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Abstract

We consider a class of subcritical superprocesses (X t )t≥0 with general spatial motions and general
branching mechanisms. We study the asymptotic behaviors of Qt,r , the distribution of X t conditioned
on X t+r not being a null measure. We first give the existence of limt→∞ Qt,r and limr→∞ Qt,r ,
and then show that an L log L-type condition is equivalent to the existence of the iterated limits:
limr→∞ limt→∞ Qt,r and limt→∞ limr→∞ Qt,r . Finally, when the L log L-type condition holds, we
how that those iterated limits, and the double limit limr,t→∞ Qt,r , are the same.

2023 Elsevier B.V. All rights reserved.

1. Introduction

Motivation

The study of the extinction of stochastic processes related to population dynamics is of
reat interest in both biology and probability theory. Take a subcritical Galton–Watson process
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(Zn)n∈Z+
as an example. Assume that Z0 = 1 and m = E[Z1] ∈ (0, 1). It is well known that the

xtinction probability q := limn→∞ P(Zn = 0) is equal to 1. In other words, the probability
P(Zn > 0) decays to 0. A natural question is to find the decay rate of this probability. In
967, Heathcote, Seneta and Vere-Jones [15] proved that the following three statements are
quivalent.

(1.1) limn→∞ P(Zn > 0)/mn > 0.
(1.2) sup E[Zn|Zn > 0] < ∞.
(1.3) E

[
Z1 log+ Z1

]
< ∞.

ondition (1.3) is now known as the L log L condition and the equivalence of the three
tatements above is usually called the L log L criterion. It is also natural to consider Qn,0, the
istribution of Zn conditioned on {Zn > 0}. In 1967, Heathcote, Seneta and Vere-Jones [15]
nd Joffe [18] proved that Qn,0 has a weak limit Q∞,0 when n → ∞. This result was first
btained by Yaglom [44] in 1947 under some moment condition, and the probability measure

Q∞,0 is therefore referred to as the Yaglom limit. One can also consider Qn,m , the distribution
f Zn conditioned on {Zn+m > 0}. As a corollary of the Yaglom limit result, Athreya and
ey [1] showed in 1972 that for every m ∈ Z+, Qn,m has a weak limit Q∞,m when n → ∞.

offe, in his 1967 paper [18], pointed out that for every n ∈ Z+, Qn,m has a weak limit Qn,∞

hen m → ∞. Later in 1999, Pakes [31] proved that the L log L condition (1.3) is equivalent
o each of the following two statements.

(1.4) Q∞,m has a weak limit when m → ∞.
(1.5) Qn,∞ has a weak limit when n → ∞.

oreover, when (1.3) holds, Pakes [31] showed that limm→∞ Q∞,m = limn→∞ Qn,∞.
Yaglom limit theorem is now a fundamental topic in the study of Markov processes. A

ong list of references on Yaglom limit theorems of a variety of models can be found on the
ebsite [34] maintained by Pollett. It turns out that Heathcote, Seneta and Vere-Jones’ L log L

heorem, as well as Pakes’ iterated limit theorem, are also universal among models with the
arkovian branching property. Analogs of these results in the context of multitype Galton–
atson processes can be found in [33] and the references therein. Results for continuous-state

ranching processes can be found in [12,22] and [24].
We are interested in a class of measure-valued branching processes known as superprocesses.

he book [25] is a good reference for superprocesses. In recent years, there have been a
ot of papers on the large time asymptotic behavior of superprocesses. For laws of large
umbers and central limit theorems of some supercritical superprocesses, see [3,6,27,37,38,40]
nd the references therein. For Yaglom limit results of various critical superprocesses, see
10,35,36,41].

In our recent work [28], we characterized the Yaglom limits of a class of subcritical
uperprocesses with general spatial motions and general branching mechanisms. The goal of
his paper is to establish Heathcote, Seneta and Vere-Jones’ L log L theorem, as well as Pakes’
terated limit theorem, for the same class of subcritical superprocesses.

odel and assumptions

We first recall the definition of superprocesses. For any topological space F , we denote
y C(F) the set of continuous real-valued functions on F , and by B(F) the Borel σ -algebra

f F . In general, if F is a space of real-valued functions, then we use bF , pF and bpF
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to denote the bounded, non-negative, and non-negative bounded elements in F , respectively.
oreover, if F is a σ -algebra, then we use bF , pF and bpF to denote the set of bounded,

on-negative, and non-negative bounded F-measurable real functions, respectively. Let E be a
olish space. Let (ξt )t∈[0,ζ ) be an E-valued Borel right process with (possibly sub-Markovian)

ransition semigroup (Pt )t≥0 and lifetime ζ . Denote R+ := [0,∞). Let ψ be a function on
E × R+ given by

ψ(x, z) = −β(x)z + σ (x)2z2
+

∫
(0,∞)

(e−zu
− 1 + zu)π (x, du), x ∈ E, z ≥ 0,

here β, σ ∈ bB(E), and π is a kernel from E to (0,∞) such that

sup
x∈E

∫
(0,∞)

(u ∧ u2)π (x, du) < ∞.

For any f ∈ bpB(E), there exists a unique non-negative Borel function (t, x) ↦→ Vt f (x) on
R+ × E such that sup0≤t≤t0,x∈E Vt f (x) < ∞ for every t0 ≥ 0, and that

Vt f (x) +

∫ t

0
ds
∫

E
ψ
(
y, Vt−s f (y)

)
Ps(x, dy) = Pt f (x), t ≥ 0, x ∈ E .

he Polish space of all finite Borel measures on E , equipped with the topology of weak
onvergence, is denoted by M. It is known that there exists an M-valued conservative right
rocess (X t )t≥0 with transition semigroup (Qt )t≥0 such that for each µ ∈ M, t ∈ R+ and

f ∈ bpB(E),∫
M

exp
{
−

∫
E

f (x)η(dx)
}

Qt (µ, dη) = exp
{
−

∫
E

Vt f (x)µ(dx)
}
. (1.6)

his process (X t )t≥0 is known as a (ξ, ψ)-superprocess. We refer our readers to [25] for more
etails.

For each x ∈ E , denote by Πx the law of (ξt )t∈[0,ζ ) with initial value ξ0 = x . For each
∈ M, denote by Pµ the law of (X t )t≥0 with initial value X0 = µ. Given any measure γ and

unction f , we write γ ( f ) for the integral of f with respect to γ whenever it is well-defined.
or any f ∈ bB(E), define

Tt f (x) = Πx
[
e
∫ t

0 β(ξs )ds f (ξt )1{t<ζ }
]
, t ≥ 0, x ∈ E .

It is known that (Tt )t≥0 is a Borel semigroup on E , and that

µ(Tt f ) = Pµ[X t ( f )], µ ∈ M, t ∈ R+, f ∈ bB(E). (1.7)

We call (Tt )t≥0 the mean semigroup of X . We will always assume the following statement
holds.

(1.8) There exist a constant λ ∈ R, a bounded strictly positive Borel function φ on E , and
a probability measure ν with full support on E , such that ν(φ) = 1, and that for any
t ≥ 0, Ttφ = eλtφ and νTt = eλtν.

From the expectation formula (1.7) of superprocesses, it is easy to see that, when Assump-
tion (1.8) holds, (e−λt X t (φ))t≥0 is a martingale. Denote by L+

1 (ν) the collection of f ∈ pB(E)
uch that ν( f ) < ∞. We further assume that the mean semigroup (Tt )t≥0 satisfies the following
ondition.

(1.9) There exists a map (t, x, f ) ↦→ Ht f (x) from (0,∞) × E × L+

1 (ν) to R such that
Tt f (x) = eλtφ(x)ν( f )

(
1 + Ht f (x)

)
for any t > 0, x ∈ E and f ∈ L+

1 (ν);
sup + |H f (x)| < ∞ for any t > 0; and lim sup + |H f (x)| = 0.
x∈E, f ∈L1 (ν) t t→∞ x∈E, f ∈L1 (ν) t
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The triplet (λ, φ, ν) satisfying (1.8) and (1.9) is unique. In fact, suppose that there is another
riplet (λ′, φ′, ν ′) satisfying (1.8) and (1.9), then e−λt Tt 1E (x) → φ(x) and e−λ′t Tt 1E (x) → φ′(x)

as t → ∞ for arbitrary x ∈ E. This can only happen if (λ′, φ′) = (λ, φ). Also it is clear that
for every bounded Borel function f on E ,

ν ′( f ) = lim
t→∞

Tt f (x)
eλ′tφ′(x)

= lim
t→∞

Tt f (x)
eλtφ(x)

= ν( f ),

which says that ν = ν ′.
Assumptions similar to (1.8) and (1.9) are nowadays very common in the study of superpro-

cesses [11,26,28,35,36,41] and other spatial Markovian branching processes [11,13,14,17,42].
In particular, we mention a very recent paper [11] where exactly the same assumptions were
used to study the asymptotic behavior of the moments of both the superprocesses and the
branching Markov processes. In general, it was explained in our earlier paper [28] that (1.8)
and (1.9) hold true if the transition semigroup of the Markov process (ξt )t≥0 is intrinsically
ultracontractive. (For the definition and more details on the intrinsically ultracontractivity,
see [20,42].) Some interesting examples satisfying (1.8) and (1.9) include multitype irreducible
continuous-state branching processes and super-Brownian motions in a bounded Lipschitz
domain. Many more examples can be found in [28, Section 1.3] and [41, Section 1.4]. We also
mention here that one cannot apply our results to the super-Brownian motion on Rd because
it does not satisfy (1.9).

Under the Assumptions (1.8) and (1.9), we say the superprocess is supercritical, critical,
or subcritical, if λ > 0, λ = 0, or λ < 0, respectively. Since (e−λt X t (φ))t≥0 is a nonnegative

artingale, it has an almost sure finite limit. Thus roughly speaking, the process grows on
verage if λ > 0; decays on average if λ < 0; maintains a stabilizing average if λ = 0. The
bove definition is consistent with the similar notion for Galton–Watson processes. See [14]
or similar definitions for branching Markov processes. In this paper, we are only concerned
ith the subcritical case, i.e., we will assume that

λ < 0. (1.10)

Denote by 0 the null measure on E . Define Mo
:= M \ {0}. It is possible that the

uperprocess is persistent in the sense that Pµ(X t ̸= 0 for all t ≥ 0) = 1 for any µ ∈ Mo.
ote that, if X is persistent, then it is trivial to consider X conditioned on non-extinction. So
e use the following assumption to exclude this trivial case:

Pν(X t = 0) > 0, t > 0. (1.11)

t can be verified that Pµ(X t = 0) > 0 for every t > 0 and µ ∈ Mo under the
above assumptions. See Remark 2.2 for more details. If the branching mechanism is spatially
homogeneous, that is to say the function ψ(x, z) = ψ(z) is independent of x ∈ E , then (1.11)
is known to be equivalent to Grey’s condition:

There exists z′ > 0 such that ψ(z) > 0 for all z ≥ z′ and
∫

∞

z′

ψ(z)−1dz < ∞.

It is also known that if the branching mechanism ψ(x, z) is bounded below by a spatially
homogeneous branching mechanism ψ̃ satisfying Grey’s condition, then (1.11) holds. See [41,

Lemma 2.3] for more details.
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Main results

Given X0 = µ ∈ Mo, we denote by Qµ
t,r the distribution of X t conditioned on {X t+r ̸= 0},

.e.,

Qµ
t,r (A) := Pµ(X t ∈ A|X t+r ̸= 0), t, r ∈ R+, A ∈ B(M).

ur first result is about the convergence of Qµ
t,r as t → ∞ with r fixed.

heorem 1.1. For any r ∈ R+, there exists a probability measure Q∞,r on M such that, for
ny µ ∈ Mo, Qµ

t,r converges weakly to Q∞,r as t → ∞.

Notice that the case r = 0 of Theorem 1.1 was given in [28].
Our next result is about the convergence of Qµ

t,r as r → ∞ with t fixed. For any
iven measurable space (Ω̃ , F̃ ), we say a sequence of probability measures (µn)∞n=1 on
Ω̃ , F̃ ) converge strongly (or converge setwise) to a probability measure µ on (Ω̃ , F̃ ) if
imn→∞ µn( f ) = µ( f ) for any f ∈ bF̃ . An equivalent definition can be found in [16,
efinition 1.4.1] .

heorem 1.2. For any µ ∈ Mo and t ∈ R+, there exists a probability measure Qµ
t,∞ on M

uch that Qµ
t,r converges strongly to Qµ

t,∞ as r → ∞.

We then consider the limits of Q∞,r and Qµ
t,∞ as r → ∞ and t → ∞ respectively. Define

∈ [0,∞] by

E :=

∫
E
ν(dx)

∫
(0,∞)

uφ(x) log+
(
uφ(x)

)
π (x, du), (1.12)

here log+ z := max(log z, 0) for every z > 0.

heorem 1.3. Let µ ∈ Mo be arbitrary. The following five statements are equivalent:

(1) E < ∞.
(2)

∫
M η(φ)Q∞,0(dη) < ∞.

(3) lim inft→∞ e−λt Pµ(X t ̸= 0) > 0.
(4) Q∞,r converges strongly as r → ∞.
(5) Qµ

t,∞ converges weakly as t → ∞.

