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1 Introduction

1.1 Model

Consider a critical Galton-Watson process (Zn)n≥0 with Z0 = 1 and offspring distribu-
tion µ on N0 := {0, 1, . . . } which has mean 1 and finite variance σ2 > 0, i.e.,

∞∑
k=0

kµ(k) = 1 (1.1)

and

0 < σ2 :=

∞∑
k=0

(k − 1)2µ(k) =

∞∑
k=0

k(k − 1)µ(k) <∞. (1.2)

For simplicity, we will refer to (Zn)n≥0 as a µ-Galton-Watson process. It is well known
that

Theorem 1.1 ([5]). For a µ-Galton-Watson process (Zn)n≥0 satisfying (1.1) and (1.2),
we have

1. nP (Zn > 0) −−−−→
n→∞

2/σ2;

2. {n−1Zn;P (·|Zn > 0)} d−−−−→
n→∞

Y,

where Y is an exponential random variable with mean σ2/2.
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A 2-spine decomposition and Yaglom’s theorem

Under a third moment assumption, assertions (1) and (2) of Theorem 1.1 are due
to [6] and [10] respectively. Theorem 1.1(2) is usually called Yaglom’s theorem. For
probabilistic proofs of the above results, we refer our readers to [2], [3] and [7].

In [7], Lyons, Pemantle and Peres gave a probabilistic proof of Theorem 1.1 using
the so-called size-biased µ-Galton-Watson tree. In this note, by size-biased transform we
mean the following: Let X be a random variable and g(X) be a Borel function of X with
P (g(X) ≥ 0) = 1 and E[g(X)] ∈ (0,∞). We say a random variableW is a g(X)-size-biased
transform (or simply g(X)-transform) of X if

E[f(W )] =
E[g(X)f(X)]

E[g(X)]

for each positive Borel function f . An X-transform of X is sometimes called a size-biased
transform of X.

We now recall the size-biased µ-Galton-Watson tree introduced in [7]. Let L be a
random variable with distribution µ. Denote by L̇ an L-transform of L. The celebrated
size-biased µ-Galton-Watson tree is then constructed as follows:

• There is an initial particle which is marked.

• Any marked particle gives independent birth to a random number of children
according to L̇. Pick one of those children randomly as the new marked particle
while leaving the other children as unmarked particles.

• Any unmarked particle gives birth independently to a random number of unmarked
children according to L.

• The evolution goes on.

Notice that the marked particles form a descending family line which will be referred
to as the spine. Define Żn as the population of the nth generation in the size-biased
tree. It is proved in [7] that the process (Żn)n≥0 is a martingale transform of the
process (Zn)n≥0 via the martingale (Zn)n≥0. That is, for any generation number n and
any bounded Borel function g on Nn

0 ,

E[g(Ż1, . . . , Żn)] =
E[Zng(Z1, . . . , Zn)]

E[Zn]
. (1.3)

It is natural to consider probabilistic proofs of analogous results of Theorem 1.1
for more general critical branching processes. Vatutin and Dyakonova [9] gave a
probabilistic proof of Theorem 1.1(1) for multitype critical branching processes. As far
as we know, there is no probabilistic proof of Yaglom’s theorem for multitype critical
branching processes. It seems that it is difficult to adapt the probabilistic proofs in [3]
and [7] for monotype branching processes to more general models, such as multitype
branching processes, branching Hunt processes and superprocesses.

In this note, we propose a k(k − 1)-type size-biased µ-Galton-Watson tree equipped
with a two-spine skeleton, which serves as a change-of-measure of the original µ-Galton-
Watson tree; and with the help of this two-spine technique, we give a new probabilistic
proof of Theorem 1.1(2), i.e. Yaglom’s theorem. The main motivation for developing this
new proof for the classical Yaglom’s theorem is that this new method is generic, in the
sense that it can be generalized to more complicated critical branching systems. In fact,
in our follow-up paper [8], we show that, in a similar spirit, a two-spine structure can be
constructed for a class of critical superprocesses, and a probabilistic proof of a Yaglom
type theorem can be obtained for those processes.

Another aspect of our new proof is that we take advantage of a fact that the exponen-
tial distribution can be characterized by a particular x2-type size-biased distributional
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A 2-spine decomposition and Yaglom’s theorem

equation. An intuitive explanation of our method, and a comparison with the methods
of [3] and [7], are made in the next subsection. We think this new point of view of
convergence to the exponential law provides an alternative insight on the classical
Yaglom’s theorem.

