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ON THE SUBCRITICAL SELF-CATALYTIC BRANCHING

BROWNIAN MOTIONS

HAOJIE HOU AND ZHENYAO SUN

Abstract. The self-catalytic branching Brownian motions (SBBM) are extensions of
the classical one-dimensional branching Brownian motions by incorporating pairwise
branchings catalyzed by the intersection local times of the particle pairs. These pro-
cesses naturally arise as the moment duals of certain reaction-diffusion equations per-
turbed by multiplicative space-time white noise. For the subcritical case of the catalytic
branching mechanism, we construct the SBBM allowing an infinite number of initial
particles. Additionally, we establish the coming down from infinity (CDI) property for
these systems and characterize their CDI rates.

1. Introduction

1.1. Motivation. The branching Brownian motion (BBM) is a classical probabilistic
model describing a system of particles that move independently according to Brownian
motions and branch independently into random number of offspring at random times.
This model serves as a cornerstone of modern probability theory, with applications span-
ning partial differential equations, statistical physics, and mathematical biology. Foun-
dational works such as [McK75] and [Bra78] established its dual connection to the FKPP
equation, while a modern overview is provided in [Ber14].

While the classical BBM has been extensively studied, more complex models have
emerged to incorporate intraspecific competition. Examples include the branching coa-
lescing Brownian motions [Shi88], where pairs of particles merge randomly based on their
pairwise intersection local times; the N -BBM [Mai16], which maintains a fixed popu-
lation size through a selection mechanism; the L-BBM [Pai16], where particles farther
than a distance L from the leading particle are deleted; and BBM with decaying mass
[ABBP19], where each particle carries a mass that decays at a rate proportional to its
neighboring mass field.

A further extension of the branching coalescing Brownian motion is the self-catalytic
branching Brownian motion (SBBM), first introduced in [Ath98] and further developed
in [AT00]. In this model, branching events are catalyzed by the intersection local times
of particle pairs, allowing not only the competitive but also the cooperative interactions
between particles. A defining mathematical feature of SBBM is its dual relationship with
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a family of stochastic reaction-diffusion equations, akin to the connection between BBM
and the FKPP equation. This duality provides a comprehensive framework for studying
both SBBMs and their dual SPDEs.

For example, the foundational work [Shi88] employed branching coalescing Brownian
motion to establish the weak uniqueness of the stochastic FKPP equation. This result
was later extended in [AT00], which used SBBM to prove the well-posedness of a family
of stochastic reaction-diffusion equations. Another important contribution is [Tri95],
where local-time coalescing Brownian motions (LCBM) were utilized to demonstrate
the compact interface property of the Wright-Fisher stochastic heat equation (Wright-
Fisher SHE). Later, an advanced small-noise asymptotic analysis of the propagation
speed of the stochastic FKPP equation was established in [MMQ11], which, via duality,
confirmed the Brunet-Derrida conjecture for the branching coalescing Brownian motions.
The duality framework was also employed in [DF16] to demonstrate the convergence
of the biased voter model to the stochastic FKPP equation. The branching coalescing
Brownian motions on metric graphs were utilized in [Fan21] to study the stochastic FKPP
equation on metric graphs. A two-type coalescing Brownian motion system was applied
in [FT23] to derive the quasi-stationary distributions of the stochastic FKPP equation on
the circle. Moreover, the analytical properties of the Wright-Fisher SHE were applied in
[BMS24a] to prove the coming down from infinity (CDI) property of LCBM. Building on
this result, [BMS24b] showed that a system of branching coalescing Brownian motions,
allowing for infinitely many offspring in its branching mechanism, has its total population
reflected from infinity. This phenomenon was further used in [BMS24b] to demonstrate
a regularization-by-noise effect of the Wright-Fisher space-time white noise.

In this article, we continue the study of the SBBM by addressing the following funda-
mental question:

• What happens if there are infinitely many initial particles in an SBBM?