Theorem 1.3 can be considered as an analog of Heathcote, Seneta and Vere-Jones’ L log L
heorem for superprocesses. In particular, the condition E < ∞ is an analog of the L log L
ondition (1.3). The same condition has already appeared in [26] where the first three authors
f this paper studied the asymptotic behavior of supercritical superdiffusions. Here, in the
ubcritical setting, E < ∞ is shown to be equivalent to the exponential decay of the survival
robability. (We are using ‘liminf’ in the third statement because we are not assuming, a priori,
xistence of the limit. In fact, it is made clear in the next theorem that the limit does exist under
he condition E < ∞.) The equivalence of E < ∞ to the existence of the two types of iterated
imits in (4) and (5) is in parallel to Pakes’ iterated limit theorem [31, Theorems 2.2 and 2.3].
otice that in (4) and (5), the sense of convergence for these two double limits are different.
his difference is not present in the context of Galton–Watson processes because the weak
onvergence and the strong convergence are equivalent for the probability distributions on the
iscrete space N. The following theorem says that the two iterated limits coincide, which is
502
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in parallel to Pakes’ result on the Galton–Watson branching processes. We also give the weak
limit for Qµ

t,r when t and r converge to ∞ together. It seems that this latter result has not been
explored before for other Markov branching processes.

Theorem 1.4. Suppose that E < ∞. Then there exists a probability measure Q∞,∞ on M
such that the following statements hold for any µ ∈ Mo:

(1) Q∞,∞(dη) = η(φ)Q∞,0(dη)/
∫
M η(φ)Q∞,0(dη).

(2) limt→∞ e−λt Pµ(X t ̸= 0) = µ(φ)/
∫
M η(φ)Q∞,0(dη).

(3) Q∞,r converges strongly to Q∞,∞ as r → ∞.
(4) Qµ

t,∞ converges weakly to Q∞,∞ as t → ∞.
(5) Qµ

t,r converges weakly to Q∞,∞ as t, r → ∞.

emark 1.5. If the space E only contains one point, i.e. E = {x}, the superprocess X
egenerates to a continuous-state branching process. In this special case, Assumptions (1.8) and
1.9) hold automatically, and the main results of this paper have already been given by [12,22]
nd [24].

emark 1.6. If E = {x1, . . . , xn} is a finite set and the E-valued Markov chain (ξt )t≥0 is
rreducible, then the superprocess X degenerates to an irreducible multitype continuous state
ranching process. In this case, one can verify using the Perron–Frobenius theory that the
ssumptions (1.8) and (1.9) hold. If one further assumes that the kernel π (x, du) = 0, then
ur results (3) and (4) of Theorem 1.4 already appeared in [2, Theorem 3.7].

emark 1.7. When the branching mechanism ψ is spatially homogeneous, our Theorem 1.2
s an immediate corollary of [25, Theorem 6.8].

verview of the method

Note that the main results Theorems 1.1–1.4 depend only on the transition semigroup
Qt )t≥0 of the superprocess (X t )t≥0. Therefore, we can work on any specific realization of
X t )t≥0 without loss of generality. According to Lemma A.1, (Qt )t≥0 is a Borel semigroup
n M. This and [25, Theorem A.33] allow us to realize the superprocess on the space of

-valued right continuous paths. To be more precise, we can, and will, assume the following
tatements hold throughout the rest of the paper.

(1.13) Ω is the space of M-valued right continuous functions on R+.
(1.14) (X t )t≥0 is the coordinate process of the path space Ω .
(1.15) (θt )t≥0 are the shift operators on the path space Ω .
(1.16) Ft = σ (Xs : s ∈ [0, t]) and F = σ (Xs : s ∈ R+).
(1.17) For any µ ∈ M, Pµ is the probability measure on (Ω ,F ) so that under Pµ, X0 = µ

almost surely and that (X t )t≥0 is a Markov process with transition semigroup (Qt )t≥0.

ote that for any H ∈ bF , µ ↦→ Pµ(H ) is a measurable function on M. For any probability
easure P on M, we define a probability measure PP on (Ω ,F ) by

(PP)(A) :=

∫
Pµ(A)P(dµ), A ∈ F .
M
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Denote by (F a, (F a
t )t≥0) the augmentation of (F , (Ft )t≥0) by the system of probability

easures {PP : P is a probability measure on M}. Then, according to [25, Lemma A.33],

X := (Ω ,F a, (F a
t )t≥0, (X t )t≥0, (θt )t≥0, (Pµ)µ∈M)

s a Borel right process with transition semigroup (Qt )t≥0, i.e., a (ξ, ψ)-superprocess.
We already proved Theorem 1.1 in the case r = 0 in [28]. For the case r > 0, we will give

stronger result by considering the shifted two-sided process (X t+u)u∈R with the convention
Xs := 0 for s < 0. We will show in Proposition 2.5 that this two-sided process, conditioned on
X t ̸= 0}, has a limiting process (Yu)u∈R when t → ∞. We will obtain this result by analyzing
he Laplace transform of the shifted two-sided process.

We will also establish a stronger version of Theorem 1.2 by considering the (non-shifted)
rocess (Xu)u≥0 under the condition {X t ̸= 0}. We will show in Proposition 3.3 that this process
as a limiting process (X̃u)u≥0 when t → ∞. We obtain this stronger result by a martingale
hange of measure method. The limiting process (X̃u)u≥0 is interpreted as a superprocess condi-
ioned on living forever, and is referred to as the Q-process. We mention here that the Q-process
X̃u)u≥0 has a different law compared to the process (Yt )t≥0 above. This Q-process also arises in
nother type of conditioning, see [5]. The study of the Q-process can be traced back to Lamperti
nd Ney [23] where they considered the Q-process for Galton–Watson processes. For studies
n the Q-processes of other models, we refer our readers to [30,32] and the references therein.

For the proofs of Theorems 1.3 and 1.4, we use the spine decomposition theorem for
uperprocesses. Roughly speaking, the Q-process (X̃u)u≥0 can be decomposed in terms of
n immortal particle which moves according to a Markov process and generates pieces of
ass evolving according to the law of the unconditioned superprocess. This representation for

he superprocesses was first obtained by [9], and developed and generalized into the spine
ecomposition theorem by [6–8,26,36,39]. Under Assumption (1.9), this immortal particle will
onverge in law to its ergodic equilibrium, and the quantitative information about the Q-process
an be obtained using the ergodic theorem.

Our proofs of Theorems 1.3 and 1.4 adopt a method which can be traced back to Lyons,
emantle and Peres [29] where they gave a probabilistic proof of Heathcote, Seneta and Vere-
ones’ L log L theorem for Galton–Watson processes. Let us give some intuition here. Note
hat for the spine decomposition of the Q-process, each piece of mass being generated will
anish eventually since they are subcritical and non-persistent. When the L log L condition
olds, the rate at which masses are created is smaller than the rate at which masses vanish,
nd the Q-process will converge to an equilibrium state. When the L log L condition does not
old, the rate at which masses are created is bigger than the rate at which they vanish, and the
-process will not converge to any equilibrium because it accumulates more and more mass.

rganization of the paper

In Section 2, we give the proof of Theorem 1.1. In Section 3, we give the proof of
heorem 1.2. Section 4 gives the proofs of Theorems 1.3 and 1.4, and summarizes the spine
ecomposition theorems in Lemmas 4.11 and 4.17. In Appendix, we gather the proofs of several
echnical lemmas.

. A two-sided process: Proof of Theorem 1.1

We first recall some basic results from [28]. Define

v (x) := − log P (X = 0), t ≥ 0, x ∈ E . (2.1)
t δx t
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From (1.6) and the monotone convergence theorem, we get that

µ(vt ) = − log Pµ(X t = 0), µ ∈ M, t ≥ 0. (2.2)

n particular, from (1.11), we have that ν(vt ) < ∞ for t > 0. The following lemma, which is
corollary of [28, Proposition 2.2], entails that {vt : t > 0} ⊂ bpB(E).

emma 2.1. For any t > 0 and x ∈ E, vt (x) = φ(x)ν(vt )(1 + C1(t, x)), where C1(t, x) ∈ R
atisfies that limt→∞ supx∈E |C1(t, x)| = 0.

emark 2.2. For any t > 0 and µ ∈ M, from Lemma 2.1 we have µ(vt ) < ∞; and therefore
y (2.2), Pµ(X t = 0) = e−µ(vt ) > 0.

We will also use the following fundamental fact for the subcritical superprocess X . It can
e verified, for example, using (2.2) and [28, (3.39)] .

emma 2.3. For any µ ∈ M, limt→∞ Pµ(X t = 0) = 1.

In [28], we already showed that there exists a probability measure Q∞,0 on M such that for
very µ ∈ Mo, Qµ

t,0 converges weakly to Q∞,0 as t → ∞. Q∞,0 is known as the Yaglom limit
f the superprocess X . It was also proved there that Q∞,0 is the quasi-stationary distribution
or (X t )t≥0 with extinction rate −λ, i.e.,

(Q∞,0P)(Xr ∈ dµ|Xr ̸= 0) = Q∞,0(dµ) (2.3)

nd

(Q∞,0P)(Xr ̸= 0) = eλr > 0. (2.4)

2.4) allows us to define a probability measure Q∞,r on M for any r ≥ 0 such that

Q∞,r [F] = (Q∞,0P)[F(X0)|Xr ̸= 0], F ∈ bB(M). (2.5)

e will prove Theorem 1.1 by showing that Q∞,r is the weak limit of Qµ
t,r when t → ∞

or any µ ∈ Mo. In fact, we can prove a proposition which is stronger than Theorem 1.1. To
ormulate this proposition, we first prove a lemma. We will use the convention X t := 0 for
< 0.

emma 2.4. There exists a two-sided M-valued process (Yu)u∈R on some probability space
Ω̃ , F̃ ,P) such that for any t > 0, the process (X t+u)u≥−t under (Q∞,0P)(·|X t ̸= 0) has the
ame finite-dimensional distributions as (Yu)u≥−t .

roof. We say G is a finite-dimensional [0,∞]-valued linear functional of M-valued
wo-sided paths if the following statement holds.

(2.6) There exist a natural number n, {ui : i = 1, . . . , n} ⊂ R, and a list of [0,∞]-valued
Borel functions ( fi )n

i=1 on E , such that G(w) =
∑n

i=1wui ( fi ) for every M-valued
two-sided path w = (wu)u∈R.

ix an arbitrary finite-dimensional [0,∞]-valued linear functional G as above. For any s ∈ R,
efine Gs(w) := G(ws+·) for any M-valued two-sided path w. Then Gs is also a finite-
imensional [0,∞]-valued linear functional. Fix a time s ≥ 0 large enough so that s + u ≥ 0
i
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for every i = 1, . . . , n. Since X is a time-homogeneous Markov process, using (2.3) and (2.4),
we have that for any t ≥ s,

(Q∞,0P)(e−Gt (X )
|X t ̸= 0) = e−λt

· (Q∞,0P)[e−Gt (X )1{X t ̸=0}]

= e−λt
· (Q∞,0P)

[
1{X t−s ̸=0}PX t−s [e−Gs (X )1{Xs ̸=0}]

]
= e−λs

· (Q∞,0P)
[
PX t−s [e−Gs (X )1{Xs ̸=0}]

⏐⏐⏐X t−s ̸= 0
]

= e−λs
· (Q∞,0P)

[
e−Gs (X )1{Xs ̸=0}

]
= (Q∞,0P)(e−Gs (X )

|Xs ̸= 0).

In other words, given a finite subset U = {ui : i = 1, . . . , n} ⊂ R and a large enough t ≥ 0, the
M-valued random vector (X t+u)u∈U under the probability (Q∞,0P)(·|X t ̸= 0) has a distribution,

enoted by DU , which is independent of the choice of t . Using the Markov property, it is easy to
erify that this family of finite-dimensional distributions D := {DU : U is a finite subset of R}

atisfies the consistency condition for the Kolmogorov extension theorem. Therefore, there
xists a two-sided M-valued process (Yu)u∈R whose finite-dimensional distributions are given
y D.

It is a routine to verify that (Yu)u∈R satisfies the desired properties of this lemma. □

Recall that the two-sided indexed process (X t )t∈R is defined with the convention that Xs := 0
or s < 0.

roposition 2.5. For any µ ∈ Mo, when t → ∞, the M-valued two-sided process (X t+u)u∈R
nder Pµ(·|X t ̸= 0) converges to the process (Yu)u∈R, given in Lemma 2.4, in the sense of
nite-dimensional distributions.

We first explain that the above proposition is indeed stronger than Theorem 1.1.

roof of Theorem 1.1. Fix arbitrary r ≥ 0 and F ∈ bC(M). Using Proposition 2.5,
emma 2.4 and the definition (2.5) of the probability Q∞,r , we have

Qµ
t,r [F] = Pµ[F(X (t+r )−r )|X t+r ̸= 0]

−−−→
t→∞

P[F(Y−r )] = (Q∞,0P)[F(X0)|Xr ̸= 0] = Q∞,r [F]

s desired. □

Before we prove Proposition 2.5, we first present the following two lemmas.

emma 2.6. For any µ ∈ Mo and [0,∞]-valued Borel function f on E,∫
M

e−η( f )Qµ

t,0(dη) −−−→
t→∞

∫
M

e−η( f )Q∞,0(dη).