We now give a formal construction of our k(k − 1)-type size-biased µ-Galton-Watson
tree. Denote by L̇ an L-transform of L, and by L̈ an L(L − 1)-transform of L. Fix
a generation number n and pick a random generation number Kn uniformly among
{0, . . . , n− 1}. The k(k − 1)-type size-biased µ-Galton-Watson tree with height n is then
defined as a particle system such that:

• There is an initial particle which is marked.
• Before or after generation Kn, any marked particle gives birth independently to a
random number of children according to L̇. Pick one of those children randomly as
the new marked particle while leaving the other children as unmarked particles.

• The marked particle at generation Kn, however, gives birth, independent of other
particles, to a random number of children according to L̈. Pick two different
particles randomly among those children as the new marked particles while leaving
the other children as unmarked particles.

• Any unmarked particle gives birth independently to a random number of unmarked
children according to L.

• The system stops at generation n.

If we track all the marked particles, it is clear that they form a two-spine skeleton
with Kn being the last generation where those two spines are together. It would be
helpful to consider this skeleton as two disjoint spines, where the longer spine is a family
line from generation 0 to n and the shorter spine is a family line from generation Kn + 1

to n.
For any 0 ≤ m ≤ n, denote by Z̈

(n)
m the population of the mth generation in the k(k −

1)-type size-biased µ-Galton-Watson tree with height n. The main reason for proposing

such a model is that the process (Z̈(n)
m )0≤m≤n can be viewed as a Zn(Zn − 1)-transform

of the process (Zm)0≤m≤n. This is made precise in the result below which will be proved
in Section 2.1.

Theorem 1.2. Let (Zm)m≥0 be a µ-Galton-Watson process and (Z̈
(n)
m )0≤m≤n be the popu-

lation of a k(k − 1)-type size-biased µ-Galton-Watson tree with height n. Suppose that µ
satisfies (1.1) and (1.2). Then, for any bounded Borel function g on Nn

0 ,

E[g(Z̈
(n)
1 , . . . , Z̈(n)

n )] =
E[Zn(Zn − 1)g(Z1, . . . , Zn)]

E[Zn(Zn − 1)]
.

The idea of considering a branching particle system with more than one spine is not
new. A particle system with k spines was constructed in [4] and used in the many-to-few
formula for branching Markov processes and branching random walks. Inspired by
[4], we use a two-spine model to characterize the k(k − 1)-type size-biased branching
process.

1.2 Methods

Suppose that X is a non-negative random variable with E[X] ∈ (0,∞). Then its
distribution conditioned on {X > 0} can be characterized by its conditional expectation
E[X|X > 0] and its size-biased transform Ẋ. In fact, for each λ ≥ 0,

E[1− e−λX |X > 0] =
E[1− e−λX ]

P (X > 0)

=
1

P (X > 0)

∫ λ

0

E[Xe−sX ]ds = E[X|X > 0]

∫ λ

0

E[e−sẊ ]ds.

(1.4)
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A 2-spine decomposition and Yaglom’s theorem

As a consequence, Theorem 1.1 is equivalent to

E
[Zn

n
|Zn > 0

]
−−−−→
n→∞

σ2

2
(1.5)

and
E[e−s Żn

n ] −−−−→
n→∞

E[e−sẎ ], (1.6)

where Ẏ is a Y -transform of the exponential random variable Y . Indeed, since E[Zn] = 1,
(1.5) is equivalent to Theorem 1.1(1); and assuming (1.5), according to (1.4), we can
see that (1.6) is equivalent to Theorem 1.1(2). In Section 3, for completeness, we will
simplify the argument of [2] and [9], and give a proof of Theorem 1.1(1).

Our method of proving (1.6) takes advantage of a fact that the exponential distribution
is characterized by an x2-type size-biased distributional equation. This is made precise
in the next lemma, which will be proved in Section 3:

Lemma 1.3. Let Y be a strictly positive random variable with finite second moment.
Then Y is exponentially distributed if and only if

Ÿ
d
= Ẏ + U · Ẏ ′, (1.7)

where Ẏ and Ẏ ′ are both Y -transforms of Y , Ÿ is a Y 2-transform of Y , U is a uniform
random variable on [0, 1], and Ẏ , Ẏ ′ and U are independent.