This question was previously explored in [HT05] in the context of LCBM with a com-
prehensive resolution provided in [BMS24a]. We will show that, under the assumptions
that the catalytic branching is subcritical and not parity-preserving, an SBBM model
supporting infinitely many initial particles can be defined as the limit of a sequence of
SBBMs with finitely many initial particles (Theorem 1.2). The law of this limiting pro-
cess is characterized by the initial trace—a key concept introduced in [BMS24a]—and the
branching mechanisms. Additionally, we will establish the CDI result: a necessary and
sufficient condition for the finiteness of the number of particles in any region at any time
(Theorem 1.3 (i) & (ii)); and characterize the corresponding CDI rates in terms of the
particle system’s mean-field equation (Theorem 1.3 (iii), (iv) & (v)); thereby generalizing
the results in [BMS24a]. Our findings reveal an universal behavior: the CDI rates, while
depending on the initial trace and the mean-field effect of the pairwise interaction, are
independent of the precise form of the branching mechanisms.

1.2. Main results. The SBBM model has five parameters:
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(1.1) The initial configuration (xi)
n
i=1, which is a finite list in R. Without loss of gen-

erality, we assume that it is the first n elements of an infinite sequence (xi)
∞
i=1 in

R where n ∈ N is arbitrary.
(1.2) The ordinary branching rate βo ≥ 0;
(1.3) The ordinary offspring law (pk)

∞
k=0, which is a probability measure on Z+, the

space of non-negative integers;
(1.4) The catalytic branching rate 1

2
βc > 0;

(1.5) The catalytic offspring law (qk)
∞
k=0, which is a probability measure on Z+.

The SBBM with the above parameters is a particle system which evolves according to
the following rules (1.6)–(1.9).

(1.6) At time 0, there are n particles located in the real line R whose locations are given
by the initial configuration (xi)

n
i=1.

(1.7) Each particle moves as independent Brownian motions unless one of the following
ordinary branching or catalytic branching occurs.

(1.8) Each particle induces an ordinary branching according to an independent expo-
nential clock of rate βo. When an ordinary branching occurs, the corresponding
particle will be killed and be replaced, at its location of death, by a random
number of new particles. This random number will be independently sampled
according to the ordinary offspring law (pk)

∞
k=0.

(1.9) Each unordered pair of particles induces a catalytic branching according to an
independent exponential clock of rate 1

2
βc with respect to their intersection local

time. When a catalytic branching occurs, the corresponding pair of particles will
both be killed and be replaced, at their mutual location of death, by a random
number of new particles. This random number will be independently sampled
according to the catalytic offspring distribution (qk)

∞
k=0.

Note that, producing one child in an ordinary branching, or two children in a catalytic
branching, does not change the configuration of the particle profile at the occurring time
of that branching. Therefore, we can assume, without loss of generality, that p1 = q2 =
0. We say the ordinary branching is subcritical, critical, or supercritical, according to
∑

k∈Z+
kpk is strictly less than, equals to, or strictly greater than, 1, respectively. We

say that the catalytic branching is subcritical, critical, or supercritical, according to
∑

k∈Z+
kqk is strictly less than, equals to, or strictly greater than, 2, respectively. We

will only be considering the case when the catalytic branching is subcritical, that is, we
assume that

∑

k∈Z+

kqk < 2. (1.10)

For technical reasons, we also assume the existence of the exponential moments of the
two offspring laws:

(1.11) There exists R > 1 such that
∑∞

k=0R
kpk <∞ and

∑∞
k=0R

kqk <∞.

A priori speaking, a particle system following the rules (1.6)–(1.9) can only be defined

up to its explosion time. In order to be more precise, let τ
(n)
0 := 0, and inductively

for every k ∈ Z+, let τ
(n)
k+1 be the earliest occurring time of a branching after the time
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τ
(n)
k (if τ

(n)
k = ∞, or if there is no branching occurring after the time τ

(n)
k < ∞, then

set τ
(n)
k+1 := ∞ for convention.) Thanks to the strong Markov property of the Brownian

motions, one can construct a particle system following the rules (1.6)–(1.9) in the time

interval [0, τ
(n)
∞ ) where τ

(n)
∞ := limk→∞ τ

(n)
k is called the explosion time. (We omit the

details of the construction since it is tedious but straightforward.)
Our first result, whose proof is postponed in Section 2, says that this explosion won’t

really happen.

Proposition 1.1. Almost surely, τ
(n)
∞ = ∞.

