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ON THE SPECTRAL RADIUS OF THE (L, κ)-LAZY MARKOV CHAIN

LI QIAN AND ZHENYAO SUN

Abstract. We consider an (L, κ)-lazy operation on an irreducible Markov transition
probability P with state space S where L ⊂ S and κ ∈ [0, 1). For each x ∈ L and
y ∈ S, this (L, κ)-operation replaces P (x, y), the transition probability from x to y,
by κ1{x=y} + (1 − κ)P (x, y). We are interested in how L and κ influence the spectral

radius ρLκ of this new transition probability. We first show that ρLκ is non-decreasing
and continuous in κ. We then show that: (1) If L is nonempty and finite, then P being
rho-transient is equivalent to that the growth of (ρLκ )κ∈[0,1) exhibits a phase transition:

There exists a critical value κc(L) ∈ (0, 1) such that κ 7→ ρLκ is a constant on [0, κc(L)]
and increases strictly on [κc(L), 1); (2) For every κ ∈ (0, 1), if S \ L is nonempty and
finite, then ρLκ = ρSκ if and only if P is not strictly rho-recurrent.

1. Introduction

We consider irreducible discrete-time Markov chains on a countable infinite state space
S. In recent years, there are some papers studied the κ-lazy version of a Markov transition
probability P on S, which is defined as κI + (1− κ)P where I is the identity matrix (see
[1, 2, 4, 5]). Intuitively speaking, the corresponding κ-lazy Markov chain is the original
chain being delayed at each step by tossing a coin with heads’ probability κ: If the chain
gets a head, then it won’t move, and it gets a tail, it will move according to the transition
probability P .

In this note, we are going to consider the (L, κ)-laziness which generalized the notion
of the κ-laziness by only delaying the Markov chain on a subset of S. To be more precise,
for any L ⊂ S and κ ∈ [0, 1), we denote by PL

κ the (L, κ)-lazy version of a transition
probability P which is defined so that for any x, y ∈ S,

PL
κ (x, y) :=











κ+ (1− κ)P (x, x), if x ∈ L and x = y;

(1− κ)P (x, y), if x ∈ L and x 6= y;

P (x, y), if x /∈ L.

We call P (= PL
0 ) the underlying transition probability.

We are particularly interested in how the spectral radius of the transition probability
PL
κ is influenced by L and κ. The Green function G(x, y|z) of a transition probability P

is defined as

G(x, y|z) :=
∞
∑

n=0

P
x(Xn = y)zn, x, y ∈ S, z ∈ R,
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where (Xn)
∞
n=0 is a Markov chain with transition probability P and initial value X0 = x

under the probability P
x. It is proved in [12, Lemma 1.7] that if P is irreducible, then

the convergence radius of the Green function G(x, y|·) is independent of x and y. The
reciprocal of this convergence radius is known as the spectral radius of P (see [12] for
example). It is noted in [12, (1.8)] that

(1) the spectral radius of an irreducible transition probability takes its value in (0, 1].

Observe that for κ ∈ [0, 1), if P is irreducible, then so is PL
κ .

In the rest of this note, we will always assume that the underlying transition probability
P is irreducible, and we will denote by ρLκ the spectral radius of PL

κ with ρ := ρL0 . One
can iterate the lazy operations on the underlying transition probability. For example, we
denote by (PL

κ )
L′

κ′ the (L′, κ′)-lazy version of the (L, κ)-lazy version of P , and by (ρLκ)
L′

κ′

the spectral radius of (PL
κ )

L′

κ′ .
The spectral radius ρSκ for the κ-lazy version of P has been studied in [12, Lemma 9.2]:

For κ ∈ [0, 1), it holds that

ρSκ = κ + (1− κ)ρ.(2)

Our first result concerns the monotonicity and the continuity of κ 7→ ρLκ for general
L ⊂ S.

Theorem 1.1. Let L ⊂ S and κ ∈ [0, 1).

(i) ρLκ is non-decreasing in κ.
(ii) ρLκ is continuous in κ.
(iii) ρ = 1 ⇔ ρLκ = 1, or equivalently speaking, ρ < 1 ⇔ ρLκ < 1.
(iv) If L 6= ∅, then limκ↑1 ρ

L
κ = 1.

Let us now introduce a classification of the transition probability, which is crucial for
the rest of our results. It is proved in [12, Lemma 1.7] that G(x, y|1/ρ) either = ∞ (or
< ∞) simultaneously for all x, y ∈ S, and the corresponding P is referred to as rho-
recurrent (or rho-transient) transition probability. These concepts appeared in [9] and
were studied in [3, 7, 8, 10, 11] and [6, Section 3.2]. One can find specific examples of
rho-recurrent/rho-transient Markov chains in [12, Section 7.B].

Theorem 1.2. Suppose ρ < 1.

(i) If 0 < #L < ∞ and P is rho-transient, then there exists a unique κc(L) ∈ (0, 1)
such that

• For κ ∈ [0, κc(L)), ρ
L
κ = ρ and PL

κ is rho-transient;
• For κ ∈ [κc(L), 1), ρ

L
κ increases strictly in κ with ρLκc(L)

= ρ, and PL
κ is rho-

recurrent.
(ii) If 0 < #L < ∞ and P is rho-recurrent, then for every κ ∈ [0, 1), ρLκ increases strictly

in κ and PL
κ is rho-recurrent.