With this lemma and Theorem 1.2, we can give an intuitive explanation of the
exponential convergence in Yaglom’s Theorem. From the construction of the k(k−1)-type
size-biased µ-Galton-Watson tree (Z̈

(n)
m )0≤m≤n, we see that the population Z̈

(n)
n in the

nth generation can be separated into two parts: descendants from the longer spine
and descendants from the shorter spine. Due to their construction, the first part, the
descendants from the longer spine at generation n, is distributed approximately like
Żn, while the second part, the descendants from the shorter spine at generation n, is
distributed approximately like ŻbU ·nc. Those two parts are approximately independent of
each other. So, after a renormalization, we have roughly that

Z̈
(n)
n

n

d
≈ Żn

n
+ U ·

Ż ′
bUnc

Un
, (1.8)

where the process (Ż ′
m) is an independent copy of (Żm). Suppose that Żn/n converges

weakly to a random variable Ẏ , and Z̈n/n converges weakly to a random variable Ÿ .
Then, according to [7, Lemma 4.3], Ÿ is a size-biased transform of Ẏ . Therefore, letting
n→∞ in (1.8), Ẏ should satisfy (1.7), which, by Lemma 1.3, suggests that (1.6) is true.

It is interesting to compare this method of proving exponential convergence with
the methods used in [3] and [7]. In [7], Lyons, Pemantle and Peres characterize the
exponential distribution by a different but well-known x-type size-biased distributional
equation: A nonnegative random variable Y with positive finite mean is exponentially
distributed if and only if it satisfies that

Y
d
= U · Ẏ (1.9)

where Ẏ is a Y -transform of Y , and U is a uniform random variable on [0, 1], which is
independent of Ẏ . With the help of the size-biased tree, they then show that dU · Żne is
distributed approximately like Zn conditioned on {Zn > 0}. So, after a renormalization,
they have roughly that {Zn

n
;P (·|Zn > 0)

}
d
≈ U · Żn

n
. (1.10)
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Suppose that {Zn/n;P (·|Zn > 0)} converge weakly to a random variable Y , and Żn/n

converge weakly to a random variable Ẏ . Then, according to [7, Lemma 4.3], Ẏ is the
size-biased transform of Y . Therefore, letting n → ∞ in (1.10), Y should satisfy (1.9),
which suggests that Y is exponentially distributed.

In [3], Geiger characterizes the exponential distribution by another distributional
equation: If Y (1) and Y (2) are independent copies of a random variable Y with positive
finite variance, and U is an independent uniform random variable on [0, 1], then Y is
exponentially distributed if and only if

Y
d
= U(Y (1) + Y (2)). (1.11)

Geiger then shows that for (Zn), conditioned on non-extinction at generation n, the
distribution of the generation of the most recent common ancestor (MRCA) of the
particles at generation n is asymptotically uniform among {0, 1, . . . , n} (a result due to
[11], see also [2]), and there are asymptotically two children of the MRCA, each with at
least 1 descendant in generation n. After a renormalization, roughly speaking, Geiger
has that {Zn

n
;P (·|Zn > 0)

}
d
≈ U ·

Z
(1)
bUnc

Un
+ U ·

Z
(2)
bUnc

Un
, (1.12)

where for each m, Z(1)
m and Z

(2)
m are independent copies of {Zm;P (·|Zm > 0)}. Therefore,

if {Zn/n;P (·|Zn > 0)} converges weakly to a random variable Y , then Y should satisfy
(1.11), which suggests that Y is exponentially distributed.

From this comparison, we see that all the methods mentioned above share one
similarity: They all establish the exponential convergence via some particular distribu-
tional equation. However, since the equations (1.7), (1.9) and (1.11) are different, the
actual way of proving the convergence varies. In [7], an elegant tightness argument is
made along with (1.10). However, it seems that this tightness argument is not suitable
for (1.12), due to a property that the conditional convergence for some subsequence
Znk

/nk implies the convergence of U · Żnk
/nk, but does not imply the convergence of

Z
(i)
bUnkc/Unk, i = 1, 2. Instead, a contraction type argument in the L2-Wasserstein metric

is used in [3].

For similar reasons, in this note, to actually prove the exponential convergence using
(1.8) and (1.7), some efforts also must be made. We observe that the distributional
equation (1.8) admits a so-called size-biased add-on structure, which is related to Lèvy’s
theory of infinitely divisible distributions: Suppose that X is a nonnegative random
variable with a := E[X] ∈ (0,∞); then X is infinitely divisible if and only if there exists

a nonnegative random variable A independent of X such that Ẋ
d
= X +A. In fact, the

Laplace exponent of X can be expressed as

− lnE[e−λX ] = aα({0})λ+ a

∫
(0,∞)

1− e−λy

y
α(dy),

where α is the distribution of A. Moreover, if A is strictly positive, then

− lnE[e−λX ] = a

∫ λ

0

E[e−sA]ds.

