i)
s,y;t,z := e− ṽ

2 (z−y)− ṽ2
4 (t−s)Gs,y;t,iz1y,z≤0, i ∈ {1,−1}.

Now from the fact that the squares of the sum of two numbers is bounded by twice the sum of the squares of those two
numbers, we have (

G
(ṽ)

s,y;t ′,x′ − G
(ṽ)
s,y;t,x

)2 ≤ 2
∑

i=1,−1

(
ρ

(i)

s,y−ṽs;t ′,z′ − ρ
(i)

s,y−ṽs;t,z
)2

, (s, y) ∈R+ ×R.
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Step 2. We show that for each i ∈ {−1,1} we have

Ii :=
∫∫ ∞

0

(
ρ

(i)

s,y;t ′,z′ − ρ
(i)
s,y;t,z

)2
e−ṽ(y−z) ds dy ≤ 4(IIi + IIIi ),

where

IIi :=
∫∫ ∞

0

(
(γ − 1)Gs,y;t ′,iz′

)2 ds dy; IIIi :=
∫∫ ∞

0
(Gs,y;t ′,iz′ − Gs,y;t,iz)2 ds dy

and γ := e− ṽ
2 (z′−z)− ṽ2

4 (t ′−t). In fact we can verify that

Ii =
∫∫ ∞

0
e−ṽ(z−y)− ṽ2

2 (t−s)1y≤0(γGs,y;t ′,iz′ − Gs,y;t,iz)2e−ṽ(y−z) ds dy

≤ e
ṽ2
2 |t ′−t |

∫∫ ∞

0
(γGs,y;t ′,iz′ − Gs,y;t,iz)2 ds dy.

The desired result in this step then follows from (9.1) that ṽ2|t − t ′| ≤ 1.
Step 3. We show that for each i ∈ {−1,1} we have

IIi ≤ (∣∣z′ − z
∣∣+ ∣∣t ′ − t

∣∣1/2)
/4,

where IIi is given in Step 2. In fact,

IIi = (γ − 1)2
∫∫ t ′

0

e
− (iz′−y)2

2(t ′−s)

4π(t ′ − s)
ds dy = (γ − 1)2

√
t ′√

2π

≤
(

ṽ

2

(
z′ − z

)+ ṽ2

4

(
t ′ − t

))2 ṽ−1

√
2π

≤ 2

(
ṽ

2

(
z′ − z

))2 ṽ−1

√
2π

+ 2

(
ṽ2

4

(
t ′ − t

))2 ṽ−1

√
2π

= ṽ|z′ − z|
2
√

2π

∣∣z′ − z
∣∣+ ṽ3|t ′ − t |3/2

8
√

2π

∣∣t ′ − t
∣∣1/2

.

Here, in the first inequality, we used the fact that ṽ
2 (z′ − z) + ṽ2

4 (t ′ − t) ≥ 0. The desired result in this step then follows
from (9.1) that ṽ|z − z′| ≤ 1 and ṽ2|t − t ′| ≤ 1.

Step 4. We note from [27, Lemma 6.2(1)] that there exists a universal constant C̃ > 0, independent of our choice
of (t, x), (t ′, x′) and ṽ, such that IIIi ≤ C̃(|z′ − z| + |t ′ − t |1/2) for each i ∈ {−1,1}. In fact, one can take C̃ = 27 (cf.
Lemma 10.1).

Final Step. From Step 1, we know that∫∫ ∞

0

(
G

(ṽ)

s,y;t ′,x′ − G
(ṽ)
s,y;t,x

)2 e−ṽ(y−ṽs)

e−ṽ(x−ṽt)
ds dy

≤
∑

i∈{−1,1}

∫∫ ∞

0

(
ρ

(i)

s,y−ṽs;t ′,z′ − ρ
(i)

s,y−ṽs;t,z
)2 e−ṽ(y−ṽs)

e−ṽz
ds dy =

∑
i∈{−1,1}

Ii .

The desired result in this Lemma then follows from Steps 2, 3 and 4. �

We are now ready to give the proof of Proposition 5.3.

Proof of Proposition 5.3. Step 1. Define

It,x := εkLe−θv(x−vt)1x≤vt , (t, x) ∈R+ ×R.