(iii) If #(S \ L) < ∞, then ρLκ increases strictly in κ ∈ [0, 1).

In this note, we will introduce a further classification for the rho-recurrent transition
probabilities, which we will use in our next result. Let the U-function of a transition
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probability P be the power series:

U(x, y|z) :=
∞
∑

n=0

P
x(τ y = n)zn, x, y ∈ S, z ∈ R,

where τ y := inf{n ≥ 1 : Xn = y}. Let r(U |x, y) be the convergence radius of U(x, y|·).
(Note that r(U |x, y) may depend on x, y.) We will prove in Lemma 2.3 that if P is
rho-transient, then

r(U |x, x) = 1/ρ, ∀x ∈ S.(3)

If P is rho-recurrent and (3) holds, then we say P is critically rho-recurrent. If P is
rho-recurrent, but (3) does not hold, then we say P is strictly rho-recurrent.

Theorem 1.3. Suppose that ρ < 1 and 0 < #L < ∞.

(i) If P is rho-transient, then PL
κc(L)

is critically rho-recurrent where κc(L) is given as

in Theorem 1.2 (i). Moreover, for every κ ∈ (κc(L), 1), P
L
κ is strictly rho-recurrent.

(ii) If P is rho-recurrent, then for every κ ∈ (0, 1), PL
κ is strictly rho-recurrent.

For κ ∈ (0, 1), observe that (PL
κ )

S\L
κ = P S

κ . Hence by Theorem 1.1 (i), ρLκ ≤ ρSκ .

Theorem 1.4. Suppose that ρ < 1, #(S \ L) > 0 and κ ∈ (0, 1).

(i) If #(S \ L) < ∞, then ρLκ = ρSκ if and only if P is not strictly rho-recurrent.
(ii) If P is strictly rho-recurrent, then ρLκ < ρSκ .
(iii) If #L < ∞, then ρLκ < ρSκ .

The rest of this note is organized as follows. Section 2 gives some preliminary results
that we will use throughout the note. Proof of Theorem 1.1 is provided in Section 3. In
Section 4, we show the proofs of Theorem 1.2 (i), (ii), and Theorem 1.4 (iii). In Section 5,
we give the proofs of Theorem 1.3, Theorem 1.4 (i), (ii), and Theorem 1.2 (iii).

Acknowledgment. Part of this research was done while the second author was a Post-
doc at the Technion—Israel Institute of Technology, supported by a scholarship from the
Israel Council for Higher Education.

The authors want to thank Dayue Chen for helpful conversations.

2. Preliminary

This section will introduce some basic results for irreducible Markov chains. Recall
that we used notations (Px)x∈S, G(·, ·|·), ρ, U(·, ·|·), and r(U |·, ·) to represent the prob-
ability of a Markov chain, the Green function, the spectral radius, the U-function,
and the convergence radius of the U-function, corresponding to an irreducible transi-
tion probability P on S, respectively. In the rest of this note, we will use notations
(PL,x

κ )x∈S, G
L
κ(·, ·|·), ρ

L
κ , U

L
κ (·, ·|·) and r(UL

κ |·, ·) to represent the similar concepts for PL
κ ,

the (L, κ)-lazy version of P .
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2.1. Markov chains. We first observe that for any x ∈ S,

r(U |x, x) ≥ 1/ρ(4)

by the Cauchy-Hadamard formula. It is then easy to see that P is strictly rho-recurrent
if and only if

∃x ∈ S, r(U |x, x) > 1/ρ.(5)

The following lemma connects the Green function, the U-function, and the spectral radius.
Some of these results were known in the literature (see [12, Lemma 1.13] for examples).
Here, we include their proofs for the sake of completeness.

Lemma 2.1. For x ∈ S and z > 0,

(i) U(x, x|z) < 1 ⇔ G(x, x|z) < ∞.
(ii) If G(x, x|z) < ∞, then

G(x, x|z) =
1

1− U(x, x|z)
.

(iii) U(x, x|z) > 1 ⇔ z > 1/ρ.
(iv) 1/ρ = max{z > 0 : U(x, x|z) ≤ 1}.

Proof. For N ∈ Z
+,

N
∑

n=0

P
x(Xn = x)zn = 1 +

N
∑

n=1

n
∑

m=0

P
x(τx = m)Px(Xn−m = x)zn

= 1 +

N
∑

m=0

P
x(τx = m)zm

N
∑

n=m

P
x(Xn−m = x)zn−m

= 1 +

N
∑

m=0

P
x(τx = m)zm

N−m
∑

n=0

P
x(Xn = x)zn.