For every t ≥ 0, we denote by I
(n)
t the collection of unique labels of the particles that

are alive at time t. (How we label the particles are not crucial for our purpose.) For every

t ≥ 0 and α ∈ I
(n)
t , denote by X

(n),α
t the spatial location of the particle labeled by α at

time t. For every t ≥ 0 and U ∈ B(R), denote by Z(n)
t (U) := |{α ∈ I

(n)
t : X

(n),α
t ∈ U}| the

number of alive particles at time t whose locations belong to U . Here, B(R) represents
the collection of Borel subsets of R, and |A| represents the cardinality of a given set A.

As a convention, at the occurring time of a branching, we always consider the corre-

sponding children as alive but not their parent. By this convention, (Z
(n)
t )t≥0 is a càdlàg

process taking values in N , the space of locally finite integer-valued non-negative mea-
sures on R. We ask N to endow the vague topology, i.e. the coarsest topology such that
the map µ 7→ µ(f) from N to R is continues for every f ∈ Cc(R). Here, Cc(R) represents
the collection of compactly supported continuous functions on R; and for any Borel mea-
sure ν and Borel measurable function g on R, ν(g) represents the integral

∫

g(x)ν(dx)
whenever it is well-defined. It is known that N is Polish [Kal17, Theorem 4.2]. For any
Borel measure ν and non-negative Borel measurable function g on R, let g · ν be the
unique Borel measure on R such that (g · ν)(A) = ν(1Ag) for any Borel subset A of R.

Note that the law of the process (Z
(n)
t )t≥0 induced on D(R+,N ), the space of N -valued

càdlàg paths indexed by R+, is uniquely determined by the parameters listed in (1.1)–

(1.5). Any N -valued càdlàg process who shares the same law as (Z
(n)
t )t≥0 will be therefore

referred to as an SBBM with respect to those parameters.
Notice that Zn

0 :=
∑n

k=1 δxi
where (xi)

n
i=1 is the first n elements of the infinite sequence

(xi)
∞
i=1. We are interested in the asymptotic behavior of the process (Z

(n)
t )t>0 when

n → ∞. If one can show the existence of a limiting process in some sense, then it is
reasonable to regard that limit as an SBBM with infinitely many initial particles. With
this purpose in mind, we introduce several notations. Let T be the collection of the pair
(Λ̃, µ̃) where Λ̃ is a closed subset of R and µ̃ is a Radon measure on Λ̃c = R \ Λ̃. In
particular, define (Λ, µ) ∈ T so that

Λ :=

{

y ∈ R :
∞
∑

i=1

1(y−r,y+r)(xi) = ∞, ∀r > 0

}

(1.12)

and

µ :=
∞
∑

i=1

1Λc(xi)δxi
(1.13)
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where the sequence (xi)
∞
i=1 is given as in (1.1). This pair (Λ, µ) will be referred to as the

initial trace. The support of the initial trace (Λ, µ) is defined by supp(Λ, µ) := Λ∪supp(µ)
where supp(µ) represents the support of the measure µ. For every z ∈ R, we define

Φ(z) := βo

( ∞
∑

k=0

pk(1− z)k − (1− z)

)

(1.14)

and

Ψ(z) := βc

( ∞
∑

k=0

qk(1− z)k − (1− z)2

)

(1.15)

whenever the infinite series on the right hand sides are absolutely summable. The func-
tions Φ and Ψ will be referred to as the ordinary branching mechanism and the catalytic
branching mechanism, respectively.

Let us also assume the following:

(1.16) The catalytic offspring law is not parity-preserving, that is, there exists an odd
number k such that qk > 0.

This assumption is crucial for our establishment of the distributional convergence of

(Z
(n)
t )t>0 as n→ ∞. We will comment on this assumption in Subsubsection 1.3.1.

Theorem 1.2. There exists anN -valued càdlàg Markov process (Zt)t>0 such that (Z
(n)
t )t>0

converges to (Zt)t>0 as n → ∞ in finite dimensional distributions. Moreover, the law of
the process (Zt)t>0 induced on D((0,∞),N ), the space of N -valued càdlàg paths indexed
by (0,∞), is uniquely determined by (Λ, µ), Φ and Ψ.