Let v̄ be as in Proposition 5.2. Then by part (4) of that proposition we have that v̄ ≥ v on R+ ×R almost surely. Therefore,
in order to prove Proposition 5.3, we only have to show that P(τ̃3 < T ) < 1/8 holds with

τ̃3 := inf
{
t ∈ [0, T ] : v̄t,x ≥ F(x − vt) + It,x for some x ∈ (−∞,vt]}.
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Step 2. Define Z̃t,x := e−αt (v̄t,x − �t,x) for each (t, x) ∈R+ ×R where � is given in (5.1) and α := θ(1 − θ)v2. Then
it can be verified from Lemma 5.1 that

Z̃t,x =
∫∫ t

0
G

(v)
s,y;t,xεe

−αsσ (v̄s,y)W
v̄(ds dy), a.s. (t, x) ∈ R+ ×R.

From this we immediately get that

τ̃3 = inf
{
t ∈ [0, T ] : Z̃t,x ≥ e−αt It,x for some x ∈ (−∞,vt]}.

Step 3. We show that almost surely

εe−αtσ (v̄t,x) ≤ εσ (v̄t,x) ≤ √
ηt,x, (t, x) ∈ [0, τ̃3] ×R,

where

ηt,x := 2kLε2εe−θv(x−vt)1x≤vt , (t, x) ∈R+ ×R.

In fact, almost surely for each (t, x) ∈ [0, τ̃3] ×R,

σ(v̄t,x)
2 ≤ v̄t,x ≤ F(x − vt) + It,x

≤ ε

θv

(
e−θv(x−vt) − 1

)
1x≤vt + εkLe−θv(x−vt)1x≤vt

≤ (2 + k)Lεe−θv(x−vt)1x≤vt .

Note from (4.3) and (4.4) that k ≥ 2. The desired result in this step follows.
Step 4. From Step 3 we can verify that almost surely Z = Z̃ on [0, τ̃3] × R where Z is a continuous random field so

that

Zt,x =
∫∫ t

0
G

(v)
s,y;t,x

(√
ηs,y ∧ (εe−αsσ (v̄s,y)

))
Wv̄(ds dy) a.s. (t, x) ∈ R+ ×R.

Thus from Step 2, we get that

τ̃3 = inf
{
t ∈ [0, T ] : Zt,x ≥ e−αt It,x for some x ≤ vt

}
, a.s.

Step 5. Define

�n := {
(t, x) ∈ [0, T ] ×R : x − vt ∈ (−nL,−(n − 1)L]}, n ∈N.

We can verify from (4.5) that for each n ∈N and (t, x) ∈ �n,

e−αt It,x ≥ e−αT εkLeθv(n−1)L = CθεkLeθn =: IIn,

where Cθ := e−θ(2−θ).
Step 6. For each n ∈N, we can get from Lemma 9.3 and (4.5) that

Bn = sup
(t,x),(t ′,x′)∈�n

v−1
∫∫∞

0 (G
(v)
s,y;t,x − G

(v)

s,y;t ′,x′)2ηs,y ds dy

|(x′ − vt ′) − (x − vt)| + |t ′ − t |1/2
≤ 210kL2ε2εen.

In fact, for (t, x), (t ′, x′) ∈ �n, since (9.1) holds, we have from Lemma 9.3 that∫∫ ∞

0

(
G

(v)
s,y;t,x − G

(v)

s,y;t ′,x′
)2

ηs,y ds dy ≤ 22kLε2ε

∫∫ ∞

0

(
G

(v)
s,y;t,x − G

(v)

s,y;t ′,x′
)2

e−v(y−vs) ds dy

≤ 2kLε2ε29e−v(x−vt)
(∣∣(x′ − vt ′

)− (x − vt)
∣∣+ ∣∣t ′ − t

∣∣1/2)
≤ 210kLε2εenvL

(∣∣(x′ − vt ′
)− (x − vt)

∣∣+ ∣∣t ′ − t
∣∣1/2)

.

Noting from (4.5) that vL = 1, the desired result in this step follows.
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Step 7. From Step 6, (4.5) that ε = γ ε2, (4.4) that γ k =K, and Corollary 9.2 we can obtain

P
(

sup
�n

Z ≥ IIn
)

≤ P
(

sup
�n

Z ≥ 2−5Cθ

√
ε/ε2

√
ke(θ−1/2)n

√
Bn

)
≤ P

(
sup
�n

Z ≥ 2−5Cθ

√
Ke(θ−1/2)n

√
Bn

)
≤ 25 exp

(−2−22C2
θKe(2θ−1)n

)
.