Note that

N
∑

n=0

P
x(Xn = x)zn ≥ 1 +

⌊N/2⌋
∑

m=0

P
x(τx = m)zm

⌊N/2⌋
∑

n=0

P
x(Xn = x)zn.(6)

If G(x, x|z) < ∞, then by taking N to infinity, we have U(x, x|z) < 1. By taking N to
infinity in both

N
∑

n=0

P
x(Xn = x)zn ≤ 1 +

N
∑

m=0

P
x(τx = m)zm

N
∑

n=0

P
x(Xn = x)zn(7)

and (6), we have (ii).
Now we assume that G(x, x|z) = ∞. By (7), we have

N
∑

m=0

P
x(τx = m)zm ≥

∑N
n=0 P

x(Xn = x)zn − 1
∑N

n=0 P
x(Xn = x)zn

.
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Let N → ∞, we have U(x, x|z) ≥ 1. Therefore (i) is proved.
For ⇒ of (iii), by the strictly increasing property of U(x, x|·), it suffices to show that

U(x, x|1/ρ) ≤ 1. Noticing that the coefficients of the power series U(x, x|·) is nonnegative,
by the monotone convergence theorem, we have

lim
z↑1/ρ

U(x, x|z) = U(x, x|1/ρ).

By (i) we have that U(x, x|z) < 1 for z < 1/ρ. Therefore U(x, x|1/ρ) ≤ 1 as desired.
For ⇐ of (iii), z > 1/ρ implies that G(x, x|z) = ∞, and, by (i), further implies that

U(x, x|z) ≥ 1. We only have to exclude U(x, x|z) = 1 by contradiction: If it holds, then
for w ∈ (1/ρ, z), U(x, x|w) < 1, which by (i), contradicts the fact that G(x, x|w) < ∞.

(iv) can be directly concluded from (iii). �

As a corollary, we have another equivalent condition for the rho-recurrence and the
rho-transience.

Corollary 2.2. For any x ∈ S, P is rho-recurrent ⇔ U(x, x|1/ρ) = 1; and P is rho-
transient ⇔ U(x, x|1/ρ) < 1.

Proof. From Lemma 2.1 (i), we only have to prove ⇒ of the first statement. When P is
rho-recurrent, by Lemma 2.1 (i) we know that U(x, x|1/ρ) ≥ 1. By Lemma 2.1 (iii) we
have U(x, x|1/ρ) ≤ 1. We are done. �

Lemma 2.3. If P is rho-transient, then r(U |x, x) = 1/ρ for every x ∈ S.

Proof. For the sake of contradiction and (4), we assume that there exists x ∈ S such
that r(U |x, x) > 1/ρ. Then by the continuity of the power series inside of its convergence
radius and Corollary 2.2, there exists z > 1/ρ such that U(x, x|z) < 1. Now by Lemma 2.1
(i), we have G(x, x|z) < ∞ which contradicts the fact that 1/ρ is the convergence radius
of G(x, x|·). �

2.2. (L, κ)-laziness. By Lemma 2.1, the U-function is a good tool for studying the spec-
tral radius.

Lemma 2.4. Let x ∈ S, κ ∈ [0, 1) and z ≥ 0.

(i) If L = {x}, then

UL
κ (x, x|z) = κz + (1− κ)U(x, x|z).

(ii) If x /∈ L, L 6= ∅ and κz < 1, then

UL
κ (x, x|z) = P

x(τx = 1)z +
∑

k≥2,~l∈T (k,x)

P (~l)zk
(

1− κ

1− κz

)

#~l(L)

,

where for k ≥ 2,

T (k, x) := {(x0, x1, x2, · · · , xk−1, xk) ∈ Sk+1 :

x0 = x; xi 6= x, ∀i = 1, · · · , k − 1; xk = x},
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and for ~l = (x0, x1, x2, · · · , xk−1, xk) ∈ T (k, x),

P (~l) :=

k−1
∏

i=0

P (xi, xi+1), #~l(L) := #{i : i = 1, · · · , k − 1; xi ∈ L}.

(iii) If x /∈ L, L 6= ∅ and κz ≥ 1, then UL
κ (x, x|z) = ∞.

Proof. For (i), it is done by the following:

P
{x},x
κ (τx = n) =

{

κ+ (1− κ)Px(τx = 1), if n = 1;

(1− κ)Px(τx = n), if n ≥ 2.

For (ii) and (iii), noticing that x /∈ L and L 6= ∅, we assert that

P
L,x
κ (τx = n) =















P
x(τx = 1), if n = 1;
n

∑

k=2

∑

~l∈T (k,x)

P (~l)(1− κ)#
~l(L)(−κ)n−k

(

−#~l(L)

n− k

)

, if n ≥ 2,
(8)

where we used the generalized binomial series: For k ∈ Z
+ and arbitrary α ∈ R,

(

α

k

)

:=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
, in particular

(

α

0

)

= 1.

Let us explain (8) when n ≥ 2. A Markov chain Xt with transition probability PL
κ can

be constructed in the following way: At each time t ∈ Z
+, taking an independent uniform

r.v. θt in [0, 1], if Xt−1 ∈ L and θt ≤ κ, then we set Xt := Xt−1 and say that the Markov
chain takes a lazy step at time t; else if Xt−1 /∈ L or θt > κ, we sample Xt according to
the probability {P (Xt−1, y) : y ∈ S} and say that the chain takes a non-lazy step.

We refer to the excursion the trajectory of the Markov chain (Xt) up to the time τx.
We refer to the non-lazy excursion the trajectory of the Markov chain Xt formed only
by the non-lazy steps up to the time τx. It is observed that on the event {τx = n},
the excursion takes its value in T (n, x) while the non-lazy excursion takes its value in
∪2≤k≤nT (k, x).