The proof of Theorem 1.2 is postponed to Section 5.
In light of Theorem 1.2, any N -valued càdlàg process indexed by (0,∞) who shares

the same law as the process (Zt)t>0 in Theorem 1.2 will be referred to as an SBBM with
ordinary branching mechanism Φ, catalytic branching mechanism Ψ, and initial trace
(Λ, µ).

In the rest of this subsection, let (Zt)t>0 be such a process, whose corresponding prob-
ability measure and expectation operator is denoted by P(Λ,µ) and E(Λ,µ), respectively.
Our next result establishes the CDI property, and the corresponding CDI rates, for
this process. Let us denote by C1,2((0,∞) × R) the collection of real-valued functions
(ht(x))t>0,x∈R which is continuously differentiable in t and twice continuously differen-

tiable in x. For every (Λ̃, µ̃) ∈ T , from [LG96, Theorem 4], there exists a unique non-

negative v(Λ̃,µ̃) = (v
(Λ̃,µ̃)
t (x))t>0,x∈R ∈ C1,2((0,∞)×R) satisfying the following equation in

the classical pointwise sense:


























∂tv
(Λ̃,µ̃)
t (x) =

1

2
∂2xv

(Λ̃,µ̃)
t (x)− Ψ′(0+)

2
v
(Λ̃,µ̃)
t (x)2, t > 0, x ∈ R;

{

y ∈ R : ∀r > 0, lim
t↓0

∫ y+r

y−r

v
(Λ̃,µ̃)
t (x)dx = ∞

}

= Λ̃;

lim
t↓0

∫

φ(x)v
(Λ̃,µ̃)
t (x)dx =

∫

φ(x)µ̃(dx), φ ∈ Cc(Λ̃c).

(1.17)



6 H. HOU AND Z. SUN

Here, Cc(Λ̃c) is the collection of compactely supported continuous functions on Λ̃c and

Ψ′(0+) := βc

(

2−
∞
∑

k=0

kqk

)

∈ (0,∞). (1.18)

Equation (1.17) will be referred to as the mean-field equation of the SBBM (Zt)t>0. We
say a set A ⊂ R is bounded if sup{|x| : x ∈ A} <∞. The closure of a set A ⊂ R will be
denoted by Ā.

Theorem 1.3. For arbitrary open interval U ⊂ R:

(i) If U ∩ supp(Λ, µ) is unbounded, then P(Λ,µ)(Zt(U) = +∞, ∀t > 0) = 1.
(ii) If U ∩ supp(Λ, µ) is bounded, then P(Λ,µ)(Zt(U) <∞, ∀t > 0) = 1.

Moreover, when U ∩ supp(Λ, µ) is bounded:

(iii) It holds that E(Λ,µ)[Zt(U)] <∞ for every t > 0.
(iv) If Ū ∩ Λ = ∅, then lim supt↓0 E(Λ,µ)[Zt(U)] <∞.

(v) If Ū ∩ Λ 6= ∅, then limt↓0 E(Λ,µ)[Zt(U)] = ∞ and
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

Zt(U)
t↓0−→ 1, in L1 w.r.t. P(Λ,µ).

The proof of Theorem 1.3 will be given in Section 6. We note here that the CDI rate

t 7→
∫

U

v
(Λ,µ)
t (x)dx, t > 0

while dependent on the initial trace (Λ, µ) and the constant Ψ′(0+), which captures the
mean-field effect of the pairwise interaction, are independent of the precise form of the
branching mechanisms Φ and Ψ.

1.3. Perspectives.

1.3.1. Discussion of assumptions. The subcritical assumption (1.10) on the catalytic
branching is crucial for our results. In the supercritical regime, where

∑

k∈Z+
kqk > 2,

a naive physicist’s mean-field analysis suggests that, with positive probability, an every-
where explosion occurs in finite time, even when the initial number of particles is finite.
This leads to several questions: What is the probability of the explosion? How can the
explosion time and the growth of the population before the explosion be characterized?
What is the behavior of the system conditioned on non-explosion? We refer our readers
to [OP24] where these type of questions are considered for the (non-spatial) branching
processes with pairwise interactions.