From this point of view, after considering the Laplace transforms of (1.8) and (1.7), we
can establish the convergence of E[e−λŻn/n] to E[e−λẎ ], which will eventually lead us to
Yaglom’s theorem. This is made precise in Section 3. A similar type of argument is also
used in our follow-up paper [8] for critical superprocesses.
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2 Trees and their decompositions

2.1 Spaces and measures

In this subsection, we give a proof of Theorem 1.2. Consider particles as elements in
the space

U := {∅} ∪
∞⋃
k=1

Nk,

where N := {1, 2, . . . }. Therefore elements in U are of the form 213, which we read as
the individual being the 3rd child of the 1st child of the 2nd child of the initial ancestor
∅. For two particles u = u1 . . . un, v = v1 . . . vm ∈ U , uv denotes the concatenated particle
uv := u1 . . . unv1 . . . vm. We use the convention u∅ = ∅u = u and u1 . . . un = ∅ if n = 0. For
any particle u := u1 . . . un−1un, we define its generation as |u| := n and its parent particle
as←−u := u1 . . . un−1. For any particle u ∈ U and any subset a ⊂ U , we define the number
of children of u in a as lu(a) := #{α ∈ a : ←−α = u}. We also define the height of a as
|a| := supα∈a |α| and its population in the nth generation as Xn(a) := #{u ∈ a : |u| = n}.
A tree t is defined as a subset of U such that there exists an N0-valued sequence (lu)u∈U ,
indexed by U , satisfying

t = {u1 . . . um ∈ U : m ≥ 0, uj ≤ lu1...uj−1 ,∀j = 1, . . . ,m}.

A spine v on a tree t is defined as a sequence of particles {v(k) : k = 0, 1, . . . , |t|} ⊂ t

such that v(0) = ∅ and
←−−
v(k) = v(k−1) for any k = 1, . . . , |t|. In the case that |t| = ∞, we

simply write k = 0, 1, . . . as k = 0, 1, . . . , |t|.
Fix a generation number n ∈ N. Define the following spaces:

• The space of trees with height no more than n,

T≤n := {t : t is a tree with |t| ≤ n}.

• The space of n-height trees with one distinguishable spine,

Ṫn := {(t,v) : t is a tree with |t| = n,v is a spine on t}.

• The space of n-height trees with two different distinguishable spines,

T̈n := {(t,v,v′) : (t,v) ∈ Ṫn, (t,v
′) ∈ Ṫn,v 6= v′}.

Let (Lu)u∈U be a collection of independent random variables with law µ, indexed by
U . Denote by T the random tree defined by

T := {u1 . . . um ∈ U : 0 ≤ m ≤ n, uj ≤ Lu1...uj−1 ,∀j = 1, . . . ,m}.

We refer to T as a µ-Galton-Watson tree with height no more than n since its popula-
tion (Xm(T ))0≤m≤n is a µ-Galton-Watson process stopped at generation n. Define the
µ-Galton-Watson measure Gn on T≤n as the law of the random tree T . That is, for any
t ∈ T≤n,

Gn(t) := P (T = t) = P (Lu = lu(t) for any u ∈ t with |u| < n) =
∏

u∈t:|u|<n

µ(lu(t)).

Recall that L̇ is an L-transform of L. Define Ċ as a random number which, conditioned
on L̇, is uniformly distributed on {1, . . . , L̇}. Independent of (Lu)u∈U , let (L̇u, Ċu)u∈U be
a collection of independent copies of (L̇, Ċ), indexed by U . We then use (Lu)u∈U and
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(L̇u, Ċu)u∈U as the building blocks to construct the size-biased µ-Galton-Watson tree Ṫ

and its distinguishable spine V̇ following the steps described in Section 1.1. We use Lu

as the number of children of particle u if u is unmarked and use L̇u if u is marked. In
the latter case, we always set the Ċu-th child of u, i.e. particle uĊu, as the new marked
particle. For convenience, we stop the system at generation n. To be precise, the random
spine V̇ is defined by

V̇ := {v1 . . . vm ∈ U : 0 ≤ m ≤ n, vj = Ċv1...vj−1 ,∀j = 1, . . . ,m},

and the random tree Ṫ is defined by

Ṫ := {u1 . . . um ∈ U : 0 ≤ m ≤ n, uj ≤ L̃u1...uj−1
,∀j = 1, . . . ,m},

where, for any u ∈ U , L̃u := Lu1u6∈V̇ + L̇u1u∈V̇ .

We now consider the distribution of the Ṫn-valued random element (Ṫ , V̇ ). For any
(t,v) ∈ Ṫn, the event {(Ṫ , V̇ ) = (t,v)} occurs if and only if:

• Lu = lu(t) for each u ∈ t \ v with |u| < n and

• (L̇v1...vm , Ċv1...vm) = (lv1...vm(t), vm+1) for each v1 . . . vm+1 ∈ v with 0 ≤ m ≤ n− 1.