Lemma 2.6 follows from [28, Proposition 2.3 & (2.9)] .

emma 2.7. For any η, µ ∈ Mo and s ∈ R+, it holds that

Pη(X t−s ̸= 0)
Pµ(X t ̸= 0)

−−−→
t→∞

e−λsη(φ)
µ(φ)

.

roof. Let vt (x) be given as in (2.1). It follows from [28, (3.20)] that for any real number s,

lim
ν(vt+s)

= eλs . (2.7)

t→∞ ν(vt )
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(Note that vt (x) = (Vt∞)(x) in the language of [28].) Therefore we have from (2.7), Lemma 2.1
and the bounded convergence theorem that, for any η, µ ∈ Mo and s ≥ 0,

lim
t→∞

η(vt−s)
µ(vt )

= lim
t→∞

ν(vt−s)
∫
φ(x)(1 + C1(t − s, x))η(dx)

ν(vt )
∫
φ(x)(1 + C1(t, x))µ(dx)

=
e−λsη(φ)
µ(φ)

.

hus we have by (2.2) and [28, (3.39)] that,

lim
t→∞

Pη(X t−s ̸= 0)
Pµ(X t ̸= 0)

= lim
t→∞

1 − e−η(vt−s )

1 − e−µ(vt ) = lim
t→∞

η(vt−s)
µ(vt )

=
e−λsη(φ)
µ(φ)

. □

roof of Proposition 2.5. To prove the convergence of the processes, we verify the conver-
ence of all the Laplace transforms of the finite-dimensional linear functional. Fix an arbitrary
∈ Mo and an arbitrary finite-dimensional [0,∞]-valued linear functional G defined in (2.6).

It can be verified using (1.6), the Markov property and induction that there exists a [0,∞]-
valued Borel function vG on E , which depends on the choice of G but not on µ, such that
Pµ[exp{−G(X )}] = exp{−µ(vG)}. Fix a time s ≥ 0 large enough so that s + ui ≥ 0 for every
= 1, . . . , n. From the Markov property, we can verify that for any t ≥ s,

Pµ(e−G(X t+·)|X t ̸= 0) =
Pµ[e−G(X t+·)1{X t ̸=0}]

Pµ(X t ̸= 0)
=

Pµ
[
PX t−s [e−G(Xs+·)1{Xs ̸=0}]

]
Pµ(X t ̸= 0)

=
Pµ(X t−s ̸= 0)
Pµ(X t ̸= 0)

Pµ
[
PX t−s [e−G(Xs+·)1{Xs ̸=0}]

⏐⏐⏐X t−s ̸= 0
]

=
Pµ(X t−s ̸= 0)
Pµ(X t ̸= 0)

Pµ
[
e−X t−s (vGs )

− e−X t−s (vG̃s
)
⏐⏐⏐X t−s ̸= 0

]
(2.8)

here

Gs(w) = G(ws+·) =

n∑
i=1

ws+ui ( fi ),

and

G̃s(w) := G(ws+·) + ws(∞1E ) =

n∑
i=1

ws+ui ( fi ) + ws(∞1E ),

re finite-dimensional [0,∞]-valued linear functionals for M-valued two-sided paths w. In
fact, (2.8) holds because

e−G(Xs+·)1{Xs=0} = e−[G(Xs+·)+Xs (∞1E )]
= e−G̃s (X ),

and that for any η ∈ M,

Pη[e−G(Xs+·)1{Xs ̸=0}] = Pη[e−Gs (X )
− e−G̃s (X )] = e−η(vGs )

− e−η(vG̃s
)
.

Now we have that

lim
t→∞

Pµ(e−G(X t+·)|X t ̸= 0)

(2.8)
= lim

t→∞

Pµ(X t−s ̸= 0)
Pµ(X t ̸= 0)

lim
t→∞

Pµ
[
e−X t−s (vGs )

− e−X t−s (vG̃s
)
⏐⏐⏐X t−s ̸= 0

]
Lemmas 2.6 and 2.7

= e−λs
∫

(e−η(vGs )
− e−η(vG̃s

))Q∞,0(dη)

M
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= e−λs

M
Pη[e−G(Xs+·)1{Xs ̸=0}]Q∞,0(dη)

(2.4)
= (Q∞,0P)[e−G(Xs+·)|Xs ̸= 0] Lemma 2.4

= E[e−G(Y )].

This and [25, Theorem 1.18] imply the desired result. □

3. The Q-process: Proof of Theorem 1.2

According to (1.7) and (1.8), we have Pµ[X t (φ)] = eλtµ(φ) ∈ (0,∞) for any t ∈ R+ and
µ ∈ Mo. This allows us to define, for any t ∈ R+ and µ ∈ Mo, a probability measure Qµ

t,∞
on (M,B(M)) such that

Qµ
t,∞[F] = Pµ

[ X t (φ)
eλtµ(φ)

· F(X t )
]
, F ∈ bB(M). (3.1)

e will prove Theorem 1.2 by showing that Qµ
t,∞ is the strong limit of Qµ

t,r when r → ∞.
In fact, we can prove a result which is stronger than Theorem 1.2. Before presenting this

esult, we introduce some notation and give a technical lemma. Denote by P̃(t)
µ the law of the

-valued process (Xr )r≥0 under Pµ(·|X t ̸= 0). More precisely, for any t ≥ 0 and µ ∈ Mo,
efine P̃(t)

µ as the probability measure on Ω such that

P̃(t)
µ [H ] = Pµ[H |X t ̸= 0], H ∈ bpF .

he following lemma can be verified from [43, Theorem 62.19] .

emma 3.1. For any µ ∈ Mo, there exists a unique probability measure P̃(∞)
µ on (Ω ,F )

uch that for any s ≥ 0 and H ∈ pFs , it holds that

P̃(∞)
µ [H ] = Pµ

[ Xs(φ)
eλsµ(φ)

· H
]
.

Remark 3.2. From Lemma 3.1 we have P̃(∞)
µ (X t ∈ ·) = Qµ

t,∞(·) for every t ≥ 0.

We say a family (R(t))t≥0 of probability measures on Ω converges, as t → ∞, locally
trongly to a probability measure R on Ω if for any s ≥ 0 and H ∈ bpFs it holds that
imt→∞ R(t)(H ) = R(H ). The following proposition is the main result of this section, and it is

stronger than Theorem 1.2.

Proposition 3.3. For any µ ∈ Mo, P̃(t)
µ converges to P̃(∞)

µ locally strongly as t → ∞.

Proof of Theorem 1.2. We can verify using Lemma 3.1, Proposition 3.3 that for any t ∈ R+,
µ ∈ Mo and F ∈ bB(M),

Qµ
t,r [F] = P̃(t+r )

µ [F(X t )] −−−→
r→∞

P̃(∞)
µ [F(X t )] = Qµ

t,∞[F]. □

Before proving Proposition 3.3, we first prove the following lemma.

Lemma 3.4. For any µ ∈ Mo and s ∈ R+, it holds that

lim sup sup
1 Pη(X t−s ̸= 0)

< ∞.

t→∞ η∈Mo η(φ) Pµ(X t ̸= 0)
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Proof. Let vt (x) be given as in (2.1). By (2.2) and Lemma 2.1, we have for any µ, η ∈ Mo,
≥ 0 and t > s,

Pη(X t−s ̸= 0)
Pµ(X t ̸= 0)

≤
η(vt−s)
µ(vt )

µ(vt )
1 − e−µ(vt )

≤
ν(vt−s)
ν(vt )

(1 + supx∈E |C1(t − s, x)|)η(φ)∫
(1 + C1(t, x))φ(x)µ(dx)

µ(vt )
1 − e−µ(vt ) .

Using this, [28, (3.20)], Lemma 2.1, the bounded convergence theorem and [28, (3.39)]

sup
η∈Mo

1
η(φ)

Pη(X t−s ̸= 0)
Pµ(X t ̸= 0)

≤
ν(vt−s)
ν(vt )

(1 + supx∈E |C1(t − s, x)|)∫
(1 + C1(t, x))φ(x)µ(dx)

µ(vt )
1 − e−µ(vt ) −−−→

t→∞

e−sλ

µ(φ)

hich implies the desired result. □

roof of Proposition 3.3. Fix arbitrary µ ∈ Mo, s ≥ 0 and H ∈ bFs . It follows from
emma 3.4 that there exist C2(µ, s) > 0 and t0 > s such that for any t ≥ t0, Pµ-almost surely,

PXs (X t−s ̸= 0)
Pµ(X t ̸= 0)

≤ C2(µ, s)Xs(φ). (3.2)

sing the Markov property, Lemma 2.7, (3.2) and the dominated convergence theorem, we
ave

P̃(t)
µ [H ] =

Pµ[H · 1{X t ̸=0}]
Pµ(X t ̸= 0)

= Pµ
[

H ·
PXs (X t−s ̸= 0)

Pµ(X t ̸= 0)

]
−−−→
t→∞

Pµ
[

H ·
e−λs Xs(φ)
µ(φ)

]
= P̃(∞)

µ [H ]

as desired. □

4. L log L Type results: Proofs of Theorems 1.3 and 1.4

Our proofs of Theorems 1.3 and 1.4 are separated into the following five propositions whose
proofs are postponed to Subsections 4.1, 4.2, 4.3, 4.4, and 4.5, respectively.

Proposition 4.1. There exists a constant K ∈ [0,∞) which is independent of the initial value
∈ Mo such that

lim
t→∞

e−λt Pµ(X t ̸= 0) = Kµ(φ), µ ∈ Mo. (4.1)

In the remainder of this paper, K always denotes the constant above.

roposition 4.2. K > 0 if and only if E < ∞.

roposition 4.3. It holds that∫
M
η(φ)Q∞,0(dη) = K−1.

When K > 0, Proposition 4.3 allows us to consider the (unique) probability measure Q∞,∞

n M satisfying

Q∞,∞(F) =

∫
F(η) · Kη(φ)Q∞,0(dη), F ∈ bB(M). (4.2)
M
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Proposition 4.4. Let µ ∈ Mo be arbitrary. If K > 0, then Qµ
t,∞ converges weakly to Q∞,∞

as t → ∞. If K = 0, then Qµ
t,∞ does not converge weakly as t → ∞.

Proposition 4.5. If K > 0, then Q∞,r converges strongly to Q∞,∞ as r → ∞. If K = 0, then
Q∞,r does not converge strongly as r → ∞.

Proposition 4.6. If E < ∞, then for any µ ∈ Mo and non-negative continuous function f
on E,

lim
t,r→∞

Pµ
(
e−X t ( f )

|X t+r ̸= 0
)

=

∫
e−η( f )Q∞,∞(dη).

Proofs of Theorems 1.3 and 1.4. The desired results can be verified directly from Proposi-
tions 4.1–4.6. □

4.1. Exponential decay of the survival probability

In order to prove Proposition 4.1, we need the spine decomposition theorem for superpro-
cesses. To formulate this theorem, we first introduce the Kuznetsov measures via the following
lemma which is proved in [25, Section 8.4] .

Lemma 4.7. There exists a unique σ -finite kernel N = (Nx (A) : x ∈ E, A ∈ F ) from
(E,B(E)) to (Ω ,F ) such that

(1) Nx (X0 ̸= 0) = 0 for any x ∈ E;
(2) Nx (X t = 0 for all t ≥ 0) = 0 for every x ∈ E; and
(3) for any µ ∈ M, if N is a Poisson random measure on Ω with intensity µN, then

(µ1{0}(t) + N(X t )1(0,∞)(t))t≥0 is an M-valued stochastic process of the same finite
dimensional distributions as a (ξ, ψ)-superprocess with initial value µ. Here N(X t ) =∫
Ω X t (ω)N(dω) =

∫
Ω ωt N(dω), t > 0.

The family of σ -finite measures (Nx )x∈E is known as the Kuznetsov measures of X . Note
that those measures are typically not finite. One way to use them is to transform them into
probability measures. Notice that from Lemma 4.7(3) and Campbell’s theorem,

(µN)[X t ( f )] = Pµ[X t ( f )] = µ(Tt f ), µ ∈ M, t > 0, f ∈ bpB(E). (4.3)

Therefore, for any µ ∈ Mo and t > 0, there exists a unique probability measure µ̃N(t)
on

(Ω ,F ) such that for any H ∈ bF , µ̃N(t)
[H ] = (µN)[H · e−λtµ(φ)−1 X t (φ)].

Another ingredient for the spine decomposition theorem is the so-called spine process which
is an E-valued Markov process with transition semigroup (St )t≥0 on E defined so that

St f (x) = e−λtφ(x)−1Tt (φ f )(x), t ≥ 0, f ∈ bB(E), x ∈ E . (4.4)

The following lemma can be verified using [43, Theorem 62.19] .

Lemma 4.8. (St )t≥0 is a conservative Borel right semigroup on E.