The critical case,
∑

k∈Z+
kqk = 2, is perhaps more intriguing. We do not expect the

CDI property to hold in this case. However, under suitable assumptions and rescaling,
we anticipate that the empirical measure of the SBBM with critical catalytic branching
is likely to converge to the multiplicative linear SHE, ∂tz =

∆
2
z+ zξ̇, where ξ̇ denotes the

space-time white noise. Notably, the multiplicative linear SHE is closely related to the
KPZ equation, ∂th = 1

2
∂2xh− 1

2
(∂xh)

2+ ξ̇, for which we refer our readers to [Qua12]. This
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connection invites a further question: Do certain observables of the SBBM with critical
catalytic branching belong to the KPZ universality class?

The non-parity-preserving assumption (1.16) is also crucial for our main results. To
illustrate this, consider the scenario where βo = 0 and q0 = 1, in which (1.16) fails to
hold. The SBBM model with these parameters is referred to as the local-time annihilating
Brownian motions. Using the methods in this article, it can be shown that for any t > 0,

the sequence of N -valued random elements (Z
(n)
t )n∈N is tight. However, we do not expect

the sub-sequential convergence-in-distribution limit to be unique. Instead, we anticipate
that, in addition to the initial trace (Λ, µ), one needs to introduce an initial parity field
to fully characterize all possible sub-sequential limits. We refer interested readers to
[HOV21] for a detailed analysis of such questions in the setting of (instant) annihilating
Brownian motions, where particles annihilate immediately upon contact.

The technical assumption (1.11) is included primarily for convenience, facilitating the
application of the duality result in [AT00, Theorem 1] (see Proposition 3.3 below). We be-
lieve this requirement can be significantly weakened, particularly for ordinary branching
mechanisms. Indeed, when the pairwise interaction is given by the coalescing (q1 = 1),
[BMS24b] extends the duality result of [AT00, Theorem 1] without imposing any moment
conditions on the ordinary branching. Remarkably, their approach even accommodates
cases where ordinary branching can produce infinitely many offspring with positive proba-
bility. Exploring the optimal moment conditions on the branching mechanisms necessary
for our results to hold is an interesting question, but lies beyond the scope of the current
paper.

1.3.2. Coming down from infinity. The CDI property describes how certain observables
in a time-homogeneous dynamical system, starting from an infinite value, become finite
immediately after the system starts to evolve. For example, the solution to the ordinary
differential equation

{

d
dt
x(t) = −x(t)2, t > 0,

x(0) = ∞,

which is explicitly given by x(t) = 1/t, exhibits the CDI property.
Recently, the CDI phenomenon has also been observed across various stochastic dy-

namical systems. A well-known example is Kingman’s coalescent, where every pair of
particles coalesce according to independent exponential clocks [Ald99]. Other examples
include the Λ-coalescent, which generalizes Kingman’s coalescent by allowing simulta-
neous mergers of multiple particles [Sch00], [BBL10]; the spatial Λ-coalescent, where
particles perform continuous-time independent random walks on a lattice, and particles
occupying the same site coalesce according to the usual Λ-coalescent [LS06], [ABL12]; the
branching process with pairwise interactions (BPI), which generalizes the Galton-Watson
process by incorporating pairwise branchings [OP24]; the logistic continuous-state branch-
ing processes (logistic CSBP), which is the continuous-state analog of the BPI where the
interaction is competitive [Lam05], [Fou19]; the non-linear CSBP, which generalizes the
logistic CSBP by allowing more complex density-dependent interactions [LYZ19], [LZ24];
the time-changed Lévy processes, which is closely related to the non-linear CSBP [FLZ21],
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[BDS24]; branching random walk with non-local competition [MP24]; and, last but not
least, the dynamical Φ4

3 model, which formally solves the 3-dimensional singular SPDE

∂tρ =
∆
2
ρ− ρ3 +mρ+ ξ̇, where ξ̇ denotes the space-time white noise [MW17].

1.3.3. The Mean-field equations. The general idea of the MFE is to study the behavior of
a high-dimensional random model using a simpler model that approximates the original
by averaging over degrees of freedom (the number of values that are free to vary). By
solving the MFE, some insight into the behavior of the original system can be obtained
at a lower computational cost.

In the SBBM model, the values that are free to vary include:

(1.19) the movement of the particles;
(1.20) the occurrence time and the number of children of the ordinary branchings;
(1.21) the occurrence time and the number of children of the catalytic branchings.