Final Step. Using Steps 4, 5 and 7, we can verify that

P(τ̃3 < T ) ≤ P

(
∃(t, x) ∈

∞⋃
n=1

�n : Zt,x ≥ e−αt It,x

)

≤
∞∑

n=1

P
(

sup
�n

Z ≥ IIn
)

≤ 25
∞∑

n=1

exp
(−2−22C2

θKe(2θ−1)n
)≤ 1/8,

where we used (4.2) in the last inequality. �

10. Proof of Proposition 5.5

We will need the following analytical lemma.

Lemma 10.1. For any ṽ > 0 and (t, x), (t ′, x′) ∈R+ ×R satisfying

t, t ′ ∈ [0, ṽ−2]; x, x′ ∈ [−2ṽ−1,2ṽ−1]
it holds that ∫∫ ∞

0
(Gs,y;t ′,x′ − Gs,y;t,x)2e−ṽy ds dy ≤ 27(∣∣x′ − x

∣∣+ ∣∣t ′ − t
∣∣1/2)

.

Note that the upper bound in the above lemma is uniform in ṽ.

Proof. Let us fix an arbitrary ṽ > 0. First note that∫∫ ∞

0
(Gs,y;t ′,x′ − Gs,y;t,x)2e−ṽy ds dy

≤ 2
∫∫ ∞

0
(Gs,y;t,x′ − Gs,y;t,x)2e−ṽy ds dy + 2

∫∫
(Gs,y;t ′,x′ − Gs,y;t,x′)2e−ṽy ds dy

=: 2I + 2II, (t, x),
(
t ′, x′) ∈ R+ ×R.

To finish the proof it is sufficient to show that

I ≤ 26
∣∣x′ − x

∣∣, t ∈ [0, ṽ−2], x, x′ ∈ [−2ṽ−1,2ṽ−1],(10.1)

II ≤ 26
∣∣t ′ − t

∣∣1/2
, t, t ′ ∈ [0, ṽ−2], x′ ∈ [−2ṽ−1,2ṽ−1].(10.2)

We will prove only (10.1), and leave the proof of (10.2), which is tedious but not much different, to the reader.
To prove (10.1) we assume without loss of generality that z := x′ − x ≥ 0. Note that

2−3I ≤ eṽxI =
∫∫

(Gs,y;t,x′ − Gs,y;t,x)2e−ṽ(y−x) ds dy =
∫∫

(Gs,y;t,z − Gs,y;t,0)2e−ṽy ds dy.



2410 C. Barnes, L. Mytnik and Z. Sun

From the expression of G in (2.3), we have

2−3I ≤
∫∫ t

0

1

4πs

(
e− (y−z)2

4s − e− y2

4s
)2

e−vy ds dy

=
∫∫ t

0

1

4πs

(
e− y2

2s − 2e− y2+(y−z)2

4s + e− (y−z)2

2s
)
e−vy ds dy

=
∫ t

0

ds

4πs

∫ (
e− y2

2s
−vy − 2e− y2

2s
+( z

2s
−v)y− z2

4s + e− y2

2s
+( z

s
−v)y− z2

2s
)

dy.

From the fact that∫
e−ay2+by dy =

∫
e−a(y− b

2a
)2+ b2

4a dy = e
b2
4a

∫
e−ay2

dy =
√

π

a
e

b2
4a , a > 0, b ∈ R,

we can get

2−3I ≤
∫ t

0

ds

4πs

(√
2sπe

s
2 v2 − 2e− z2

4s

√
2sπe

s
2 ( z

2s
−v)2 + e− z2

2s

√
2sπe

s
2 ( z

s
−v)2)

≤ 1

2

∫ t

0

e
v2
2 s

√
2π

(
1 − 2e− z2

8s
− zv

2 + e−zv) ds√
s

≤ 1

2

∫ z2∧t

0

(
1 + e−zv) ds√

s
+ 1

2

∫ t

z2∧t

(
2
∣∣1 − e− z2

8s
− zv

2
∣∣+ ∣∣e−zv − 1

∣∣) ds√
s
.

Now using the fact that |1 − e−z| ≤ z for z ∈R+, we have

2−3I ≤ (
1 + e−zv)z + 1z2≤t

∫ t

z2

(
z2

8s
+ vz

)
ds√

s

≤ 2z +
∫ ∞

z2

z2

8s

ds√
s

+
∫ t

0
vz

ds√
s

=
(

2 + 1

4
+ 2v

√
t

)
z ≤ 23z.

This gives us (10.1). As we have mentioned we omit the proof of (10.2) and thus we are done. �

Let us now give the proof of Proposition 5.5.