In this section, we will add a little twist to the classical spine decomposition theorem by
only considering a specific initial value ν, but with a two-sided spine. This is possible thanks to
510
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the following lemma whose proof is postponed to the Appendix. For any probability measure
µ on E , we define a probability measure µ̃ on E so that

µ̃( f ) = µ(φ)−1µ(φ f ) for every f ∈ bpB(E). (4.5)

In particular, ν̃( f ) = ν(φ f ) for any f ∈ bpB(E). We say an E-valued two-sided process
(gt )t∈R defined on a probability space (Ω0,G ) is measurable if (t, ω) ↦→ gt (ω) is a measurable

ap from (R × Ω0,B(R) ⊗ G ) to (E,B(E)).

emma 4.9. ν̃ is an invariant probability measure of the semigroup (St )t≥0. In particular, there
xists a two-sided E-valued measurable stationary Markov process with transition semigroup
St )t≥0 and one-dimensional distribution ν̃.

roof. It is straight-forward to verify that ν̃ is an invariant measure for the semigroup (St )t≥0.
sing Kolmogorov’s extension theorem, we can construct an E-valued two-sided stationary
arkov process (ξ ∗

t )t∈R, canonically on the product space ER with transition semigroup (St )t≥0

nd one-dimensional distribution ν̃.
To finish the proof, we only have to construct a measurable process (ξ̃t )t∈R which is

modification of (ξ ∗
t )t∈R. To do this, we consider the compact metric space Ẽ which is

he Ray-Knight completion of E with respect to the right semigroup (St )t≥0. (We refer our
eaders to [25, p. 318] for the precise construction.) Denote by ρ the corresponding metric
f Ẽ . Thanks to [25, Theorem A.30] and Lemma 4.8, we have E ∈ B(Ẽ, ρ) and B(E) =

(E, ρ); and therefore, (ξ ∗
t )t∈R is also an Ẽ-valued process. According to [25, Theorem A.32

Proposition A.7] for any natural number n, the Ẽ-valued process (ξ ∗
t )t∈[−n,∞) admits an

Ẽ-càdlàg modification. Thus (ξ ∗
t )t∈R admits an Ẽ-càdlàg modification, denoted by (ξ ∗∗

t )t∈R.
inally, fixing an element x0 ∈ E , taking the measurable map ψ : x ↦→ x1x∈E + x01x∈Ẽ\E from
Ẽ,B(Ẽ)) to (E,B(E)), we can verify that ξ̃t := ψ(ξ ∗∗

t ), t ∈ R is an E-valued measurable
odification of the process (ξ ∗

t )t∈R as desired. □

Roughly speaking, the spine decomposition theorem says that the M-valued process (X t )t≥0

nder the probability P̃(∞)
µ can be decomposed in law as the sum of a copy of the original

ξ, ψ)-superprocess and an M-valued immigration process along the trajectory of an immortal
oving particle. Note that we will only consider the case when µ is taken as ν in this section.
o formulate this theorem, we construct random elements

(
W (0), ξ̃ ,N , (sk, yk,W (k))∞k=1

)
, on

probability space with probability measure Q, so that the following statements (4.6)–(4.10)
old.

(4.6) ξ̃ = (ξ̃t )t∈R is a two-sided E-valued measurable stationary Markov process with
transition semigroup (St )t≥0 and one-dimensional distribution ν̃.

(4.7) Conditioned on ξ̃ , (sk, yk)∞k=1 is a sequence of R × R+-valued random elements such
that D :=

∑
∞

k=1 δ(sk ,yk ) is a Poisson random measure on R × R+ with intensity
ds ⊗ yπ (ξ̃s, dy).

(4.8) Conditioned on ξ̃ and (sk, yk)∞k=1, (W (k))∞k=1 is a sequence of independent M-valued
right-continuous stochastic processes such that, for each natural number k, W (k)

=

(W (k)
t )t≥0 has distribution Pyδx where y = yk and x = ξ̃sk .

(4.9) Conditioned on ξ̃ , N is a Poisson random measure on R × Ω , independent of
(k) ∞ ˜ 2
(sk, yk,W )k=1, with intensity 2σ (ξs) ds ⊗ Nξ̃s (dw).
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(4.10) W (0)
= (W (0)

t )t≥0 is a M-valued right-continuous process with law Pν , independent of(
ξ̃ ,N , (sk, yk,W (k))∞k=1

)
.

Remark 4.10. The existence of the above random elements
(
W (0), ξ̃ ,N , (sk, yk,W (k))∞k=1

)
follows from the existence of the spine process (Lemma 4.9), the superprocesses [25], and the
Poisson random measures [21, Theorem 2.4] . The precise construction of a probability space
that carries those structures will be omitted since it is tedious but straightforward.

Notice that there are two types of immigration along the spine ξ̃ . The discrete immigration
is given by (W (k))∞k=1, while the continuous immigration is governed by the Poisson random
measure N . We are interested in the total contributions, at a given time t , of all the immigration
whose earliest immigrant ancestor is born in a time interval (a, b]. More precisely, we define,
for each −∞ ≤ a < b ≤ t < ∞ and f ∈ bpB(E),

Z (a,b]
t ( f ) :=

∞∑
k=1

W (k)
t−sk

( f )1(a,b](sk) +

∫
(a,b]×Ω

wt−s( f )N (ds, dw). (4.11)

t can be verified using Lemma 4.11 that when a > −∞, Z (a,b]
t is an M-valued random

lement. However, this does not hold in general if a = −∞. In particular, Z (−∞,0]
0 (φ) might

ake ∞ as a value. With the convention that ∞
−1

= 0 and 0−1
= ∞, we define a constant

K := Q[Z (−∞,0]
0 (φ)−1]. (4.12)

e will prove Proposition 4.1 by showing that K is finite and fulfills (4.1).
The spine decomposition theorem will be summarized in the following lemma. For its proof,

e refer our readers to [36, Theorem 1.5 & Corollary 1.6]. We define Z (0,0]
t = 0 for any t ≥ 0.

emma 4.11. The M-valued process (W (0)
t + Z (0,t]

t )t≥0 under Q has the same finite-
imensional distributions as the coordinate process (X t )t≥0 under P̃(∞)

ν . Moreover, for any t0 >
, the M-valued process (Z (0,t]

t )t∈[0,t0] under Q has the same finite-dimensional distributions
s the coordinate process (X t )t∈[0,t0] under ν̃N(t0)

.

We are now ready to give the proof of Proposition 4.1.

roof of Proposition 4.1. Step 1. One can verify that for any −∞ < a < b ≤ t < ∞ and
∈ R, the M-valued random elements Z (a,b]

t and Z (a+s,b+s]
t+s have the same distribution. This is

ue to the fact that both the discrete immigration (4.7)–(4.8) and the continuous immigration
4.9) are defined in a time-homogeneous way along the spine (ξ̃t )t∈R which is a stationary
rocess (4.6).

Step 2. Let K be given as in (4.12). We will show that K < ∞ and (4.1) holds when µ = ν.
he main idea is to work with the reciprocal of the additive martingale e−λt X t (φ) under the
easure P̃(∞)

ν to analyze the survival probability. In fact, for any t ≥ 0, from Lemmas 3.1,
.11, and Step 1, we have

e−λt Pν(X t ̸= 0) = P̃(∞)
ν [X t (φ)−1]

= Q
[(

W (0)(φ) + Z (0,t](φ)
)−1]

= Q
[(

W (0)(φ) + Z (−t,0](φ)
)−1]

. (4.13)
t t t 0
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From (1.8), (4.10) and the Markov property of superprocesses, we can verify that the process
(e−λt W (0)

t (φ))t≥0 is a non-negative Q-martingale. So by the martingale convergence theorem and
(1.10), we have Q-almost surely W (0)

t (φ) → 0 as t → ∞. From the fact that t ↦→ Z (−t,0]
0 (φ)

is a non-decreasing process with almost sure limit Z (−∞,0]
0 (φ) in [0,∞], we have almost

urely

(W (0)
t (φ) + Z (−t,0]

0 (φ))−1
−−−→
t→∞

Z (−∞,0]
0 (φ)−1

∈ [0,∞].

ow, we can apply the dominated convergence theorem in (4.13) and get the desired result in
his step. In fact, the family of non-negative random variables {(W (0)

t (φ)+ Z (−t,0]
0 (φ))−1

: t ≥ 1}

s dominated by Z (−1,0]
0 (φ)−1, which is Q-integrable since, according to Step 1, Lemmas 4.11,

.7(3), Campbell’s theorem and (1.8), we have

Q[Z (−1,0]
0 (φ)−1] = Q[Z (0,1]

1 (φ)−1] = ν̃N(1)
[X1(φ)−1]

= e−λ
· (νN)(X1 ̸= 0) = −e−λ log Pν(X1 = 0) < ∞. (4.14)

Final step. To see (4.1) holds for all µ ∈ Mo, we use Step 2 and Lemma 2.7. □

.2. The L log L criterion

Let
(
W (0), ξ̃ ,N , (sk, yk,W (k))∞k=1

)
be the random elements constructed in Section 4.1. Our

roof of Proposition 4.2 will rely on the following two lemmas.

emma 4.12. There exist s0, ϵ, θ > 0 and δ > 0 such that for any x ∈ E, s > s0 and
y ≥ eϵs/φ(x), it holds that Pyδx (Xs(φ) > θ) > δ.

roof. From [28, (3.20)] we know that there exist t0, a, ϵ > 0 such that for all s ≥ t0, we
ave ν(Vsφ) ≥ a exp(−ϵs). According to [28, Proposition 2.2] we know that there exists s ′

0 > 0
uch that for all s ≥ s ′

0 and x ∈ E we have Vsφ(x) ≥
1
2φ(x)ν(Vsφ). Now take s0 := t0 ∨ s ′

0,

e have for all s ≥ s0 and x ∈ E , Vsφ(x) ≥
a
2
φ(x)e−ϵs . Let θ ∈ (0, a/2). We have for any

s > s0, x ∈ E and y ≥
eϵs

φ(x) that

Pyδx

(
ws(φ) > θ

)
= Pyδx

(
e−ws (φ) < e−θ

)
= 1 − Pyδx (e−ws (φ)

≥ e−θ )
Chebyshev

≥ 1 − eθPyδx [e−ws (φ)]

= 1 − eθe−yVsφ(x)
≥ 1 − eθe−y a

2 φ(x)e−ϵs
≥ 1 − eθ−a/2

=: δ > 0

as desired. □

Lemma 4.13. (1) If E < ∞, then for any ϵ > 0,
∞∑

k=1

1(−∞,0](sk) · ykeϵsk · φ(ξ̃sk ) < ∞, Q-a.s.

(2) If E = ∞, then for any ϵ > 0 and s0 ≥ 0,∫
−s0

−∞

ds
∫

∞

e−ϵsφ(ξ̃s )−1
yπ (ξ̃s, dy) = ∞, Q-a.s.
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Lemma 4.13 is similar to [26, Lemma 3.2] and its proof is pretty long. We postpone its
roof to the Appendix.

roof of Proposition 4.2.
Step 1. Assuming E < ∞, we will show that K > 0. To do this, we verify using Campbell’s

theorem, (1.8), (4.3), (4.6) and (4.9) that

Q
[∫

(−∞,0]×Ω

w−s(φ)N (ds, dw)
]

= Q
[∫ 0

−∞

2σ (ξ̃s)2ds
∫
Ω

w−s(φ)Nξ̃s (dw)
]

= Q
[∫ 0

−∞

2σ (ξ̃s)2e−λsφ(ξ̃s)ds
]

= 2
∫ 0

−∞

e−λs ν̃(σ 2φ)ds < ∞, (4.15)

here in the last inequality we used the fact that σ, φ ∈ bB(E) and λ < 0. Then we define
he σ -algebra

G := σ (ξ̃ , (sk, yk)∞k=1), (4.16)

nd verify from (1.7), (1.8), (4.8), and Lemma 4.13 that Q-almost surely,

Q
( ∞∑

k=1

W (k)
−sk

(φ)1(−∞,0](sk)
⏐⏐⏐G ) =

∞∑
k=1

Pykδξ̃sk
[X−sk (φ)]1(−∞,0](sk)

=

∞∑
k=1

yk · (T−skφ)(ξ̃sk ) · 1(−∞,0](sk) =

∞∑
k=1

yke−λskφ(ξ̃sk ) · 1(−∞,0](sk) < ∞. (4.17)

rom (4.15) and (4.17), we can verify that Q-almost surely,

Z (−∞,0]
0 (φ) =

∫
(−∞,0]×Ω

w−s(φ)N (ds, dw) +

∞∑
k=1

W (k)
−sk

(φ)1(−∞,0](sk) < ∞.

t follows from (4.12) that K = Q[Z (−∞,0]
0 (φ)−1] > 0 as desired.

Step 2. Assuming E = ∞, we will show that K = 0. Let s0, ϵ, θ and δ > 0 be given as in
emma 4.12. We claim that in this case

nθ := #{k : k ≥ 1, k ∈ Z, sk ≤ 0,W (k)
−sk

(φ) > θ} = ∞, Q-a.s. (4.18)

sing this claim, we immediately have that Z (−∞,0]
0 (φ) ≥ θnθ = ∞ almost surely, which

mplies the desired result since K = Q[Z (−∞,0]
0 (φ)−1]. Now we prove the claim (4.18). From

4.8), we have Q-almost surely,

Q[e−nθ |G ] =

∞∏
k=1

Q[exp{−1(−∞,0](sk)1
{W (k)

−sk
(φ)>θ}}|G ]

=

∞∏
k=1

Pykδξ̃sk
[exp{−1(−∞,0](sk)1{X−sk (φ)>θ}}] = exp

{
−

∫
R×R+

F(s, y)D(ds, dy)
}

here for any (s, y) ∈ R × R+, the random variable F(s, y) is given by

F(s, y) := − log Pyδ ˜ [exp{−1(−∞,0](s)1{X−s (φ)>θ}}],

ξs
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and where D is the Poisson random measure defined as in (4.7). Now by (4.7) and Campbell’s
theorem,

Q[e−nθ |ξ̃ ] = exp
(
−

∫
R

ds
∫

(0,∞)
(1 − e−F(s,y))yπ (ξ̃s, dy)

)
= exp

(
−

∫
R

ds
∫

(0,∞)
Pyδ

ξ̃s
[1 − exp{−1(−∞,0](s)1{X−s (φ)>θ}}]yπ (ξ̃s, dy)

)
= exp

(
−(1 − e−1)

∫ 0

−∞

ds
∫

(0,∞)
Pyδ

ξ̃s
(X−s(φ) > θ)yπ (ξ̃s, dy)

)
. (4.19)

ote that from Lemmas 4.12 and 4.13(2), we have Q-almost surely,∫ 0

−∞

ds
∫

∞

0
Pyδ

ξ̃s
(X−s(φ) > θ)yπ (ξ̃s, dy) ≥ δ

∫
−s0

−∞

ds
∫

∞

φ(ξ̃s )−1e−ϵs
yπ (ξ̃s, dy) = ∞.

ow from this and (4.19), we have Q[e−nθ ] = 0 which implies the desired claim (4.18). □

.3. First moment of the Yaglom law

Let(
W (0), ξ̃ ,N , (sk, yk,W (k))∞k=1

)
e the random elements constructed in Section 4.1. Our proof of Proposition 4.3 in the case
> 0 relies on the following lemma.

emma 4.14. If K > 0, then Z (−∞,0]
0 is an M-valued random element.

roof. From (1.9), we know that there exists a t0 > 0 such that

C3 := sup{|Ht f (x)| : t ≥ t0, f ∈ L+

1 (ν), x ∈ E} < ∞.