Therefore, the distribution of (Ṫ , V̇ ) can be determined by

P ((Ṫ , V̇ ) = (t,v)) =
∏

u∈t\v:|u|<n

µ(lu(t)) ·
∏

u∈v:|u|<n

lu(t)µ(lu(t))
1

lu(t)
= Gn(t). (2.1)

The size-biased µ-Galton-Watson measure Ġn on T≤n is then defined as the law of
the T≤n-valued random element Ṫ . That is, for any t ∈ T≤n,

Ġn(t) := P (Ṫ = t) =
∑

v:(t,v)∈Ṫn

P ((Ṫ , V̇ ) = (t,v))

= #{v : (t,v) ∈ Ṫn} ·Gn(t) = Xn(t) ·Gn(t).

(2.2)

Equations (2.1), (2.2) and their consequence (1.3) were first obtained in [7]. We use
these equations to help us to understand how the k(k − 1)-type size-biased µ-Galton-
Watson tree can be represented.

Recall that Kn is a random generation number uniformly distributed on {0, . . . , n−
1}, and L̈ is an L(L − 1)-transform of L. Define (C̈, C̈ ′) as a random vector which,
conditioned on L̈, is uniformly distributed on {(i, j) ∈ N2 : 1 ≤ i 6= j ≤ L̈}. Suppose
that (Lu)u∈U , (L̇u, Ċu)u∈U , (L̈, C̈, C̈ ′) and Kn are independent of each other. We now use
these elements to build the k(k − 1)-type size-biased µ-Galton-Watson tree T̈ and its
two different distinguishable spines V̈ and V̈ ′ following the steps described in Section
1.1. Write Cu := Ċu1|u|6=Kn

+ C̈1|u|=Kn
and C ′

u := Ċu1|u|6=Kn
+ C̈ ′1|u|=Kn

. We define the

random spines V̈ and V̈ ′ as

V̈ := {v1 . . . vm ∈ U : 0 ≤ m ≤ n, vj = Cv1...vj−1
,∀j = 1, . . . ,m},

V̈ ′ := {v1 . . . vm ∈ U : 0 ≤ m ≤ n, vj = C ′
v1...vj−1

,∀j = 1, . . . ,m},

and the random tree T̈ as

T̈ := {u1 . . . um ∈ U : 0 ≤ m ≤ n, uj ≤ L′′
u1...uj−1

,∀j = 1, . . . ,m},

where, for any u ∈ U , L′′
u := Lu1u6∈V̈ ∪V̈ ′ + L̇u1u∈V̈ ∪V̈ ′,|u|6=Kn

+ L̈1u∈V̈ ∪V̈ ′,|u|=Kn
.

We now consider the distribution of (T̈ , V̈ , V̈ ′). For any (t,v,v′) ∈ T̈n, the event
{(T̈ , V̈ , V̈ ′) = (t,v,v′)} occurs if and only if:
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• Kn = kn := |v ∩ v′|,
• Lu = lu(t) for each u ∈ t \ (v ∪ v′) with |u| < n,
• (L̇v1...vm

, Ċv1...vm) = (lv1...vm(t), vm+1) for each v1 . . . vmvm+1 ∈ v∪v′ with kn 6= m <

n and
• (L̈, C̈, C̈ ′) = (lv1...vkn

(t), vkn+1, v
′
kn+1) for v1 . . . vkn

vkn+1 ∈ v and v1 . . . vkn
v′kn+1 ∈ v′.

Using this analysis, we get that

P
(
(T̈ , V̈ , V̈ ′) = (t,v,v′)

)
=

1

n
·

∏
u∈t\(v∪v′):|u|<n

µ(lu(t)) ·
∏

u∈v∪v′:kn 6=|u|<n

lu(t)µ(lu(t))
1

lu(t)

·
∏

u∈v∪v′:|u|=kn

lu(t)(lu(t)− 1)µ(lu(t))

σ2

1

lu(t)(lu(t)− 1)

=
1

nσ2
Gn(t).

The k(k − 1)-type size-biased µ-Galton-Watson measure G̈n on T≤n is then defined as
the law of the random element T̈ . That is, for any t ∈ T≤n,

G̈n(t) := P (T̈ = t) =
∑

(v,v′):(t,v,v′)∈T̈n

P
(
(T̈ , V̈ , V̈ ′) = (t,v,v′)

)
= #{(v,v′) : (t,v,v′) ∈ T̈n} ·

Gn(t)

nσ2
=

Xn(t)(Xn(t)− 1)

nσ2
·Gn(t).