Proof of Proposition 5.5. Step 1. it is easy to see that on the event {τ1 ≥ T , τ3 ≥ T }, the following holds almost surely:
for each (s, y) ∈ [0, τ2 ∧ T ] ×R,

vs,y ≤ F(s − vy) + εkLe−θv(x−vt)1x≤vt ≤ 2kεLe−θv(y−vs),

f w
s,y ≤ w

p
s,y1y∈[−L,vT +L],ws,y≤νεL ≤ (νεL)p,

σw
s,y = σ(vs,y + ws,y)

2 − σ(vs,y)
2 ≤ ws,y ≤ νεL1y∈[−L,vT +L].

Step 2. Note that v + w admits the following mild form (cf. [27, Theorem 2.1]):

vt,x + wt,x =
∫∫ t

0
Gs,y;t,x

(
v0,y dyδ0(ds) + (

f (vs,y) + f w
s,y

)
ds dy

+ εσ (vs,y)W
v(ds dy) + εσw

s,yW
w(ds dy)

)
, a.s. ∀(t, x) ∈ (0,∞) ×R.

Therefore, almost surely on the event {τ1 ≥ T , τ3 ≥ T }, we have v + w = ũ on [0, τ2 ∧ T ] × R. Here, ũ :=∑5
i=1 Z(i)

where {Z(i) : i = 1, . . . ,5} is a list of continuous random fields defined so that for each (t, x) ∈ R+ ×R,

Z
(1)
t,x = 1t=0F̃ (x) + 1t>0

∫
G0,y;t,x F̃ (y)dy,
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Z
(2)
t,x =

∫∫ t

0
Gs,y;t,xf

(
vs,y ∧ (2kεLe−θv(y−vs)

))
ds dy, a.s.

Z
(3)
t,x =

∫∫ t

0
Gs,y;t,x

(
f w

s,y ∧ ((νεL)p1y∈[−L,vT +L]
))

ds dy, a.s.

Z
(4)
t,x = ε

∫∫ t

0
Gs,y;t,xσ

(
vs,x ∧ (2kεLe−θv(y−vs)

))
Wv(ds dx), a.s.

Z
(5)
t,x = ε

∫∫ t

0
Gs,y;t,x

(
σw

s,y ∧ (νεL1y∈[−L,vT +L])
)
Ww(ds dx), a.s.

Step 3. Clearly, τ2 = τ̃2 holds almost surely on the event {τ1 ≥ T , τ3 ≥ T } where τ̃2 := inf{t ∈ [0, T ] : ũt,x ≥
νεL for some x ∈ [−L,vT + L]}.

Step 4. We will show that

sup
(t,x)∈H

Z
(1)
t,x ≤ ν1εL,

where ν1 := 23 and H := [0, T ] × [−L,vT + L]. Note that from (4.7), (2.3) and (4.5), for any (t, x) ∈ H, we have

Z
(1)
t,x ≤

∫
G0,y;t,x

ε

θv
e−θvy dy = ε

θv
e−θvx

∫
e− y2

4t
+θvy

√
4πt

dy = ε

θv
e−θvxeθ2v2t

≤ θ−1eθ2+θ εL ≤ ν1εL.

Step 5. We will show that

sup
(t,x)∈H

Z
(2)
t,x ≤ ν2εL, a.s.,

where ν2 := 24k. Note that from (4.1) that κp−1 ≤ 1, (2.3) and (4.5) we can verify that,

Z
(2)
t,x ≤

∫∫ t

0
Gs,y;t,x

(
2kεLe−θv(y−vs)

)p ds dy ≤ (2kεL)p
∫ t

0
epθv2s ds

∫
Gs,y;t,xe−pθvy dy

= (2kεL)pe−pθvxep2θ2v2t

∫ t

0
e(pθv2−p2θ2v2)s ds ≤ (2kεL)pe−pθvxtepθv2t

≤ (2kεL)pepθvLT epθv2T = 2pkpe2pθκp−1εL ≤ 24kεL = ν2εL, ∀(t, x) ∈ H, a.s.

Step 6. We will show that

sup
(t,x)∈H

Z
(3)
t,x ≤ ν3εL, a.s.,

where ν3 := νp . In fact, from (2.3) and (4.5) we can verify that

Z
(3)
t,x ≤

∫∫ t

0
Gs,y;t,x(νεL)p ds dy = (νεL)p

∫ t

0
ds

∫
Gs,y;t,x dy

≤ T (νεL)p = νpκp−1εL ≤ ν3εL, ∀(t, x) ∈ H, a.s.