Step 1. We will show that Q-almost surely Z (−t0,0]
0 (1E ) < ∞. In fact, from Step 1 of the

roof of Proposition 4.1, we know that, under Q, Z (−t0,0]
0 (1E ) and Z (0,t0]

t0 (1E ) have the same
istribution. From Lemma 4.11, we know that they are both stochastically dominated by the
andom variable X t0 (1E ) under P̃(∞)

ν . Thus the desired result in this step is valid.
Step 2. We will show that Q-almost surely∫

(−∞,−t0]×Ω

w−s(1E )N (ds, dw) < ∞.

y (4.9) and Campbell’s theorem, we get that

Q
[∫

(−∞,−t0]×Ω

w−s(1E )N (ds, dw)
]

= Q
[∫ −t0

−∞

2σ (ξ̃s)2ds
∫
Ω

w−s(1E )Nξ̃s (dw)
]

(4.3)
= Q

[∫ −t0

−∞

2σ (ξ̃s)2(T−s1E )(ξ̃s)ds
] (4.6)

≤ 2∥σ∥
2
∞

∫
−t0

−∞

ds
∫

E
(T−s1E )(x)ν(dx)

(1.8),(1.9)
≤ 2∥σ∥

2
∞

∫
−t0

−∞

ds
∫

E
e−λsφ(x)ν(1E )

(
1 + (H−s1E )(x)

)
ν(dx)

(1.9)
≤ 2(1 + C3)∥σ∥

2
∞

∫
−t0

−∞

e−λsds
(1.10)
< ∞.
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Step 3. We will show that if K > 0 then Q-almost surely
∞∑

k=1

W (k)
−sk

(1E )1(−∞,−t0](sk) < ∞.

Recall the definition (4.16) of the σ -algebra G . Then by (1.7), (1.9), (4.8) and Lemma 4.13,
we have Q-almost surely that

Q
( ∞∑

k=1

W (k)
−sk

(1E )1(−∞,−t0](sk)
⏐⏐⏐G ) =

∞∑
k=1

yk · (T−sk 1E )(ξ̃sk ) · 1(−∞,−t0](sk)

=

∞∑
k=1

yke−λskφ(ξ̃sk )
(
1 + (H−sk 1E )(x)

)
1(−∞,−t0](sk)

≤ (1 + C3)
∞∑

k=1

yke−λskφ(ξ̃sk )1(−∞,−t0](sk) < ∞.

Final Step. From Steps 1, 2 and 3, we know that Z (−∞,0]
0 (1E ) < ∞ almost surely provided

K > 0. Then one can use a routine measure theoretic argument to get the desired result of this
lemma. □

When K > 0, the above lemma allows us to define a probability measure Q̂ on M as
the distribution of Z (−∞,0]

0 under the probability Q. It was mentioned in Section 4 that, after
establishing Proposition 4.3, one can also construct a probability measure Q∞,∞ using (4.2)
provided K > 0. It will be explained later in Remark 4.15 that Q̂ and Q∞,∞ are exactly the
same.

We are now ready to give the proof of Proposition 4.3.

Proof of Proposition 4.3.
Step 1. In this step, we will prove Proposition 4.3 in the case K > 0. Let F ∈ bC(M) and

≥ 0 be arbitrary. Using Lemmas 3.1, 4.11 and Step 1 of the proof of Proposition 4.1, we
ave

Pν[1{X t ̸=0}F(X t )] = P̃(∞)
ν [eλt X t (φ)−1 F(X t )]

= eλt Q
[ F(W (0)

t + Z (0,t]
t )

W (0)
t (φ) + Z (0,t]

t (φ)

]
= eλt Q

[ F(W (0)
t + Z (−t,0]

0 )

W (0)
t (φ) + Z (−t,0]

0 (φ)

]
. (4.20)

t follows from (4.10) and Lemma 2.3 that the M-valued process (W (0)
t )t≥0 converges to 0 in

probability when t ↑ ∞ (with respect to any separable metric compatible with the topology
of the Polish space M.) It is also clear from (4.11), Lemma 4.14 and monotonicity that the
following statement holds.

The M-valued process (Z (−t,0]
0 )t>0 converges to Z (−∞,0]

0 almost surely as t ↑ ∞.
(4.21)

So by the continuous mapping theorem, we have

F(W (0)
t + Z (−t,0]

0 )
(0) (−t,0] −−−→

t→∞
Z (−∞,0]

0 (φ)−1 F(Z (−∞,0]
0 )
Wt (φ) + Z0 (φ)
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in probability. Notice also that the family of random variables{⏐⏐⏐ F(W (0)
t + Z (−t,0]

0 )

W (0)
t (φ) + Z (−t,0]

0 (φ)

⏐⏐⏐ : t ≥ 1
}

is dominated by the random variable Z (−1,0]
0 (φ)−1

· supη∈M |F(η)| which is Q-integrable by
4.14). Now we can apply the dominated convergence theorem in (4.20) and get that

lim
t→∞

e−λt Pν[1{X t ̸=0}F(X t )] = Q[Z (−∞,0]
0 (φ)−1 F(Z (−∞,0]

0 )].

hus from Theorem 1.1 and Proposition 4.1,∫
M

F(η)Q∞,0(dη) = lim
t→∞

Pν[F(X t )|X t ̸= 0]

=
limt→∞ e−λt Pν[1{X t ̸=0}F(X t )]

limt→∞ e−λt Pν(X t ̸= 0)
= K−1Q[Z (−∞,0]

0 (φ)−1 F(Z (−∞,0]
0 )]

= K−1
∫
M
η(φ)−1 F(η)Q̂(dη). (4.22)

ince F is arbitrary, we can replace F(η) in (4.22) by F(η) · (η(φ) ∧ n) where n is an arbitrary
atural number. Taking n ↑ ∞ and using the monotone convergence theorem, we then arrive
t ∫

M
F(η) · η(φ)Q∞,0(dη) = K−1

∫
M

F(η)Q̂(dη), F ∈ bpC(M) (4.23)

hich implies the desired result in this step.
Step 2. In this step, we will prove Proposition 4.3 in the case K = 0. According to

emma 2.1, there exists t0 > 0 such that for any t ≥ t0 and x ∈ E , 2ν(vt )φ(x) ≥ vt (x).
ow for any t ≥ t0, we have from (2.2) and (2.4) that∫

M
η(2ν(vt )φ)Q∞,0(dη) ≥

∫
M
η(vt )Q∞,0(dη) ≥

∫
M

(1 − e−η(vt ))Q∞,0(dη)

=

∫
M

Pη(X t ̸= 0)Q∞,0(dη) = eλt .

rom (2.2), Lemma 2.3 and Proposition 4.1 we have that

e−λtν(vt ) = e−λt Pν(X t ̸= 0) ·
− log(1 − Pν(X t ̸= 0))

Pν(X t ̸= 0)
−−−→
t→∞

Kν(φ) = 0.

ow we have that∫
M
η(φ)Q∞,0(dη) ≥ eλt/(2ν(vt )) −−−→

t→∞
∞

hich implies the desired result for this step. □

emark 4.15. From the definition (4.2) of Q∞,∞ and (4.23), it is clear that Q∞,∞ = Q̂ when
> 0.

.4. Limit of the Q-process

Using the spine decomposition theorem (Lemma 4.11), we can get the following lemma.
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Lemma 4.16. If E < ∞, then Qν
t,∞ converges weakly to Q∞,∞ as t → ∞.

Proof. We note that for any f ∈ bpC(E),∫
M

e−η( f )Qν
t,∞(dη) = P̃(∞)

ν [e−X t ( f )] = Q[e−W (0)
t ( f )−Z (0,t]

t ( f )] = Pν[e−X t ( f )]Q[e−Z (−t,0]
0 ( f )]

where the first equality is due to (3.1) and Lemma 3.1, the second equality is due to
Lemma 4.11, and the third equality is due to (4.10) and Step 1 of the proof of Proposition 4.1.
Thus,

lim
t→∞

∫
M

e−η( f )Qν
t,∞(dη) = lim

t→∞
Pν[e−X t ( f )] lim

t→∞
Q[e−Z (−t,0]

0 ( f )]

= Q[e−Z (−∞,0]
0 ( f )] =

∫
M

e−η( f )Q∞,∞(dη),

where the second equality is due to Lemma 2.3 and (4.21), and the last equality is due to
Remark 4.15. Now the desired result follows from [25, Theorem 1.18] . □

The above lemma is a special case of Proposition 4.4. For the general case, we will use
the spine decomposition theorem for superprocesses with arbitrary initial value µ ∈ Mo.
Now the corresponding spine process will not be stationary, and cannot be extended into a
two-sided process in general. Therefore, in this subsection, we construct the random elements
(W (0), ξ̃ ,N , (sk, yk,W (k))∞k=1) in a different probability space with respect to a new probability
measure Qµ, under which statements (4.24), (4.7) (with R replaced by R+), (4.8), (4.9) (with
R replaced by R+) and (4.10) (with Pν replaced by Pµ) hold.

(4.24) ξ̃ = (ξ̃t )t≥0 is an E-valued right continuous Markov process with transition semigroup
(St )t≥0 and initial distribution µ̃ given by (4.5).

We present the spine decomposition for superprocesses with arbitrary initial value in the
following lemma. We refer our readers to [36] for its proof. For any 0 ≤ a < b ≤ t < ∞, and
f ∈ bpB(E), let the random variable Z (a,b]

t ( f ) be defined as in (4.11).

Lemma 4.17. Let µ ∈ Mo be arbitrary. The M-valued process (W (0)
t + Z (0,t]

t )t≥0 under
Qµ has the same finite-dimensional distributions as the coordinate process (X t )t≥0 under

(∞)
µ . Moreover, for any t > 0, the M-valued process (Z (0,s]

s )s∈[0,t] under Qµ has the same

nite-dimensional distributions as the coordinate process (Xs)s∈[0,t] under µ̃N(t)
.

For any t ≥ 0, f ∈ bpB(E) and x ∈ E , define Lt f (x) := Qδx [e−Z (0,t]
t ( f )] and L∞ f (x) :=

im supt→∞ Lt f (x).

emma 4.18. For any x ∈ E and f ∈ bpB(E), limt→∞ Lt f (x) = ν̃(L∞ f ).

roof. Step 1. We will show that for any f ∈ bpB(E) and x ∈ E , L∞ f (x) ≤ ν̃(L∞ f ). To
his end, let us take arbitrary f ∈ bpB(E), s, t ∈ R+ and x ∈ E , and verify that

Lt+s f (x) = Qδx [e−Z (0,t+s]
t+s ( f )] ≤ Qδx [e−Z (t,t+s]

t+s ( f )] = Qδx

[
Qδ ˜

[e−Z (0,s]
s ( f )]

]
= StLs f (x).
ξt
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In fact, only the second equality above needs more explanation. From (4.7) (with R replaced
y R+), (4.8), (4.9) (with R replaced by R+) and Campbell’s formula, we can verify that

Qδx [e−Z (t,t+s]
t+s ( f )] = Qδx

[
exp

{
−

∫
(t,t+s]×(0,∞)

(− log Pyδ
ξ̃r

[e−X t+s−r ( f )])D(dr, dy)
}

×

exp
{
−

∫
(t,t+s]×Ω

wt+s−r ( f )N (dr, dw)
}]

= Qδx

[
exp

{
−

∫
(t,t+s]×(0,∞)

Pyδ
ξ̃r

[1 − e−X t+s−r ( f )]dr ⊗ yπ (ξ̃r , dy)
}

×

exp
{
−

∫
(t,t+s]×Ω

(1 − e−wt+s−r ( f ))2σ (ξ̃r )2dr ⊗ Nξ̃r (dw)
}]

= Qδx [e−F((ξ̃t+r )r∈(0,s])]

here for any E-valued process (xr )r∈(0,s], the functional F is defined by

F((xr )r∈(0,s]) :=

∫
(0,s]

dr
∫

(0,∞)
Pyδx [1 − e−Xs−r ( f )]yπ (xr , dy) +∫

(0,s]
2σ (xr )2dr

∫
Ω

(1 − e−ws−r ( f ))Nxr (dw).

herefore, by the Markov property of the spine process ξ̃ , we have

Qδx [e−Z (t,t+s]
t+s ( f )] = Qδx [e−F((ξ̃t+r )r∈(0,s])]

= Qδx [Qδ
ξ̃t

[e−F((ξ̃r )r∈(0,s])]] = Qδx

[
Qδ

ξ̃t
[e−Z (0,s]

s ( f )]
]
.

ow by (1.9),

Lt+s f (x) ≤ StLs f (x)
(4.4)
= φ(x)−1e−λt Tt (φLs f )(x) =

(
1 + Ht (φLs f )(x)

)
ν̃(Ls f ).

oticing that, from (1.9), limt→∞ supx∈E,g∈bB(E) |Ht g(x)| = 0. Therefore, letting t → ∞, we
ave

L∞ f (x) ≤ ν̃(Ls f ). (4.25)

ow, taking lim sups→∞ in (4.25), using the reverse Fatou’s lemma, we get the desired result
or this step.