For a given 2 ≤ k ≤ n and l ∈ T (k, x), by the elementary combinatorics, the number of

possible excursions in the event {τx = n, l is the non-lazy excursion} is
(

−#~l(L)
n−k

)

(−1)n−k,

and each of those excursions happens with the same probability P (~l)(1 − κ)#
~l(L)κn−k.

Therefore P
x(τx = n, l is the non-lazy excursion) = P (~l)(1− κ)#

~l(L)(−κ)n−k
(

−#~l(L)
n−k

)

. Now
(8) holds.

By Fubini’s theorem for nonnegative series (
(

−#~l(L)
n−k

)

(−1)n−k is nonnegative), we have
that

UL
κ (x, x|z) = P

x(τx = 1)z +
∑

n≥2

n
∑

k=2

∑

~l∈T (k,x)

P (~l)(1− κ)#
~l(L)(−κ)n−k

(

−#~l(L)

n− k

)

zn

= P
x(τx = 1)z +

∑

k≥2,~l∈T (k,x)

P (~l)(1− κ)#
~l(L)zk

∑

n≥k

(

−#~l(L)

n− k

)

(−κz)n−k.
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For κz < 1, by the generalized binomial theorem, we have that

∑

n≥k

(

−#~l(L)

n− k

)

(−κz)n−k = (1− κz)−#~l(L).

Now we have (ii).

If κz ≥ 1, then by L 6= ∅ and the irreducibility, there exist k0 ≥ 2 and ~l0 ∈ T (k0, x)

such that P (~l0) > 0 and #~l0(L) > 0. As κ < 1 and z > 0, we have that

P (~l0)(1− κ)#
~l0(L)zk0

∑

n≥k0

(

−#~l0(L)

n− k0

)

(−κz)n−k0 = ∞.

Thus we have (iii). �

Corollary 2.5. If L = {x}, then r(UL
κ |x, x) = r(U |x, x) for every κ ∈ [0, 1).

Let us state two more results when L = S.

Lemma 2.6 ([12], Lemma 9.2). For κ ∈ [0, 1), x ∈ S and z ∈ [0, 1/ρSκ),

GS
κ(x, x|z) =

1

1− κz
G

(

x, x

∣

∣

∣

∣

(1− κ)z

1− κz

)

.

Lemma 2.7. For κ ∈ [0, 1), x ∈ S and z ∈
[

0, r(US
κ |x, x)

)

,

US
κ (x, x|z) = (1− κz)U

(

x, x

∣

∣

∣

∣

(1− κ)z

1− κz

)

+ κz,

and
1/r(US

κ |x, x) = κ+ (1− κ)/r(U |x, x).

Proof. It is similar to the proof of Lemma 9.2 in [12], noticing by (8) that

P
S,x
κ (τx = n) =











κ + (1− κ)Px(τx = 1), n = 1;
n

∑

k=2

P
x(τx = k)(−κ)n−k(1− κ)k

(

−k + 1

n− k

)

, n ≥ 2.

�

Lemma 2.8. For κ ∈ [0, 1), P is rho-transient (critically rho-recurrent, or strictly rho-
recurrent, respectively), if and only if so is P S

κ .

Proof. By (2) and (1), ρSκ > κ, and thus 1 − κ/ρSκ > 0. By the monotone convergence
theorem and Lemma 2.6,

GS
κ(x, x|1/ρ

S
κ) = lim

z↑1/ρSκ

GS
κ(x, x|z) = lim

z↑1/ρSκ

1

1− κz
G(x, x|

(1− κ)z

1− κz
)

=
1

1− κ/ρSκ
G(x, x|1/ρ).

Therefore P being rho-transient (or rho-recurrent) is equivalent to that P S
κ being rho-

transient (or rho-recurrent).
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If P is critically (or strictly) rho-recurrent, then for any x ∈ S, r(U |x, x) = 1/ρ (or by
(5), there exists x such that r(U |x, x) > 1/ρ). By Lemma 2.7 and (2), r(US

κ |x, x) = 1/ρSκ
(or r(US

κ |x, x) > 1/ρSκ). The other direction is the same. Now the proof is done. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. (i). Given 0 ≤ κ < κ′ < 1, we want to prove ρLκ ≤ ρLκ′ . If L = ∅,
then it is trivial. If L = S, then by (1) and (2), it is done. We assume that L 6= S and
L 6= ∅, and choose x ∈ S \ L.

We claim that: ∀z ∈ [1, 1/κ′), UL
κ (x, x|z) ≤ UL

κ′(x, x|z). In fact, as x /∈ L and 1 > κ′z >
κz, by Lemma 2.4 (ii), both UL

κ (x, x|z) and UL
κ′(x, x|z) can be expanded. As 1 > κ′z > κz,

we have
1− κ

1− κz
≤

1− κ′

1− κ′z
. Therefore the claim holds by the above mentioned expansions.