(2.3)

We note in passing that, because of the way they are constructed, the measures
(G̈n)n≥1 are not consistent, that is, the measure G̈n is not the restriction of G̈n+1. This
implies that the change of measure in Theorem 1.2 is not a martingale change of measure.

Proof of Theorem 1.2. Note that

{(Xm(t))0≤m≤n;Gn}
d
= (Zm)0≤m≤n and {(Xm(t))0≤m≤n; G̈n}

d
= (Z̈m)0≤m≤n.

According to (2.3), for any bounded Borel function g on Nn
0 , we can verify that

E[g(Z̈
(n)
1 , . . . , Z̈(n)

n )] = G̈n[g(X1(t), . . . , Xn(t))]

= Gn

[Xn(t)(Xn(t)− 1)

nσ2
g(X1(t), . . . , Xn(t))

]
=

1

nσ2
E[Zn(Zn − 1)g(Z1, . . . , Zn)].

(2.4)

Taking g ≡ 1 in equation (2.4), we get that

E[Zn(Zn − 1)] = E[Żn − 1] = nσ2. (2.5)

2.2 Spine decompositions.

Using the notation introduced in the previous section, we are now ready to give a
precise meaning to (1.8):

Proposition 2.1. Let (Żm)0≤m≤n be the population of a size-biased µ-Galton watson

tree and (Z̈
(n)
m )0≤m≤n be the population of a k(k − 1)-type size-biased µ-Galton-Watson

tree with height n. Suppose that µ satisfies (1.1) and (1.2). Then

E[e−λZ̈(n)
n ] = E[e−λŻn ]E[g(λ, bUnc)e−λŻbUnc ],

where U is a uniform random variable on [0, 1] independent of {Żm : 0 ≤ m ≤ n}; and
g(λ,m) is a function on [0,∞)×N0 such that g(λ,m)→ 1, uniformly in λ as m→∞.
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A 2-spine decomposition and Yaglom’s theorem

Proof. For any particle u = u1 . . . un, we define [∅, u] := {u1 . . . uj : j = 0, . . . , n} as the
descending family line from ∅ to u. The particles in Ṫ can be separated according to their
nearest spine ancestor. For each k = 0, . . . , n, we write Ȧk := {u ∈ Ṫ : |[∅, u] ∩ V̇ | = k}.
Then

Xn(Ṫ ) =

n∑
k=0

Xn(Ȧk). (2.6)

Notice that the right side of the above equation is a sum of independent random variables;

and from their construction, we see that Xn(Ȧk)
d
= Z

(L̇−1)
n−k−1. Here, Z(L̇−1)

(−1) := 1 and

(Z
(L̇−1)
m )m∈N0

denotes a µ-Galton-Watson process with Z
(L̇−1)
0 distributed according to

L̇− 1. Taking Laplace transforms on both sides of (2.6) we get

E[e−λŻn ] =

n∏
k=0

E[e−λZ
(L̇−1)
n−k−1 ]. (2.7)

Similarly, we consider the k(k − 1)-type size-biased µ-Galton-Watson tree (T̈ , V̈ , V̈ ′).
Write

Äl
k := {u ∈ T̈ : |[∅, u] ∩ V̈ | = k, [∅, u] ∩ (V̈ ′ \ V̈ ) = ∅}

and
Äs

k := {u ∈ T̈ : |[∅, u] ∩ V̈ ′| = k, [∅, u] ∩ (V̈ ′ \ V̈ ) 6= ∅}.

Then,

Xn(T̈ ) =

n∑
k=0

Xn(Ä
l
k) +

n∑
k=Kn+1

Xn(Ä
s
k). (2.8)

Notice that, conditioning on Kn = m with m ∈ {0, . . . , n− 1}, the right side of the above
equation is a sum of independent random variables; and from their construction, we see

that Xn(Ä
l
k)

d
= Z

(L̇−1)
n−k−1 for each k 6= m; Xn(Ä

l
m)

d
= Z

(L̈−2)
n−m−1; and Xn(Ä

s
k)

d
= Z

(L̇−1)
n−k−1 for

each k ≥ m+ 1. Here, Z(L̈−2)
(−1) := 1 and (Z

(L̈−2)
k )k∈N0

is a µ-Galton-Watson process with

initial population distributed according to L̈− 2.
Taking Laplace transform on both sides of (2.8) and using (2.7), we get

E[e−λZ̈(n)
n ] =

1

n

n−1∑
m=0

( n∏
k=0,k 6=m

E[e−λZ
(L̇−1)
n−k−1 ]

)
· E[e−λZ

(L̈−2)
n−m−1 ] ·

( n∏
k=m+1

E[e−λZ
(L̇−1)
n−k−1 ]

)