We call the following equation

∂tṽt(x) =
∆

2
ṽt(x) + Φ′(0+)ṽt(x)−

Ψ′(0+)

2
ṽt(x)

2, (1.22)

subjected to the initial condition similar to that of the equation (1.17), the MFE of the
SBBM model, with the idea that ṽt(x)dx is an approximation of the empirical measure,
and that the three terms on the right-hand side of (1.22) are the mean-field averages of
the three groups of randomness (1.19)–(1.21), respectively. Note that, in Theorem 1.3,
the rate of CDI is given by the solution to the equation (1.17) instead of (1.22), where the
linear term corresponding to the ordinary branching is absent. This is fine, since one can
verify that, uniformly in x ∈ R, vt(x) and ṽt(x) are asymptotically equivalent as t ↓ 0.
By that, we mean limt→0 supx∈R |vt(x)/ṽt(x)− 1| = 0.

1.3.4. Proof Strategy: Duality. In general, we say a Markov process (Xt)t≥0, with state
space X and transition kernel (Pt)t≥0, and a Markov process (Yt)t≥0, with state space
Y and transition kernel (Qt)t≥0, satisfy a dual relationship w.r.t. a given dual function
H : X× Y → R, if

∫

X
H(x, y0)Pt(x0, dx) =

∫

Y
H(x0, y)Qt(y0, dy), x0 ∈ X, y0 ∈ Y.

For example, the one-dimensional standard Brownian motion (Bt)t≥0 and the solution
(ht)t≥0 to the heat equation

∂tht(x) =
∆

2
ht(x), t ≥ 0, x ∈ R,

which can be regarded as a (deterministic) Markov process with state space Cb(R), satisfy
a dual relationship w.r.t. the dual function (B, h) ∈ R × Cb(R) 7→ h(B). Here, Cb(R)
represents the collection of bounded continuous functions on R.

Our proofs of the main theorems rely on a moment duality between the SBBM (Zt)t≥0

and the following stochastic reaction-diffusion equation:

∂tut(x) =
∆

2
ut(x)− Φ(ut(x)) +

√

Ψ(ut(x))Ẇt(x), t ≥ 0, x ∈ R, (1.23)
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where Ẇ is a space-time white noise. The corresponding dual function H is given by

H(u, Z) :=
∏

x∈R
(1− u(x))Z({x}), u ∈ C(R, [0, z∗]), Z ∈ N , (1.24)

where z∗ ∈ [1, 2) is a constant determined by Ψ. This duality first appeared in [Shi88] for
the LCBM and was later generalized for a large family of SBBM in [AT00]. As we will
see in this paper, this duality can be further generalized to incorporate infinitely many
initial particles. We will be more precise about the solution theory of the SPDE (1.23),
the possibly infinite product in (1.24), and the generalized version of this moment dual,
in Sections 3, 4, and 5, respectively. We note here that, if there is no catalytic branching,
i.e., βc = 0, then this duality degenerates to McKean’s duality between the BBM and
the FKPP equations. Furthermore, if there is no ordinary branching, i.e., βo = βc = 0,
this duality degenerates to the trivial duality between Brownian motions and the heat
equation.

Our proof strategy is similar to that of [BMS24a]. The idea is to compare the above
moment dual with a Laplacian dual connecting the MFE (1.22) to a super-Brownian
motion, which is a measure-valued Markov process whose density evolves according to
the SPDE:

∂tũt(x) =
∆

2
ũt(x)− Φ′(0+)ũt(x) +

√

Ψ′(0+)ũt(x)Ẇt(x), t ≥ 0, x ∈ R, (1.25)

w.r.t. the dual function (ṽ, ũ) ∈ C(R)2 7→ exp{−
∫

ṽ(x)ũ(x)dx}. The super-Brownian
motions arise originally as the rescaling limit of the empirical measure of the (near)
critical BBM, and its study has expanded into a major area of research over the last
few decades. For the precise dual connection between the PDE (1.22) and the SPDE
(1.25), see [KS88] and [LG96]. For a modern overview of the super-Brownian motions,
we refer our readers to [Li11]. Note that the coefficients −Φ′(0+)ũt(x) and Ψ′(0+)ũt(x)
in the SPDE (1.25) can be considered as the linearizations of −Φ(ũt(x)) and Ψ(ũt(x)),
respectively. Thus, the behavior of the solutions to the SPDEs (1.23) and (1.25) are
similar at small times provided that they share a small initial value. Because of this,
many properties of the dual SPDE (1.23), including its compact support property among
others, can be obtained via analytical tools such as the weak comparison principle, the
Feynman-Kac formula, Itô’s formula, and the BDG inequality, etc. It is exactly those
analytical results on the dual SPDE (1.23) that can be translated via duality into the
CDI property of the SBBM.