By Lemma 2.1 (iii), we have UL
κ′(x, x|1/ρLκ′) ≤ 1. Then as x /∈ L and L 6= ∅, by

Lemma 2.4 (iii), we have 1/ρLκ′ < 1/κ′. Therefore by the above claim, UL
κ (x, x|1/ρ

L
κ′) ≤

UL
κ′(x, x|1/ρLκ′) ≤ 1. By Lemma 2.1 (iii), 1/ρLκ′ ≤ 1/ρLκ .
(ii). Firstly, we are going to prove the right continuity. Set 0 ≤ κ < κ′ < 1. By the

Theorem 1.1 (i), we have ρLκ ≤ ρLκ′ . By the sandwich theorem, it suffices to show that

(a) ρLκ′ ≤ (ρLκ )
S
κ1(κ′);

(b) limκ′↓κ(ρ
L
κ)

S
κ1(κ′) = ρLκ ,

where κ1(κ
′) := (κ′−κ)/(1−κ). It is clear that (b) follows from limκ′↓κ κ1(κ

′) = 0 and (2).

Noticing (PL
κ )

S
κ1

= (PL
κ′)S\Lκ1

, and Theorem 1.1 (i), we have (a) by (ρLκ)
S
κ1

= (ρLκ′)S\Lκ1
≥ ρLκ′ .

Secondly, we prove the left continuity. For 0 ≤ κ′′ < κ < 1, to show limκ′′↑κ ρ
L
κ′′ = ρLκ ,

as ρLκ′′ ≤ ρLκ , it suffices to show that −κ2+(1+κ2)ρ
L
κ ≤ ρLκ′′ where κ2 := (κ−κ′′)/(1−κ).

By (2), it suffices to prove that

ρLκ ≤
ρLκ′′ + κ2

1 + κ2
= (ρLκ′′)Sκ2

1+κ2

,

which can be derived from (PL
κ′′)Sκ2

1+κ2

= (PL
κ )

S\L
κ2

1+κ2

and Theorem 1.1 (i).

(iii). If ρ = 1, by Theorem 1.1 (i), ρLκ ≥ 1. By (1), we have ρLκ ≤ 1. We obtain the
conclusion. If ρLκ = 1, by (2) and Theorem 1.1 (i), κ + (1 − κ)ρ = ρSκ ≥ ρLκ = 1. Hence
ρ ≥ 1. From (1), we are done.

(iv). As L 6= ∅, choose x ∈ L. By Theorem 1.1 (i) and (1), ρ{x}κ ≤ ρLκ ≤ 1. Then by

the sandwich theorem it suffices to prove that limκ↑1 ρ
{x}
κ = 1. By (1), it suffices to show

that ∀ǫ ∈ (0, 1), ∃K ∈ [0, 1), ∀κ ∈ (K, 1), 1− ρ
{x}
κ < ǫ. By Lemma 2.1 (iii), 1 − ρ

{x}
κ < ǫ

is equivalent to U
{x}
κ (x, x|1/(1 − ǫ)) > 1. By Lemma 2.4 (i), U

{x}
κ (x, x|1/(1 − ǫ)) =

κ/(1 − ǫ) + (1 − κ)U(x, x|1/(1 − ǫ)). As limκ↑1 U
{x}
κ (x, x|1/(1 − ǫ)) = 1/(1 − ǫ) > 1, we

can find K to obtain the desired result. �

4. Proof of Theorem 1.2 (i), (ii) and Theorem 1.4 (iii)

Lemma 4.1. Let 0 < #L < ∞ and 0 ≤ κ1 < κ2 < 1,
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(i) If PL
κ2

is rho-transient, then ρ = ρLκ1
= ρLκ2

, and PL
κ1

is rho-transient. As a conse-
quence, if PL

κ1
is rho-recurrent, then PL

κ2
is rho-recurrent.

(ii) If PL
κ1

is rho-recurrent and ρLκ1
< 1, then ρLκ1

< ρLκ2
.

Proof. We first show (i) under the condition that L = {x}. As P
{x}
κ2 is rho-transient, by

(4), Theorem 1.1 (i), Lemma 2.3 and Corollary 2.5, we have

r(U |x, x) ≥ 1/ρ ≥ 1/ρ{x}κ1
≥ 1/ρ{x}κ2

= r(U{x}
κ2

|x, x) = r(U |x, x).

Then ρ = ρ
{x}
κ1 = ρ

{x}
κ2 . Thus, by using Lemma 2.1 (iii) and Lemma 2.4 (i), we have that

1 ≥ U{x}
κ1

(x, x|1/ρ{x}κ1
) = U{x}

κ1
(x, x|1/ρ{x}κ2

) = κ1/ρ
{x}
κ2

+ (1− κ1)U(x, x|1/ρ{x}κ2
).(9)

By (1), 1/ρ
{x}
κ2 ≥ 1. Then by (9), U(x, x|1/ρ{x}κ2 ) ≤ 1. Thus, by Lemma 2.4 (i) and

Corollary 2.2, we have that

U{x}
κ1

(x, x|1/ρ{x}κ1
) ≤ κ2/ρ

{x}
κ2

+ (1− κ2)U(x, x|1/ρ{x}κ2
) = U{x}

κ2
(x, x|1/ρ{x}κ2

) < 1.

Then by Corollary 2.2, P
{x}
κ1 is also rho-transient as desired.