Step 2. We will show that for any f ∈ bpB(E), the Borel function Lt f on E converges to
the constant ν̃(L∞ f ) in probability as t → ∞ under ν̃. First note that, if ν̃(L∞ f ) = 0 then
his is trivial from Step 1. So let us assume that ν̃(L∞ f ) > 0 for the rest of this step. Take
rbitrary ε1, ε2 ∈ (0, 1), t ≥ 0, and define

Ut := U ε1
t := {x ∈ E : Lt f (x) > (1 + ε1)ν̃(L∞ f )};

L t := Lε2
t := {x ∈ E : Lt f (x) < (1 − ε2)ν̃(L∞ f )}.

rom the reverse Fatou’s lemma and Step 1, we have

lim sup ν̃(Ut ) ≤ ν̃(lim sup 1Ut ) = ν̃(∩t0≥0 ∪t≥t0 Ut ) = ν̃(∅) = 0.

t→∞ t→∞
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Now we only need to show that limt→∞ ν̃(L t ) = 0. From (4.25), and the fact that the function
Lt f is bounded by 1, we have

ν̃(L∞ f ) ≤ ν̃(Lt f ) = ν̃(Lt f · 1L t ) + ν̃(Lt f · 1Ut ) + ν̃(Lt f · 1(L t ∪Ut )c )

≤ (1 − ε2)ν̃(L∞ f )ν̃(L t ) + ν̃(Ut ) + (1 + ε1)ν̃(L∞ f )
(
1 − ν̃(L t ) − ν̃(Ut )

)
≤ (1 + ε1)ν̃(L∞ f ) − (ε1 + ε2)ν̃(L∞ f )ν̃(L t ) + ν̃(Ut ).

aking lim inft→∞, we have

ν̃(L∞ f ) ≤ (1 + ε1)ν̃(L∞ f ) − (ε1 + ε2)ν̃(L∞ f ) lim sup
t→∞

ν̃(Lε2
t ).

etting ε1 → 0, we have

ν̃(L∞ f ) ≤ ν̃(L∞ f ) − ε2ν̃(L∞ f ) lim sup
t→∞

ν̃(Lε2
t ).

his is impossible unless lim supt→∞ ν̃(Lε2
t ) = 0 holds as desired.

Step 3. We will show that for any f ∈ bpB(E) and x ∈ E , lim inft→∞ Lt f (x) ≥ ν̃(L∞ f ).
o this end, we fix arbitrary f ∈ bpB(E) and x ∈ E , and note that for any t, s > 0,

Lt+s f (x) ≥ Qδx

[
exp

{
−Z (t,t+s]

t+s ( f )
}
; Z (0,t]

t+s = 0
]

= Qδx

[
Qδx

[
exp

{
−Z (t,t+s]

t+s ( f )
}⏐⏐ξ̃t

]
· Qδx

(
Z (0,t]

t+s = 0
⏐⏐ξ̃t
)]

= Qδx

[
Ls f (ξ̃t ) · Qδx

(
Z (0,t]

t+s = 0
⏐⏐ξ̃t
)]
. (4.26)

We claim that for any t > 0 and s ≥ 0, the random measure Z (0,t]
t+s under Qδx (·|ξ̃t ) has the

ame distribution as Xs under Qδx [PZ (0,t]
t

(·)|ξ̃t ]. In fact, from the Markov property of (X t )t≥0,
e have

Pµ[e−X t+s ( f )] = Pµ[PX t [e
−Xs ( f )]] = Pµ[e−X t (Vs f )]

or arbitrary µ ∈ M; and similarly from [25, (8.44)] , we have∫
Ω

(1 − e−wt+s ( f ))Nx (dw) =

∫
M2

(1 − e−µ2( f ))Nx (X t ∈ dµ1)Pµ1 (Xs ∈ dµ2)

=

∫
M

(1 − e−wt (Vs f ))Nx (dw).

herefore, we can verify from (4.7) (with R replaced by R+), (4.8), (4.9) (with R replaced by
+) and Campbell’s formula that

Qδx [PZ (0,t]
t

(e−Xs ( f ))|ξ̃t ] = Qδx [e−Z (0,t]
t (Vs f )

|ξ̃t ]

= Qδx

[
exp

{
−

∫ t

0
dr
∫

(0,∞)
Pyδ

ξ̃r
[1 − e−X t−r (Vs f )]yπ (ξ̃r , dr ) −

∫ t

2σ (ξ̃r )2dr
∫

(1 − e−wt−r (Vs f ))Nξ̃r (dw)
} ⏐⏐⏐ξ̃t

]

0 Ω
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= Qδx

[
exp

{
−

∫ t

0
dr
∫

(0,∞)
Pyδ

ξ̃r
[1 − e−X t+s−r ( f )]yπ (ξ̃r , dr ) −

∫ t

0
2σ (ξ̃r )2dr

∫
Ω

(1 − e−wt+s−r ( f ))Nξ̃r (dw)
} ⏐⏐⏐ξ̃t

]

= Qδx [e−Z (0,t]
t+s ( f )

|ξ̃t ]

as claimed.
In particular, due to Lemma 2.3 and the bounded convergence theorem, for each t > 0, it

holds that

Qδx

(
Z (0,t]

t+s = 0
⏐⏐ξ̃t
)

= Qδx [PZ (0,t]
t

(Xs = 0)|ξ̃t ] → 1 as s → ∞.

On the other hand, for any ε > 0, defining a function Fs,ε ∈ bpB(E) by

Fs,ε(y) := 1{|Ls f (y)−ν̃(L∞ f )|>ε}, y ∈ E,

we can verify from (4.24), (1.9) and Step 2 that, for any t > 0,

Qδx

(
|Ls f (ξ̃t ) − ν̃(L∞ f )| > ε

)
= St Fs,ε(x) = φ(x)−1e−λt Tt (φ · Fs,ε)(x)

= ν̃(Fs,ε)
(
1 + (Ht Fs,ε)(x)

)
≤ ν̃(Fs,ε)

(
1 + sup

g∈L+

1 (ν),x∈E

|Ht g(x)|
)

−−−→
s→∞

0.

herefore, for any t > 0, Ls f (ξ̃t ) · Qδx

(
Z (0,t]

t+s = 0
⏐⏐ξ̃t
)

converges to ν̃(L∞ f ) in probability with
espect to Qδx as s → ∞. By taking limit inferior in (4.26) as s → ∞ and using the bounded
onvergence theorem, we get the desired result for this step.

Final Step. Combine the results in Steps 1 and 3. □

We are now ready to give the proof of Proposition 4.4.

roof of Proposition 4.4 in the case K > 0. Step 1. Let f ∈ bpB(E) and t ≥ 0 be arbitrary.
e will show that Qµ[e−Z (0,t]

t ( f )] = µ̃(Lt f ). To do this, we note that by Lemma 4.17,

Lt f (x) = δ̃xN
(t)

[e−X t ( f )] = Nx

[
e−X t ( f ) X t (φ)

eλtφ(x)

]
, x ∈ E .

herefore, again by Lemma 4.17 we have

Qµ[e−Z (0,t]
t ( f )] = µ̃N(t)

[e−X t ( f )] =

∫
E
Nx

[
e−X t ( f ) X t (φ)

eλtµ(φ)

]
µ(dx)

= µ(φ)−1
∫

E
(Lt f )(x) · φ(x)µ(dx) = µ̃(Lt f ).

Step 2. We will show that for any µ ∈ Mo and f ∈ bpB(E),

lim
t→∞

∫
M

e−η( f )Qµ
t,∞(dη) = ν̃(L∞ f ).

In fact, from Lemmas 3.1, 4.17 and Step 1, we have that∫
M

e−η( f )Qµ
t,∞(dη) = P̃(∞)

µ [e−X t ( f )]

= Q [e−W (0)
t ( f )−Z (0,t]

t ( f )] = P [e−X t ( f )]µ̃(L f ), t ≥ 0.
µ µ t
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Now the desired result in this step follows from Lemmas 2.3, 4.18 and the bounded convergence
theorem.

Final Step. From Lemma 4.16 for any f ∈ bpC(E),

lim
t→∞

∫
M

e−η( f )Qν
t,∞(dη) =

∫
M

e−η( f )Q∞,∞(dη).

Combining this with Step 2 and [25, Theorem 1.18], we get the desired result. □

roof of Proposition 4.4 in the case K = 0. We give a proof by contradiction. Assume that
there exists µ ∈ Mo such that Qµ

t,∞ converges weakly to a probability measure, say Q∗ on
. Then we have that∫

M
e−η(φ)Qµ

t,∞(dη) ≥

∫
M

e−η(∥φ∥∞1E )Qµ
t,∞(dη) −−−→

t→∞

∫
M

e−η(∥φ∥∞1E )Q∗(dη) > 0.

n the other hand, from xe−x
≤ 1 for every x ≥ 0, and Proposition 4.1, we have∫

M
e−η(φ)Qµ

t,∞(dη) ≤

∫
M
η(φ)−1Qµ

t,∞(dη) = e−λtµ(φ)−1Pµ(X t ̸= 0) −−−→
t→∞

0

hich is a contradiction.

.5. Limit of the two-sided process

roof of Proposition 4.5 in the case K > 0. From (2.4) and (2.5) we have

Q∞,r [F] =

∫
Mo

e−λr Pη[F(X0)1{Xr ̸=0}]Q∞,0(dη)

=

∫
Mo

F(η)e−λr Pη(Xr ̸= 0)Q∞,0(dη), F ∈ bpB(M), r ≥ 0. (4.27)

ote that by Proposition 4.3, η(φ)Q∞,0(dη) is a finite measure concentrated on Mo, and that
y Lemma 3.4 and Proposition 4.1, for any F ∈ bpB(M), and r large enough,

sup
η∈Mo

F(η)e−λr Pη(Xr ̸= 0)
1
η(φ)

≤ ∥F∥∞e−λr Pν(Xr ̸= 0) sup
η∈Mo

1
η(φ)

Pη(Xr ̸= 0)
Pν(Xr ̸= 0)

< ∞.

ow by Proposition 4.1 and the bounded convergence theorem we have

lim
r→∞

Q∞,r [F] =

∫
Mo

F(η) · Kη(φ)Q∞,0(dη) = Q∞,∞[F], F ∈ bpB(M)

s desired. □

roof of Proposition 4.5 in the case K = 0. We give a proof by contradiction. Assume
hat Q∞,r converges strongly to a probability measure, say Q∗, as r → ∞. Taking F(η) :=

e−η(φ), η ∈ M we have limr→∞ Q∞,r [F] = Q∗[F] > 0. On the other hand, we first observe
from supx≥0 xe−x

≤ 1 that F(η) ≤ η(φ)−1 for every η ∈ M. Then, noticing that (4.27) still
olds in this case, and also noticing from Proposition 4.1 and Lemma 3.4 that

sup
η∈Mo

F(η)e−λr Pη(Xr ̸= 0) ≤ e−λr Pν(Xr ̸= 0) sup
η∈Mo

1
η(φ)

Pη(Xr ̸= 0)
Pν(Xr ̸= 0)

−−−→
r→∞

0.

sing the bounded convergence theorem we have limr→∞ Q∞,r [F] = 0, which is a contra-
diction. □
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4.6. Double limit

Lemma 4.19. If E < ∞, then

lim
t→∞

sup
r≥0

eλrν(vt )
ν(vt+r )

= 1.

roof. According to [28, (3.10)] ,

eλrν(vt )
ν(vt+r )

= exp
{∫ t+r

t

ν(Ψ0vs)
ν(vs)

ds
}
, t > 0, r ≥ 0,

here Ψ0vs(x) := ψ0(x, vs(x)), x ∈ E, s > 0, and

ψ0(x, λ) := σ (x)2λ2
+

∫
∞

0

(
e−λu

− 1 + λu
)
π (x, du), x ∈ E, λ ≥ 0.

o prove the desired result, it suffices to show∫
∞

t

ν(Ψ0vs)
ν(vs)

ds < ∞, for some t ≥ 0. (4.28)

t is easy to see that for any x ∈ E ,
∂ψ0(x, λ)

∂λ
= 2σ (x)2λ+

∫
∞

0

(
1 − e−λu) uπ (x, du)

s a nonnegative increasing function with respect to λ and ψ0(x, 0) = 0. Thanks to the mean
value theorem,

ψ0(x, λ) = ψ0(x, λ) − ψ0(x, 0) ≤ λ
∂ψ0(x, λ)

∂λ
, x ∈ E, λ ≥ 0.

herefore,

Ψ0vs(x) ≤ vs(x)
∂ψ0(x, λ)

∂λ

⏐⏐⏐⏐
λ=vs (x)

, x ∈ E, s > 0.

y Lemma 2.1, there exists T0 > 0 such that vs(x) ≤ 2φ(x)ν(vs) for any x ∈ E and s > T0.
or s > T0,

ν(Ψ0vs) ≤ 2ν(vs)ν

(
φ
∂ψ0(·, λ)
∂λ

⏐⏐⏐⏐
λ=vs (·)

)
.