We want to mention here that, even though the ideas are the same, the proofs in
[BMS24a] also rely heavily on the monotonicity of the LCBM, which is not available for
the more general SBBM model. Because of this, the actual proofs are quite different from
that of [BMS24a] at several technical levels. For example, the result of Theorem 1.3 (i)
for the LCBM is proved in [BMS24a] via a straightforward coupling argument. But here,
the proof for the SBBM is much more involved relying on the construction of certain
super-martingales. Another technical thing is that one cannot take the logarithm of the
dual function H in (1.24) as it is done in [BMS24a] for the sake of a better comparison
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between the moment dual and the Laplacian dual. This is because the function H might
take negative values in our general settings.
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2. Non-explosion

Let (xi)
n
i=1, βo, (pk)

∞
k=0, βc and (qk)

∞
k=0 be given as in (1.1)–(1.5). Assume that (1.10)

and (1.11) hold. As it has been mentioned in Subsection 1.2, an SBBM, following the

rules (1.6)–(1.9), is a priori defined only up to its explosion time τ
(n)
∞ .

In this section, we will prove Proposition 1.1 which says that the explosion won’t really
happen. Since we are fixing n, the initial number of particles, we will drop the superscript

“(n)” to simplify the notations. In particular, τ∞ := τ
(n)
∞ , and for every t ∈ [0, τ∞), we

denote by It := I
(n)
t the collection of unique labels of the particles that is alive at time

t. For every t ∈ [0, τ∞) and α ∈ It, denote by Xα
t := X

(n),α
t the spatial location of

the particle labeled by α at time t. For every t ∈ [0, τ∞) and U ∈ B(R), denote by

Zt(U) := Z
(n)
t (U) = |{α ∈ It : X

α
t ∈ U}| the number of alive particles at time t whose

locations belong to U . Also, define

λo := βo

∞
∑

k=0

kpk ∈ [0,∞), λc := βc

∞
∑

k=0

kqk ∈ [0,∞), (2.1)

and

Φ′(0+) := βo

(

1−
∞
∑

k=0

kpk

)

= βo − λo. (2.2)

Let us warm up with a simpler version of Propotision 1.1 by excluding the ordinary
branching. That is, we first consider the case that βo = 0. For every t ∈ [0,∞], define
Nt := |{k ∈ N : τk < t}| to be the total number of branchings in the time interval [0, t).
In particular, N∞ is the total number of branchings that will ever occur in finite time.

Lemma 2.1. Suppose that there is no ordinary branching, i.e. βo = 0, then N∞ < ∞
almost surely. In particular, τ∞ ≥ τN∞+1 = ∞ almost surely.

Proof. In this case, we know that all the branchings are catalytic branchings. It is not
hard to see that the process (Zτk(R))

N∞
k=0 is a Markov chain taking values in Z+ stopped

at the (possibly infinite) random step N∞. Observe from (1.6) and (1.9), the initial value
of this Markov chain is n, and the corresponding transition matrix is

Pi,j := 1{i≥2,j≥i−2}qj+2−i + 1{i=j=1} + 1{i=j=0}, i, j ∈ Z+.
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Since we assumed that q2 = 0, the only two absorbing states of this Markov chain are 0
and 1. From (1.11) and the standard theory of the Markov chains, we can verify that a
Markov chain with the above transition matrix P will be absorbed by its absorbing states
{0, 1} in finite steps almost surely. Now, from the fact that the 1-d Brownian motion
is recurrent, it is not hard to see that (Zτk(R))

N∞

k=0 is exactly a Markov chain with the
transition matrix P stopped upon hitting its absorbing states {0, 1}. Therefore, N∞ <∞
almost surely, as desired. �

In the rest of this section, let us consider the more general case βo ≥ 0. Lemma 2.1
says that the SBBM can be defined up to all finite time if βo = 0. This fact is crucial for
a coupling argument below, where we couple two SBBMs together with one of them not
allowed to have ordinary branching.