We then show (ii) under the condition that L = {x}. Using Lemma 2.4 (i) twice and
Corollary 2.2,

U{x}
κ2

(x, x|1/ρ{x}κ1
) =

κ2 − κ1

1− κ1

/ρ{x}κ1
+

1− κ2

1− κ1

U{x}
κ1

(x, x|1/ρ{x}κ1
) =

κ2 − κ1

1− κ1

/ρ{x}κ1
+

1− κ2

1− κ1

.

By 1−κ2

1−κ1
∈ (0, 1) and 1/ρ

{x}
κ1 > 1, we know that U

{x}
κ2 (x, x|1/ρ

{x}
κ1 ) > 1. By Lemma 2.1

(iii), we know that 1/ρ
{x}
κ1 > 1/ρ

{x}
κ2 as desired.

Finally, let us show both (i) and (ii) when L = {x1, · · · , xm} with m ≥ 2. In this case

PL
κ2

= (· · · ((PL
κ1
){x1}
κ ){x2}

κ · · · ){xm}
κ with κ = (κ2 − κ1)/(1 − κ1). It is clear that we can

obtain the desired result of (i) by induction. For (ii), by what we have already proved

and Theorem 1.1 (i), we have ρLκ1
< (ρLκ1

){x1}
κ ≤ ρLκ2

as desired. �

Proof of Theorem 1.2 (i). Step 1. We only have to consider the existence part since the
uniqueness is trivial. Define κc(L) := sup{κ ∈ [0, 1) : PL

κ is rho-transient}. As P is rho-
transient, we know κc(L) ∈ [0, 1]. By Lemma 4.1 (i), if κc(L) > 0 and κ ∈ [0, κc(L)), then
PL
κ is rho-transient and ρ = ρLκ ; if κc(L) < 1 and κ ∈ (κc(L), 1), then PL

κ is rho-recurrent.
Also in the latter case, since ρLκ < 1, by Theorem 1.1 (iii) and Lemma 4.1 (ii), we have
that ρLκ increases strictly in κ ∈ [κc(L), 1).

Step 2. Let us prove that κc(L) < 1 and ρLκc(L)
= ρ. For the sake of contradiction,

assume that κc(L) = 1. Then by Step 1, for κ ∈ [0, 1), ρLκ = ρ. As ρ < 1, it contradicts
Theorem 1.1 (iv). Hence κc(L) < 1. Now by Theorem 1.1 (ii) and Step 1, we have
ρLκc(L)

= ρ.

Step 3. Let us show that PL
κc(L)

is rho-recurrent and κc(L) > 0 when L = {x}. By

Lemma 2.4 (i),

U{x}
κ (x, x|1/ρ{x}κ ) = κ/ρ{x}κ + (1− κ)U(x, x|1/ρ{x}κ ), κ ∈ [0, 1).(10)

It can be verified that the right hand side of (10) is continuous in κ by Theorem 1.1
(i), (ii), Corollary 2.2, and the monotone convergence theorem. Hence, by Step 1, 2 and
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Corollary 2.2, P
{x}
κc({x})

is rho-recurrent. Therefore, κc({x}) > 0 because otherwise it would

contradict the condition that P is rho-transient.
Step 4. Let us show that κc(L) > 0 when L = {x1, · · · , xm} with m ≥ 2. Note that

PL
κ = (· · · ((P ){x1}

κ ){x2}
κ · · · ){xm}

κ . By Step 1, 3 and Theorem 1.1 (iii), we know that for
any x ∈ S,

(11) if Q is a rho-transient irreducible transition probability on S with spectral

radius < 1, then so is Q
{x}
κ for some κ ∈ (0, 1).

Now repeating using this, we can verify that (· · · ((P ){x1}
κ1

){x2}
κ2

· · · ){xm}
κm

is rho-transient for
some κ1, κ2, · · · , κm ∈ (0, 1). From Lemma 4.1 (i), we can verify that PL

min{κi:i=1,··· ,m} is

rho-transient. Then κc(L) ≥ min{κi : i = 1, · · · , m} > 0 as desired.
Step 5. Finally, let us show that PL

κc(L)
is rho-recurrent when L = {x1, · · · , xm} with

m ≥ 2. For the sake of contradiction, let us assume that PL
κc(L)

is rho-transient. By Step

2, we know that ρLκc(L)
= ρ < 1. From Steps 1,4 and Theorem 1.1 (iii), we have that (11)

holds with {x} being replaced by L. Applying this to PL
κc(L)

, we know that (PL
κc(L)

)Lκ is

rho-transient for some κ ∈ (0, 1). This contradicts how κc(L) is defined in Step 1. We
are done. �

Proof of Theorem 1.2 (ii). By ρ < 1 and Theorem 1.1 (iii), ρLκ < 1 for every κ ∈ [0, 1).
As P is rho-recurrent, by Lemma 4.1 (i), PL

κ is rho-recurrent for every κ ∈ [0, 1). Now
by Lemma 4.1 (ii), ρLκ < ρLκ′ for every 0 ≤ κ < κ′ < 1. �

Proof of Theorem 1.4 (iii). If L = ∅ , then ρLκ = ρ < ρSκ by (2). If L 6= ∅ and PL
κ is rho-

recurrent, then by taking x ∈ S \L, Theorem 1.2 (ii) and Theorem 1.1 (i), ρLκ < (ρLκ)
{x}
κ ≤

ρSκ . If L 6= ∅ and PL
κ is rho-transient, then, by Lemma 4.1 (i) and (2), ρLκ = ρ < ρSκ . �

5. Proof of Theorem 1.3, Theorem 1.4 (i), (ii) and Theorem 1.2 (iii)

Proof of Theorem 1.3. Step 1. Assuming that P is rho-recurrent, let us prove that PL
κ

is strictly rho-recurrent for every κ ∈ (0, 1). By Lemma 4.1 (i), PL
κ is rho-recurrent.