Step 7. We will show that

P
(

sup
(t,x)∈H

Z
(4)
t,x > ν4εL

)
≤ 2−4,

where ν4 := 213K1/2γ −1. First note that almost surely for each (s, y) ∈R+ ×R,

ε2σ
(
vs,y ∧ (2kεLe−θv(y−vs)

))2 ≤ 2ε2kεLe−θv(y−vs)1y≤vs =: η(4)
s,y .
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Then note that for each (t, x), (t ′, x′) ∈ H, using Lemma 10.1,

1

2ε2kεL

∫∫ ∞

0
(Gs,y;t ′,x′ − Gs,y;t,x)2η(4)

s,y ds dy

≤
∫∫ ∞

0
(Gs,y;t ′,x′ − Gs,y;t,x)2e−v(y−vs) ds dy ≤ 27(∣∣x′ − x

∣∣+ ∣∣t ′ − t
∣∣1/2)

.

Therefore,

B(4) := sup
(t,x),(t ′,x′)∈H

∫∫∞
0 (Gs,y;t ′,x′ − Gs,y;t,x)2η

(4)
s,y ds dy

| x′−x
3L

| + | t ′−t
T

|1/2
≤ 210ε2kεL2 =: B̃(4).

Taking z = 28, we get from Lemma 9.1 that

P
(

sup
(t,x)∈H

Z
(4)
t,x > z

√
B̃(4)

)
≤ P

(
sup

(t,x),(t ′,x′)∈H

∣∣H(4)

t ′,x′ − H
(4)
t,x

∣∣> z
√

B(4)
)

≤ 25e−z2/212 ≤ 2−4.

To finish this step we note that

z

√
B̃(4) = 213

√
ε2kεL2 = ν4εL.

Step 8. We will show that

P
(

sup
(t,x)∈H

Z
(5)
t,x > ν5εL

)
≤ 2−4

with ν5 = ν/4. First note that almost surely for each (s, y) ∈ R+ ×R,

ε2(σw
s,y ∧ (νεL1y∈[−L,vT +L])

)2 ≤ ε2ν2ε2L2 =: η(5)
s,y .

Then note that for each (t, x), (t ′, x′) ∈ H, using [27, Lemma 6.2(1)] (cf. Lemma 10.1),

1

ε2ν2ε2L2

∫∫ ∞

0
(Gs,y;t ′,x′ − Gs,y;t,x)2η(5)

s,y ds dy ≤ 27(∣∣x′ − x
∣∣+ ∣∣t ′ − t

∣∣1/2)
.

Therefore,

B(5) := sup
(t,x),(t ′,x′)∈H

∫∫∞
0 (Gs,y;t ′,x′ − Gs,y;t,x)2η

(5)
s,y ds dy

| x′−x
3L

| + | t ′−t
T

|1/2
≤ 29ε2ν2ε2L3 =: B̃(5).

Taking z = 28, we get from Lemma 9.1 that

P
(

sup
(t,x)∈H

Z
(5)
t,x > z

√
B̃(5)

)
≤ P

(
sup

(t,x),(t ′,x′)∈H

∣∣Z(5)

t ′,x′ − Z
(5)
t,x

∣∣> z
√

B(5)
)

≤ 25e−z2/212 ≤ 2−4.

To finish this step we note from (4.6) that

z

√
B̃(5) = 213

√
ε2ν2ε2L3 = 213

√
ε2LνεL ≤ ν5εL.

Final step. We note from (4.3) and (4.4) that

5∑
i=1

νi = 23 + 24k + νp + 213K1/2γ −1 + ν/4 ≤ ν.

Also note from Steps 2 and 8 that

P(τ2 < T,τ1 ≥ T , τ3 ≥ T ) = P(τ̃2 < T,τ1 ≥ T , τ3 ≥ T ) ≤ P(τ̃2 < T )

= P
({

ũ ≤ νεL on [0, T ] × [−L,vT + L]}c)
≤ P

(
5⋃

i=1

{
Z(i) ≤ νiεL on [0, T ] × [−L,vT + L]}c).
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Now from Steps 3–7, we have

P(τ2 < T,τ1 ≥ T , τ3 ≥ T )

≤
5∑

i=1

P
({

Z(i) ≤ νiεL on [0, T ] × [−L,vT + L]}c)≤ 2−3.
�
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