Note that for any x ∈ E and s > T0,

φ(x)
∂ψ0(·, λ)
∂λ

⏐⏐⏐⏐
λ=vs (x)

= 2σ (x)2φ(x)vs(x) +

∫
∞

0

(
1 − e−vs (x)u)φ(x)uπ (x, du)

≤ 2∥σ 2φ∥∞vs(x) +

∫
∞

0

(
1 − e−2ν(vs )φ(x)u)φ(x)uπ (x, du).

Define a measure ρ on (0,∞) so that for any non-negative Borel function f on (0,∞),∫
(0,∞)

f (u)ρ(du) =

∫
E
ν(dx)

∫
(0,∞)

f (φ(x)u)π (x, du).

hen for any s > T0,

ν(Ψ0vs) ≤ 2ν(vs)
[

2∥σ 2φ∥∞ν(vs) +

∫
∞ (

1 − e−2ν(vs )u) uρ(du)
]
.

0
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Now the integral on the left hand side of (4.28) can be bounded by∫
∞

t

ν(Ψ0vs)
ν(vs)

ds ≤ 4∥σ 2φ∥∞It + 2IIt , t > T0, r > 0,

here

It :=

∫
∞

t
ν(vs)ds, and IIt :=

∫
∞

t
ds
∫

∞

0

(
1 − e−2ν(vs )u) uρ(du).

rom (2.2) and Propositions 4.1 and 4.2, we know that e−λtν(vt ) → K > 0 as t → ∞. In
articular, there exist T1 ≥ T0 and C4 > 0 such that ν(vs) ≤ C4eλs for every s ≥ T1. This yields
t < ∞ for t ≥ T1. Note that

∫
∞

0

(
1 − e−2θu

)
uρ(du) is an increasing function with respect to

. Thus for sufficiently large t so that t ≥ T1 and 2C4eλt
≤ 1,

IIt ≤

∫
∞

t
ds
∫

∞

0

(
1 − e−2C4eλs u

)
uρ(du) =

1
|λ|

∫
∞

0
uρ(du)

∫ 2C4ueλt

0

1 − e−z

z
dz

≤
1
|λ|

∫
∞

0
uρ(du)

∫ u

0

1 − e−z

z
ds ≤

1
|λ|

∫ 1

0
u2ρ(du) +

1
|λ|

∫
∞

1
u(1 + log u)ρ(du).

When E < ∞, it is easy to see that IIt < ∞. The proof is complete. □

emma 4.20. Suppose E < ∞. Then for any µ ∈ Mo,

lim
t→∞

sup
r≥0

sup
η∈Mo

µ(φ)eλt Pη (Xr ̸= 0)
η(φ)Pµ (X t+r ̸= 0)

≤ 16.

roof. It is well known that 1− e−u
≤ u and that there is a δ > 0 such that 1− e−u

≥ u/2 for
∈ [0, δ]. By [28, (3.39)] we have limt→∞ ν(vt ) = 0. By Lemma 2.1, given µ ∈ Mo, there

xists T2(µ) > 0 such that µ(vt ) ≤ δ for t ≥ T2(µ). Therefore, for any η, µ ∈ Mo, t ≥ T2(µ)
nd r ≥ 0, we have

Pη (Xr ̸= 0)
Pµ (X t+r ̸= 0)

=
1 − e−η(vr )

1 − e−µ(vt+r ) ≤
2η(vr )
µ(vt+r )

.

he uniform lower and upper bounds of vr (x) are given in Lemma 2.1 as well: There is a
T3 ≥ 0, such that φ(x)ν(vt )/2 ≤ vt (x) ≤ 2φ(x)ν(vt ) for t ≥ T3 and x ∈ E . From Lemma 4.19,
there exists a T4 > 0, such that eλtν(vr )/ν(vt+r ) ≤ 2 for every t ≥ T4 and r > 0. Now for any
, µ ∈ Mo, t ≥ T2(µ) ∨ T3 ∨ T4 and r > 0,

µ(φ)eλt Pη (Xr ̸= 0)
η(φ)Pµ (X t+r ̸= 0)

≤
µ(φ)eλt

η(φ)
4η(φ)ν(vr )

µ(φ)ν(vt+r )/2
≤

8eλtν(vr )
ν(vt+r )

≤ 16.

he proof is complete. □

roof of Proposition 4.6. Fix arbitrary µ ∈ Mo and non-negative continuous function f on
E . For any t, r > 0,

Pµ
(
e−X t ( f )

|X t+r ̸= 0
)

=
Pµ
(
e−X t ( f )1{X t+r ̸=0}

)
Pµ(X t+r ̸= 0)

=
Pµ
(
e−X t ( f )PX t (Xr ̸= 0)

)
Pµ(X t+r ̸= 0)

= P̃(∞)
µ

(
e−X t ( f )µ(φ)eλt PX t (Xr ̸= 0)

X t (φ)Pµ(X t+r ̸= 0)

)
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where the probability P̃(∞)
µ is given as in Lemma 3.1. According to the Skorohod representation

theorem (see [19, Theorem 5.31] , for example) there exists an M-valued process (X̂ t )t≥0
converging almost surely to an M-valued random element X̂∞ on some probability space
(Ω̂ , F̂ , P̂) so that the law of X̂∞ is Q∞,∞ and the law of X̂ t is Qµ

t,∞ for every t ≥ 0. Now by
emark 3.2 we have

Pµ
(
e−X t ( f )

|X t+r ̸= 0
)

= P̂

(
e−X̂ t ( f )µ(φ)eλt PX̂ t

(Xr ̸= 0)

X̂ t (φ)Pµ(X t+r ̸= 0)

)
, t, r ≥ 0.

ote that, by Lemma 4.20, there exists T5(µ) > 0 such that for any t ≥ T5(µ) and r ≥ 0,

e−X̂ t ( f )µ(φ)eλt PX̂ t
(Xr ̸= 0)

X̂ t (φ)Pµ (X t+r ̸= 0)
≤ 17.

Also notice that e−X̂ t ( f ) converges almost surely to e−X̂∞( f ) as t → ∞. So now if one can
show that almost surely

lim
t,r→∞

µ(φ)eλt PX̂ t
(Xr ̸= 0)

X̂ t (φ)Pµ (X t+r ̸= 0)
= 1, (4.29)

hen by the bounded convergence theorem we get the desire result for this proposition.
Let us now verify (4.29). From (2.2), we have

µ(φ)eλt PX̂ t
(Xr ̸= 0)

X̂ t (φ)Pµ (X t+r ̸= 0)
=

1 − e−X̂ t (vr )

X̂ t (vr )

µ(vt+r )
1 − e−µ(vt+r )

µ(φ)eλt X̂ t (vr )

X̂ t (φ)µ(vt+r )
, t, r ≥ 0. (4.30)

y Lemma 2.1, we have for t, r ≥ 0,

ν(vr )X̂ t (φ)
(

1 − sup
x∈E

|C1(r, x)|
)

≤ X̂ t (vr ) ≤ ν(vr )X̂ t (φ)
(

1 + sup
x∈E

|C1(r, x)|
)
,

ith limr→∞ supx∈E |C1(r, x)| = 0. By [28, (3.39)] we have limr→∞ ν(vr ) = 0 and that

lim sup
t→∞

X̂ t (φ) ≤ lim
t→∞

X̂ t (∥φ∥∞1E ) = X̂∞(∥φ∥∞1E ) < ∞, a.s.

hus limt,r→∞ X̂ t (vr ) = 0 almost surely. Therefore,

lim
t,r→∞

1 − e−X̂ t (vr )

X̂ t (vr )
= 1, a.s.

Similarly we have for every t, r ≥ 0,

ν(vt+r )µ(φ)
(

1 − sup
x∈E

|C1(t + r , x)|
)

≤ µ(vt+r ) ≤ ν(vt+r )µ(φ)
(

1 + sup
x∈E

|C1(t + r, x)|
)
,

nd

lim
t,r→∞

µ(vt+r )
1 − e−µ(vt+r ) = 1.

sing Lemma 4.19 for the third fraction on the right hand side of (4.30), we get

lim sup
t,r→∞

µ(φ)eλt X̂ t (vr )

X̂ t (φ)µ(vt+r )
≤ lim sup

t,r→∞

µ(φ)eλtν(vr )X̂ t (φ)(1 + supx∈E |C1(r, x)|)

X̂ t (φ)ν(vt+r )µ(φ)(1 − supx∈E |C1(t + r, x)|)

= lim sup
eλtν(vr )

= 1.

t,r→∞ ν(vt+r )
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On the other hand,

lim inf
t,r→∞

µ(φ)eλt X̂ t (vr )

X̂ t (φ)µ(vt+r )
≥ lim inf

t,r→∞

µ(φ)eλtν(vr )X̂ t (φ)(1 − supx∈E |C1(r, x)|)

X̂ t (φ)ν(vt+r )µ(φ)(1 + supx∈E |C1(t + r, x)|)

= lim inf
t,r→∞

eλtν(vr )
ν(vt+r )

= 1.

The proof is complete. □
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Appendix

Lemma A.1. The transition semigroup (Qt )t≥0 given in (1.6) preserves bB(M).

roof. Denote E := E ∪ {∂}, where ∂ is an isolated point not contained in E . The Polish
space of all finite Borel measures on E , equipped with the topology of weak convergence, is

enoted by M(E). Define a conservative Borel right transition semigroup (P t )t≥0 on (E,B(E))
sing [25, (A.20)] . Let ξ be a Borel right process with transition semigroup (P t )t≥0. Define
ψ as the extension of ψ on E × R+ such that ψ(∂, ·) ≡ 0. Let X be a (ξ, ψ)-superprocess

hose transition semigroup is denoted by (Qt )t≥0. According to [25, Theorem 5.11] , (Qt )t≥0

s a Borel right transition semigroup on M(E). Define a map Γ : M(E) → M so that for
ny µ ∈ M(E), the measure Γµ is the restriction of the set function µ on B(E). Define a

map Λ : M → M(Ē) so that for any µ ∈ M, the measure Λµ on E is the unique extension
f µ on B(E) so that Λµ({∂}) = 0. Obviously we have Γ ◦ Λ is the identity map on M;

and from the fact that ∂ is an isolated point in E we know Γ and Λ are continuous maps.
ix an arbitrary t ≥ 0 and F ∈ bB(M). It can be verified (see the proof of [25, Theorem

5.12] ) that Qt (F ◦ Γ )(µ) = (Qt F) ◦ Γ (µ) for each µ ∈ M(E). From this we can verify
hat Qt F = (Qt (F ◦ Γ )) ◦ Λ is a real valued bounded Borel function on M. Therefore, the
emigroup (Qt )t≥0 preserves bB(M) as desired. □

Proof of Lemma 4.13 (1). Fix arbitrary 0 < δ < ϵ. From (4.7), we have
∞∑

k=1

1(−∞,0](sk)ykeϵskφ(ξ̃sk ) =

∫
R×R+

1{s≤0}yeϵsφ(ξ̃s)D(ds, dy) = I + II,

here

I :=

∫
1

{y≤
e−δs ,s≤0}

yeϵsφ(ξ̃s)D(ds, dy),

R×R+ φ(ξ̃s )
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N

N

P

a

II :=
R×R+

1
{y> e−δs

φ(ξ̃s )
,s≤0}

yeϵsφ(ξ̃s)D(ds, dy).

We first show that II < ∞, Q-a.s. In fact, from (4.6) and (1.12),

Q
[∫ 0

−∞

ds
∫

∞

e−δs
φ(ξ̃s )

yπ (ξ̃s, dy)
]

=

∫ 0

−∞

ds
∫

E
ν̃(dx)

∫
∞

e−δs
φ(x)

yπ (x, dy)

=

∫ 0

−∞

ds
∫

E
φ(x)ν(dx)

∫
∞

e−δs
φ(x)

yπ (x, dy)

=

∫
E
ν(dx)

∫
∞

1
φ(x)

yφ(x)π (x, dy)
∫ 0

−
log(yφ(x))

δ

ds =
E
δ
< ∞.

herefore, we have Q-almost surely∫
R×R+

[
1 ∧

(
1

{y> e−δs
φ(ξ̃s )

,s≤0}
yeϵsφ(ξ̃s)

)]
ds · yπ (ξ̃s, dy)

≤

∫
R×R+

1
{y> e−δs

φ(ξ̃s )
,s≤0}

ds · yπ (ξ̃s, dy) < ∞.

ow from (4.7) and [21, Theorem 2.7(i)] we have Q(II < ∞|ξ̃ ) = 1. We then show that
I < ∞, Q-a.s. In fact, from (4.6) and (4.7),

Q[I] = Q
[
Q[I|ξ ]

]
= Q

[∫ 0

−∞

ds
∫ e−δs

φ(ξ̃s )

0
yeϵsφ(ξ̃s)yπ (ξ̃s, dy)

]

= Q
[∫ 0

−∞

ds
∫ 1∧

e−δs

φ(ξ̃s )

0
eϵs y2φ(ξ̃s)π (ξ̃s, dy) +

∫ 0

−∞

ds
∫ e−δs

φ(ξ̃s )

1∧
e−δs
φ(ξ̃s )

eϵs yφ(ξ̃s)yπ (ξ̃s, dy)
]

≤ Q
[∫ 0

−∞

ds
∫ 1

0
eϵs y2φ(ξ̃s)π (ξ̃s, dy) +

∫ 0

−∞

ds
∫

∞

1
e(ϵ−δ)s yπ (ξ̃s, dy)

]
≤ ∥φ∥∞

∫ 0

−∞

eϵsds
∫

E
ν̃(dx)