Suppose that PL
κ is not strictly rho-recurrent. Thus for arbitrarily fixed x ∈ L, we have

r(UL
κ |x, x) = 1/ρLκ .(12)

As κ > 0, there exists κ′, κ1 ∈ (0, κ) such that ((PL\{x}
κ )

{x}
κ′ ){x}κ1

= PL
κ . Let P(1) :=

(PL\{x}
κ )

{x}
κ′ . As P is rho-recurrent, by Lemma 4.1 (i), P(1) is rho-recurrent. Denote by

ρ(1), U(1) and r(U(1)|x, x) the spectral radius, U-function, and the convergence radius of
the U-function of P(1), receptively. Then by (4), Corollary 2.5, (12) and Theorem 1.1 (i),
1/ρ(1) ≤ r(U(1)|x, x) = r(UL

κ |x, x) = 1/ρLκ ≤ 1/ρ(1). Thus we have 1/ρ(1) = 1/ρLκ . Since

PL
κ is rho-recurrent and (P(1))

{x}
κ1

= PL
κ , by Corollary 2.2 and Lemma 2.4 (i),

1 = UL
κ (x, x|1/ρ

L
κ) = (U(1))

{x}
κ1

(x, x|1/ρLκ) = κ1/ρ
L
κ + (1− κ1)U(1)(x, x|1/ρ

L
κ)

where we denote by (U(1))
{x}
κ1

the U-function of the ({x}, κ1)-lazy version of P(1). By ρ < 1
and Theorem 1.1 (iii), 1/ρLκ > 1. Together with κ1 ∈ (0, 1), we have 1 > U(1)(x, x|1/ρ

L
κ) =

U(1)(x, x|1/ρ(1)). Now by Corollary 2.2, P(1) is rho-transient, which is a contradiction.
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Step 2. Suppose that P is rho-transient. By Theorem 1.2 (i), PL
κc(L)

is rho-recurrent.

Replacing P by PL
κc(L)

in Step 1, we can verify that PL
κ is strictly rho-recurrent for

κ ∈ (κc(L), 1).
Step 3. It remains to show that PL

κc(L)
is critically rho-recurrent when P is rho-transient.

As PL
κc(L)

is rho-recurrent (Theorem 1.2 (i)), we assume for the sake of contradiction that

PL
κc(L)

is strictly rho-recurrent. Then by (5), there exists x ∈ S such that

(13) r(UL
κc(L)|x, x) > 1/ρLκc(L).

Case a): PL
κc(L)

(x, x) > 0. In this case, for every κ2 ∈ [0, PL
κc(L)

(x, x)], observe that there

exists transition probability P̃ (κ2) such that (P̃ (κ2))
{x}
κ2

= PL
κc(L). Denote by ρ̃(κ2), Ũ(κ2)

and r(Ũ(κ2)|x, x) the spectral radius, the U-function, and the convergence radius of the
U-function of P̃ (κ2), respectively. By Corollary 2.5, r(Ũ(κ2)|x, x) = r(UL

κc(L)
|x, x). Note

that
P̃ (κ2) = (P̃ (PL

κc(L)(x, x)))
{x}
PL
κc(L)

(x,x)−κ2

1−κ2

.

Therefore, by Theorem 1.1 (ii), 1/ρ̃(κ2) is continuous in κ2. As ρ̃(0) = ρLκc(L)
and (13), we

can choose some κ2 ∈ (0, PL
κc(L)

(x, x)) small enough, such that 1/ρ̃(κ2) < r(Ũ(κ2)|x, x).

Thus by Lemma 2.3, P̃ (κ2) is rho-recurrent. As ρ < 1, by Theorem 1.1 (iii), ρ̃(κ2) < 1.
Then by Lemma 4.1 (ii) and Theorem 1.2 (i),

ρ̃(κ2) < ρLκc(L) = ρ.(14)

This leads to the following contradiction. Observe that P̃ (κ2)(y, y) > 0 for every
y ∈ L (If x 6= y, then P̃ (κ2)(y, y) = PL

κc(L)
(y, y) > 0; If x = y, as κ2 < PL

κc(L)
(x, x),

P̃ (κ2)(y, y) > 0 also holds). Thus there exists κ3 ∈ (0, 1) and transition probability P(2)

such that (P(2))
L
κ3

= P̃ (κ2). Let ρ(2) be the spectral radius of P(2). Hence by Theorem 1.1
(i), we have that

ρ(2) ≤ ρ̃(κ2).(15)

Observe that PL
κc(L) = ((P(2))

L
κ3
){x}κ2

= ((P(2))
{x}
κ2

)Lκ3
. Using Theorem 1.2 (i), we have that

(P(2))
{x}
κ2

is rho-transient and its spectral radius is ρ. Then by Lemma 4.1 (i), ρ(2) = ρ.
Together with (14) and (15) forms a contradiction.