= E[e−λŻn ]
1

n

n−1∑
m=0

E[e−λZ
(L̈−2)
n−m−1 ]

E[e−λZ
(L̇−1)
n−m−1 ]

· E[e−λŻn−m−1 ]

= E[e−λŻn ]
1

n

n−1∑
m=0

E[e−λZ(L̈−2)
m ]

E[e−λZ
(L̇−1)
m ]

· E[e−λŻm ] = E[e−λŻn ]E[g(λ, bUnc)e−λŻbUnc ],

where

P (Z(L̈−2)
m = 0) ≤ g(λ,m) :=

E[e−λZ(L̈−2)
m ]

E[e−λZ
(L̇−1)
m ]

≤ P (Z(L̇−1)
m = 0)−1.

Notice that, from the criticality, P (Z
(L̈−2)
m = 0) and P (Z

(L̇−1)
m = 0)−1 converge to 1.

3 Proofs

Proof of Theorem 1.1(1). Denote byBj
n the event that the Galton-Watson process (Zn)n≥0

survives up to generation n, and the left-most particle in the n-th generation is a de-
scendant of the jth particle of the first generation. Write qn = P [Zn = 0] = f (n)(0) and
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pn = 1− qn where f is the probability generating function of the offspring distribution µ.
Then

E[Zn|Zn > 0] =

∞∑
k=1

E[Zn;Z1 = k|Zn > 0] = p−1
n

∞∑
k=1

E[Zn;Z1 = k;Zn > 0]

= p−1
n

∞∑
k=1

k∑
j=1

E[Zn;Z1 = k;Bj
n] = p−1

n

∞∑
k=1

k∑
j=1

P [Z1 = k;Bj
n]E[Zn|Z1 = k,Bj

n]

= p−1
n

∞∑
k=1

k∑
j=1

P [Z1 = k;Bj
n]
(
E[Zn−1|Zn−1 > 0] + k − j

)

= E[Zn−1|Zn−1 > 0] +
pn−1

pn

∞∑
k=1

k∑
j=1

µ(k)qj−1
n−1(k − j).

(3.1)

The criticality implies that qn ↑ 1 as n→∞, and that

pn
pn−1

=
1− f (n)(0)

1− f (n−1)(0)
=

1− f(qn−1)

1− qn−1
−−−−→
n→∞

f ′(1) = 1.

By the monotone convergence theorem,

pn−1

pn

∞∑
k=1

k∑
j=1

µ(k)qj−1
n−1(k − j) −−−−→

n→∞

∞∑
k=1

k∑
j=1

µ(k)(k − j) =

∞∑
k=1

µ(k)k(k − 1)/2 =
σ2

2
.

Now combining (3.1) with the above, we get

1

nP (Zn > 0)
=

1

n
E[Zn|Zn > 0]

=
1

n
E[Z0|Z0 > 0] +

1

n

n∑
m=1

pm−1

pm

∞∑
k=1

k∑
j=1

µ(k)qj−1
m−1(k − j)

−−−−→
n→∞

σ2

2
.

In order to compare distributions using their size-biased add-on structures, we need
the following lemma:

Lemma 3.1. Let X0 and X1 be two non-negative random variables with the same mean
a = E[X0] = E[X1] ∈ (0,∞). Let F0 be defined by E[e−λẊ0 ] = E[e−λX0 ]F0(λ), where Ẋ0

is an X0-transform of X0, and F1 be defined by E[e−λẊ1 ] = E[e−λX1 ]F1(λ), where Ẋ1 is
an X1-transform of X1. Then,∣∣E[e−λX0 ]− E[e−λX1 ]

∣∣ ≤ a

∫ λ

0

|F0(s)− F1(s)|ds, λ ≥ 0.

Proof. Since Ẋ0 is an X0-transform of X0, we have

∂λ(− lnE[e−λX0 ]) =
E[X0e

−λX0 ]

E[e−λX0 ]
=

aE[e−λẊ0 ]

E[e−λX0 ]
= aF0(λ).

Similarly, ∂λ(− lnE[e−λX1 ]) = aF1(λ). Therefore, since x− lnx is decreasing on [0, 1],∣∣E[e−λX0 ]− E[e−λX1 ]
∣∣ ≤ ∣∣ lnE[e−λX0 ]− lnE[e−λX1 ]

∣∣ = a
∣∣ ∫ λ

0

F0(s)ds−
∫ λ

0

F1(s)ds
∣∣

≤ a

∫ λ

0

|F0(s)− F1(s)|ds

as desired.
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We are now ready to prove Lemma 1.3. It is elementary to verify that if Y is
exponentially distributed, then it satisfies (1.7). So we only need to show that if Y is a
strictly positive random variable with finite second moment, then (1.7) implies that it is
exponentially distributed. The following lemma will be used to prove this.