∫ 1

0
y2π (x, dy) +

∫ 0

−∞

e(ϵ−δ)sds
∫

E
ν̃(dx)

∫
∞

1
yπ (x, dy)

< ∞.

ow the desired result of this lemma follows. □

roof of Lemma 4.13 (2). Fix the arbitrary ϵ > 0 and s0 ≥ 0. Define a constant

K := max{∥φ∥∞, eϵs0}, (A.1)

nd random variables

ηT :=

∫ 0

−T
ds
∫

∞

K e−ϵs
yπ (ξ̃s, dy), T ∈ (0,∞].
φ(ξ̃s )
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s
t

w

S

a

w

N

t

Step 1. We will show that Q[η∞] = ∞. In particular, this implies that there exists a t1 > 0
uch that Q[ηT ] > 0 for all T ≥ t1. To show that Q[η∞] = ∞, we note from (4.6) and Fubini’s
heorem that

Q[η∞] =

∫ 0

−∞

ds
∫

E
ν̃(dx)

∫
∞

K e−ϵs
φ(x)

yπ (x, dy)

=

∫
E
φ(x)ν(dx)

∫
∞

K
φ(x)

yπ (x, dy)
∫ 0

−
1
ϵ log( yφ(x)

K )
ds

=
1
ϵ

∫
E
φ(x)ν(dx)

∫
∞

K
φ(x)

(
log
(
yφ(x)

)
− log K

)
yπ (x, dy)

≥
1
ϵ

∫
E
ν(dx)

∫
∞

K
φ(x)

yφ(x) log
(
yφ(x)

)
π (x, dy) −

A
ϵ
, (A.2)

here

A := ln K · sup
x∈E

∫
∞

1
yπ (x, dy) < ∞. (A.3)

ince ∫
E
ν(dx)

∫
∞

1
φ(x)

yφ(x) log
(
yφ(x)

)
π (x, dy) = E = ∞

nd ∫
E
ν(dx)

∫ K
φ(x)

1
φ(x)

yφ(x) log
(
yφ(x)

)
π (x, dy) ≤ K log K

∫
E
ν(dx)

∫
∞

1
∥φ∥∞

π (x, dy) < ∞,

e get that∫
E
ν(dx)

∫
∞

K
φ(x)

yφ(x) log
(
yφ(x)

)
π (x, dy) = ∞.

ow the desired result in this step follows from (A.2), (A.3) and above.
Step 2. We will show that Q[ηT ] < ∞ for all T ∈ (0,∞). From (4.6), (A.1) and Fubini’s

heorem, we have

Q[ηT ] =

∫ 0

−T
ds
∫

E
ν̃(dx)

∫
∞

K e−ϵs
φ(x)

yπ (x, dy) ≤

∫ 0

−T
ds
∫

E
ν̃(dx)

∫
∞

1
yπ (x, dy)

≤ T · sup
x∈E

∫
∞

1
yπ (x, dy) < ∞. (A.4)

Step 3. We will show that there exists a t2 > 0 such that for any t > t2, x ∈ E , and
f ∈ bpB(E), it holds that St f (x) ≤ 2ν̃( f ). In fact, let H be as in (1.9), then there exists a
t2 > 0 such that for any t > t2, x ∈ E and f ∈ bpB(E), |Ht (φ f )(x)| ≤ 1. Now for any t > t2,
x ∈ E and f ∈ bpB(E), we can verify from (4.4) and (1.9) that

St f (x) =
1

Tt (φ f )(x) = ν(φ f )(1 + Ht (φ f )(x)) ≤ 2ν̃( f ).

φ(x)eλt
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t

Step 4. Let t0 := max{t1, t2}. We will show that there exists a constant C5 > 0 such that for
ll T > t0, it holds that Q[η2

T ] ≤ C5Q[ηT ]2. To do this we note that for any T > t0,

Q[η2
T ] = Q

[(∫ 0

−T
dt
∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
)

·

(∫ 0

−T
ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
)]

= 2Q
[∫ 0

−T
dt
∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

t
ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
]

= III + IV

where

III := 2Q
[∫ 0

−T
dt
∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ (t+t0)∧0

t
ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
]

nd

IV := 2Q
[∫ 0

−T
dt
∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

(t+t0)∧0
ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
]
.

We first show that there exists a constant C6 > 0 such that for all T > t0, it holds that
II ≤ C6Q[ηT ]2. In fact, note t ↦→ Q[ηt ] is non-decreasing, we have for any T > t0,

III ≤ 2Q
[∫ 0

−T
dt
∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ t+t0

t
ds
∫

∞

1
uπ (ξ̃s, du)

]
≤ 2t0

(
sup
x∈E

∫
∞

1
uπ (x, du)

)
Q[ηT ] ≤

2t0
Q[ηt0 ]

(
sup
x∈E

∫
∞

1
uπ (x, du)

)
Q[ηT ]2.

ote that from Step 1,

2t0
Q[ηt0 ]

(
sup
x∈E

∫
∞

1
uπ (x, du)

)
< ∞.

We now show that for any T > t0, IV ≤ 4Q[ηT ]2. For fixed T > t0, it follows from Fubini’s
heorem and (4.6) that

IV = Q
[
2
∫

−t0

−T
dt
∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

t+t0

ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
]

= 2
∫

−t0

−T
Q
[∫ ∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

t+t0

ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
]
dt

= 2
∫

−t0

−T
Q
[

Q
[∫ ∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

t+t0

ds
∫

∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
⏐⏐⏐F̃t

]]
dt

= 2
∫

−t0

−T
Q
[∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

t+t0

Q
[∫ ∞

K e−ϵs
φ(ξ̃s )

uπ (ξ̃s, du)
⏐⏐⏐F̃t

]
ds
]

dt

= 2
∫

−t0

−T
Q
[∫

∞

K e−ϵt
φ(ξ̃t )

rπ (ξ̃t , dr )
∫ 0

t+t0

Ss−t hs(ξ̃t )ds
]

dt

= 2
∫

−t0

−T
dt
∫

E
ν̃(dy)

∫
∞

K e−ϵt
φ(y)

rπ (y, dr )
∫ 0

t+t0

Ss−t hs(y)ds, (A.5)
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where, for any t ∈ R, F̃t := σ (ξ̃s : s ∈ (−∞, t]), and for any s ≤ 0 and y ∈ E ,

hs(y) :=

∫
∞

K e−ϵs
φ(y)

uπ (y, du) ≤ sup
x∈E

∫
∞

1
uπ (x, du) < ∞. (A.6)

ote for any t ∈ (−T,−t0) and s ∈ (t + t0, 0), we have s − t ≥ t0 ≥ t2, which, together
ith Step 3, implies that for any y ∈ E , Ss−t hs(y) ≤ 2ν̃(hs). Therefore, from (A.4), (A.5) and

A.6), we have

IV ≤ 4
∫

−t0

−T
dt
∫

E
ν̃(dy)

∫
∞

K e−ϵt
φ(y)

rπ (y, dr )
∫ 0

t+t0

ν̃(hs)ds

≤ 4
∫ 0

−T
ν̃(ht )dt ·

∫ 0

−T
ν̃(hs)ds = 4Q[ηT ]2.

Now the desired result in this step follows.
Step 5. We show that Q(η∞ = ∞) > 0. Note that for any T ≥ 0, from the Cauchy–Schwartz

inequality,√
Q[η2

T ]Q
(
ηT ≥

1
2

Q[ηT ]
)

≥ Q[ηT 1
{ηT ≥

1
2 Q[ηT ]}]

= Q[ηT ] − Q[ηT 1
{ηT<

1
2 Q[ηT ]}] ≥ Q[ηT ] − Q

[1
2

Q[ηT ]1
{ηT<

1
2 Q[ηT ]}

]
≥

1
2

Q[ηT ].

et t0 be as in Step 4. Then, there exists a C7 > 0 such that for any T ≥ t0,

Q
(
η∞ ≥

1
2

Q[ηT ]
)

≥ Q
(
ηT ≥

1
2

Q[ηT ]
)

≥
Q[ηT ]2

4Q[η2
T ]

≥ C7. (A.7)

y the monotone convergence theorem and Step 1, we have

Q[ηT ] −−−→
T →∞

Q[η∞] = ∞.

ow by (A.7) and the monotone convergence theorem again,

Q(η∞ = ∞) = lim
T →∞

Q
(
η∞ ≥

1
2

Q[ηT ]
)

≥ C7.

Step 6. We will show that ν̃ is an ergodic measure of the semigroup (St )t≥0 in the sense
f [4, Section 3.2]. To do this, we claim that for any ϕ ∈ L2(ν̃) satisfying Stϕ = ϕ in L2(ν̃)
or all t ≥ 0, it holds that ϕ is a constant ν̃-a.e. In fact for ν̃- almost every x ∈ E , from (1.9)
nd (4.4), we have

ϕ(x) = Stϕ(x) =
1

eλtφ(x)
Tt (φϕ+)(x) −

1
eλtφ(x)

Tt (φϕ−)(x)

= ν(φϕ+)
(
1 + Ht (φϕ+)(x)

)
− ν(φϕ−)

(
1 + Ht (φϕ−)(x)

)
−−−→
t→∞

ν(φϕ),

hich implies the desired claim. Now the desired result in this step follows from [4, Theorem
.2.4.].

Step 7. We will show that {η∞ = ∞} is an invariant event for this ergodic process (ξ̃t )t∈R
nder Q in the sense that, for any t ∈ R, Q(A0∆At ) = 0 where

At :=

{∫ 0

−∞

ds
∫

∞

K e−ϵs
yπ (ξ̃s+t , dy) = ∞

}
, t ∈ R.
φ(ξ̃s+t )
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We first claim that

Ar ⊂ Ar−t , r ∈ R, t > 0. (A.8)

In fact, on the event Ar we have∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r−t )

yπ (ξ̃s+r−t , dy) ≥

∫ 0

−∞

ds
∫

∞

K e−ϵ(s−t)
φ(ξ̃s+r−t )

yπ (ξ̃s+r−t , dy)

=

∫
−t

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r )

yπ (ξ̃s+r , dy)

=

∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r )

yπ (ξ̃s+r , dy) −

∫ 0

−t
ds
∫

∞

K e−ϵs
φ(ξ̃s+r )

yπ (ξ̃s+r , dy)

≥

∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r )

yπ (ξ̃s+r , dy) − |t | · sup
x∈E

∫
∞

1
yπ (x, dy) = ∞,

s claimed. We then claim that for any r ∈ R and t ≥ 0, Q-almost surely,∫ 0

−∞

ds
∫ K e−ϵs

φ(ξ̃s+r+t )

K e−ϵ(s+t)
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy) < ∞. (A.9)

n fact, by (4.6),

Q
[∫ 0

−∞

ds
∫ K e−ϵs

φ(ξ̃s+r+t )

K e−ϵ(s+t)
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy)
]

=

∫ 0

−∞

ds
∫

E
ν̃(dx)

∫ K e−ϵs
φ(x)

K e−ϵ(s+t)
φ(x)

yπ (x, dy)

=

∫
E
ν̃(dx)

∫
∞

K e−ϵt
φ(x)

yπ (x, dy)
∫

−
1
ϵ log yφ(x)

K

−
1
ϵ log yφ(x)eϵt

K

ds

= t
∫

E
ν̃(dx)

∫
∞

K e−ϵt
φ(x)

yπ (x, dy) ≤ t · sup
x∈E

∫
∞

e−ϵt
yπ (x, dy) < ∞

hich implies the claim. Finally, we claim that

Ar ∩ Ωr,t ⊂ Ar+t , r ∈ R, t > 0, (A.10)

here Ωr,t is the event that (A.9) holds. In fact, on the event Ar ∩ Ωr,t we have∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy)

=

∫ 0

−∞

ds
∫

∞

K e−ϵ(s+t)
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy) −

∫ 0

−∞

ds
∫ K e−ϵs

φ(ξ̃s+r+t )

K e−ϵ(s+t)
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy)

=

∫ t

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r )

yπ (ξ̃s+r , dy) −

∫ 0

−∞

ds
∫ K e−ϵs

φ(ξ̃s+r+t )

K e−ϵ(s+t)
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy)

≥

∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s+r )

yπ (ξ̃s+r , dy) −

∫ 0

−∞

ds
∫ K e−ϵs

φ(ξ̃s+r+t )

K e−ϵ(s+t)
φ(ξ̃s+r+t )

yπ (ξ̃s+r+t , dy) = ∞
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as claimed. Now, for any r < t in R, from (A.8), we know that Q(At \ Ar ) = 0; from (A.9)
and (A.10), we know that Q(Ar \ At ) = 0. Therefore, the desired result in this step follows.

Final Step. From steps 5, 7 and [4, Theorem 1.2.4.(i)] , we get that∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s )

yπ (ξ̃s, dy) = ∞, Q-a.s. (A.11)

From (4.6), we know that (ξ̃s)s∈R has the same distribution as (ξ̃s−s0 )s∈R. Therefore we have
rom (A.11) that∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s−s0 )

yπ (ξ̃s−s0 , dy) = ∞, Q-a.s.

Now we have Q-a.s.,∫
−s0

−∞

ds
∫

∞

e−ϵs
φ(ξ̃s )

yπ (ξ̃s, dy) =

∫ 0

−∞

ds
∫

∞

e−ϵs eϵs0
φ(ξ̃s−s0 )

yπ (ξ̃s−s0 , dy)

≥

∫ 0

−∞

ds
∫

∞

K e−ϵs
φ(ξ̃s−s0 )

yπ (ξ̃s−s0 , dy) = ∞

s desired. □
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