Case b): PL
κc(L)

(x, x) = 0. Fix an arbitrary κ ∈ [0, 1) and define Q := P S
κ . By

Lemma 2.8 and our assumptions about P and PL
κc(L)

, Q is rho-transient and QL
κc(L) =

(PL
κc(L))

S
κ is strictly rho-recurrent. By (2) and Lemma 2.8, we can verify that κc(L) is also

the critical value in Theorem 1.2 (i) with respect to the underlying transition probability
Q and lazy state L. Now since QL

κc(L)(y, y) > 0 holds for every y ∈ S, we can argue

similarly as in case a) and arrive at a contradiction. �

Proof of Theorem 1.4 (i). By Lemma 2.8, if P is rho-transient or critically rho-recurrent,
so is P S

κ . Note that P S
κ = (PL

κ )
S\L
κ . Thus P S

κ is the (S \ L, κ)-lazy version of PL
κ . For

κ ∈ (0, 1), if P S
κ is rho-transient or critically rho-recurrent, then by applying Theorem 1.3
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and Theorem 1.2 (i), we have ρLκ = ρSκ . If P
S
κ is strictly rho-recurrent, then by Theorem 1.3

and Theorem 1.2 (i) and (ii), we have ρLκ < ρSκ . �

Proof of Theorem 1.4 (ii). By Lemma 2.8, P S
κ is strictly rho-recurrent. As #(S \ L) > 0,

we can choose x ∈ S \ L. By Theorem 1.1 (i), ρLκ ≤ ρS\{x}κ . As (P S\{x}
κ ){x}κ = P S

κ , by

Theorem 1.3 and Theorem 1.2 (i) and (ii), ρS\{x}κ < ρSκ . We are done. �

Proof of Theorem 1.2 (iii). Take x ∈ L and 0 ≤ κ1 < κ2 < 1. Firstly assume that PL
κ1

is
rho-recurrent. By ρ < 1 and Theorem 1.1 (iii), we have ρLκ1

< 1. By Lemma 4.1 (ii) and

Theorem 1.1 (i), we have ρLκ1
< (ρLκ1

){x}κ ≤ ρLκ2
where κ := κ2−κ1

1−κ1
. Now assume that PL

κ1
is

rho-transient. By Lemma 2.8, (PL
κ1
)Sκ is also rho-transient. As (PL

κ1
)Sκ = (PL

κ2
)S\Lκ , by (2),

(PL
κ2
)S\Lκ is rho-transient and ρLκ1

< (ρLκ1
)Sκ = (ρLκ2

)S\Lκ . As #(S \ L) < ∞, by Lemma 4.1

(i), (ρLκ2
)S\Lκ = ρLκ2

. We are done. �

References

[1] S. Fried, On the α-lazy version of Markov chains in estimation and testing problems, Stat. Inference
Stoch. Process. (2022), 1–23.

[2] J. Hermon, Maximal Inequalities and Mixing Times, ProQuest LLC, Ann Arbor, MI, 2016. Thesis
(Ph.D.)–University of California, Berkeley. MR3697614

[3] G. Kersting, A note on R-recurrence of Markov chains, Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 35 (1976), no. 4, 355–358. MR407992

[4] D. A. Levin and Y. Peres, Markov chains and mixing times, American Mathematical Society, Prov-
idence, RI, 2017. MR3726904

[5] R. Montenegro and P. Tetali, Mathematical aspects of mixing times in Markov chains, Found. Trends
Theor. Comput. Sci. 1 (2006), no. 3, x+121. MR2341319

[6] E. Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge Tracts in
Mathematics, vol. 83, Cambridge University Press, Cambridge, 1984. MR776608

[7] W. E. Pruitt, Eigenvalues of non-negative matrices, Ann. Math. Statist. 35 (1964), 1797–1800.
MR168579

[8] , Strong ratio limit property for R-recurrent Markov chains, Proc. Amer. Math. Soc. 16
(1965), 196–200. MR174089

[9] D. Vere-Jones, Geometric ergodicity in denumerable Markov chains, Quart. J. Math. Oxford Ser.
(2) 13 (1962), 7–28. MR141160

[10] , Ergodic properties of nonnegative matrices. I, Pacific J. Math. 22 (1967), 361–386.
MR214145

[11] , Ergodic properties of nonnegative matrices. II, Pacific J. Math. 26 (1968), 601–620.
MR236745

[12] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, vol. 138,
Cambridge University Press, Cambridge, 2000. MR1743100

(L. Qian) School of Mathematical Sciences, Peking University, Beijing 100871, China

Email address : ql1995@pku.edu.cn

(Z. Sun) School of Mathematics and Statistics, Beijing Institute of Technology, Bei-

jing 100081, China

Email address : zhenyao.sun@gmail.com


	1. Introduction
	Acknowledgment

	2. Preliminary
	2.1. Markov chains
	2.2. 

	3. 
	4. 
	5. 
	References