Lemma 3.2. Suppose that c > 0 is a constant, and F is a non-negative bounded function
on [0,∞) satisfying that, for any λ ≥ 0,

F (λ) ≤ 1

c

∫ 1

0

du

∫ λ

0

F (us)ds. (3.2)

Then F ≡ 0.

Proof. By dividing both sides of (3.2) by ‖F‖∞, without loss of any generality, we can
assume F is bounded by 1. We prove this lemma by contradiction. Assume that

ρ := inf{x ≥ 0 : F (x) 6= 0} <∞, (3.3)

with the convention inf ∅ =∞. Then, for each λ ≥ 0,

F (ρ+ λ) =
1

c

∫ 1

0

du

∫ ρ+λ

0

F (us)ds =
1

c

∫ 1

0

du

∫ ρ+λ

ρ

F (us)ds ≤ λ

c
.

Using this new upper bound, we have

F (ρ+ λ) =
1

c

∫ 1

0

du

∫ ρ+λ

ρ

F (us)ds ≤ 1

c

∫ 1

0

du

∫ ρ+λ

ρ

λ

c
ds ≤ λ2

c2
.

Repeating this process, we have F (ρ+λ) ≤ λm

cm for each m ∈ N, which implies that F = 0

on [ρ, ρ+ c). This, however, contradicts (3.3).

Proof of Lemma 1.3. Suppose that Y is a strictly positive random variable with finite
second moment, and (1.7) is true. Define a := E[Ẏ ] ∈ (0,∞). Consider an exponential
random variable e with mean a/2. It is elementary to verify that e satisfies (1.7), in the

sense that ë
d
= ė+U ė′, where ė and ė′ are both e-transforms of e, ë is an e2-transform of

e, U is a uniform random variable on [0, 1], and ė, ė′ and U are independent. Notice that
E[ė] = a, therefore we can compare the distribution of Ẏ with that of ė using Lemma 3.1.
This gives that

∣∣E[e−λẎ ]− E[e−λė]
∣∣ ≤ a

∫ λ

0

∫ 1

0

∣∣E[e−suẎ ]− E[e−suė]
∣∣duds, λ ≥ 0,

which, according to Lemma 3.2, says that Ẏ
d
= ė. Since Y and e are strictly positive,

according to (1.4), we have

E[1− e−λY ]/E[Y ] = E[1− e−λe]/E[e], λ ≥ 0.

Letting λ→∞, we get E[Y ] = E[e]. Therefore, Y
d
= e as desired.

Proof of Theorem 1.1(2). Consider an exponential random variable Y with mean σ2/2.
Let Ẏ be a Y -transform of Y . As in Section 1.2, we only need to prove that Żn/n converge
weakly to Ẏ . From Proposition 2.1, we know that

E[e−λZ̈(n)
n ] = E[e−λŻn ]E[g(λ, bUnc)e−λŻbUnc ],
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where U is a uniform random variable on [0, 1] independent of {Żm : 0 ≤ m ≤ n}; and
g(λ,m) is a function on [0,∞) × N0 such that g(λ,m) → 1, uniformly in λ as m → ∞.
After a renormalization, we have that

E[e−λ
Z̈

(n)
n −1

n ] = E[e−λ Żn−1
n ]E

[
g
(λ
n
, bUnc

)
e−λU

ŻbUnc
Un

]
, λ ≥ 0.

According to Theorem 1.2, one can verify that (Z̈(n)
n − 1)/n is a (Żn − 1)/n transform

of (Żn − 1)/n. Therefore, the above equation can be viewed as the size-biased add-on
structure for the random variable (Żn − 1)/n. It is easy to see that the mean of Ẏ is σ2.
According to (2.5), the mean of (Żn − 1)/n is also σ2. Then comparing the distribution of
(Żn − 1)/n with that of Ẏ , and using Lemma 3.1, we get that

∣∣E[e−λ Żn−1
n ]− E[e−λẎ ]

∣∣ ≤ σ2

∫ λ

0

ds

∫ 1

0

∣∣g( s
n
, bunc)E[e−su

Żbunc
un ]− E[e−suẎ ]

∣∣du.
Taking n→∞ and using the reverse Fatou’s lemma, we arrive at

M(λ) ≤ σ2

∫ 1

0

du

∫ λ

0

M(us)ds, λ ≥ 0,

where M(λ) := lim supn→∞ |E[e−λ Żn
n ]− E[e−λẎ ]|. Thus by Lemma 3.2, we have M ≡ 0,

which says that Żn/n converges weakly to Ẏ .
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