Define τ o0 := 0, and inductively for every k ∈ Z+, let τ
o
k+1 be the earliest occurring

time of an ordinary branching after the time τ ok (if τ ok = τ∞, or if τ ok < τ∞ and there is
no ordinary branching occurring in the time interval (τ ok , τ∞), we define τ ok+1 := τ∞ for
convention.) Similarly, denote by (τ ck)k∈Z+ the occuring times of the catalytic branchings.

Lemma 2.2. Almost surely, for every k ∈ Z+, there are only finitely many catalytic
branching occurring in the time interval (τ ok , τ

o
k+1).

Proof. Let us fix an arbitrary k ∈ Z+. On one hand, almost surely on the event {τ ok = τ∞},
the time interval (τ ok , τ

o
k+1) = ∅. So obviously, there is no catalytic branching occurring

in this empty time interval. On the other hand, by the strong Markov property of
the Brownian motions, the process (Zt)t∈[0,τ∞) can be coupled with a process (Z̃t)t≥0,
which is an SBBM without the ordinary branching, such that almost surely on the event
{τ ok < τ∞}, Zt+τok

= Z̃t for every t ∈ [0, τ ok+1 − τ ok ). From Lemma 2.1, we know that

(Z̃t(R))t≥0 jumps only finite many times. So almost surely on the event {τ ok < τ∞},
(Zt(R))t∈(τok ,τok+1)

jumps only finite many times. The desired result now follows. �

Lemma 2.3. For every m ∈ N, almost surely on the event {τ om = τ∞}, τ om = τ∞ = ∞.

Proof. Almost surely on the event {τ om = τ∞}, there exists an N ∈ N such that τ oN <
τ oN+1 = τ∞. Therefore, almost surely on this event, the time interval [0, τ∞) can be
decomposed into finitely many disjoint sub-intervals in the following way:

[0, τ∞) =

N
⋃

k=0

[τ ok , τ
o
k+1). (2.3)

Note from Lemma 2.2 that, almost surely on the event {τ om = τ∞}, there are only finitely
many catalytic branchings occurring in each of the sub-intervals on the right hand side
of (2.3). Therefore, almost surely on the event {τ om = τ∞}, Nτ∞ <∞, i.e. there are only
finitely many branchings occurring before the explosion; from how the explosion time τ∞
is defined, we must have τ∞ = ∞, as desired. �

In the rest of this section, let us fix an arbitrary m ∈ N and define a new process
(Zo,m

t )t≥0 so that almost surely on the event {τ om = τ∞} = {τ om = τ∞ = ∞}, Zo,m
t = Zt
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for every t ∈ [0,∞); and almost surely on the event {τ om < τ∞},

Zo,m
t :=

{

Zt, t ∈ [0, τ om),

Z̃o,m
t−τom

, t ∈ [τ om,∞),

where (Z̃o,m
t )t≥0 is an SBBM without ordinary branching whose initial value is given by

Zτom . Loosely speaking, (Zo,m
t )t≥0 is an SBBM with at most m many ordinary branchings

allowed.

Lemma 2.4. The process (eΦ
′(0+)(t∧τom)Zo,m

t (R))t≥0 is a local super-martingale where
Φ′(0+) is given as in (2.2).

Proof. Consider the following disjoint decomposition of the time interval [0,∞):

[0,∞) =

(

m−1
⋃

k=0

[τ ok , τ
o
k+1)

)

⋃

[τ om,∞). (2.4)

Almost surely, in each of the time intervals on the right hand side of (2.4), we can verify
that the integer-valued process Zo,m

· (R) jumps only finite many times. (To see this, we
apply Lemma 2.2 to the intervals [τ ok , τ

o
k+1) with k ∈ {0, . . . , m − 1}, and apply Lemma

2.1 for the last interval [τ om,∞).) Therefore, Zo,m
· (R) jumps only finite many times in the

full time interval [0,∞).
Now, we have the finite sum decomposition

Zo,m
t (R)− n =

∑

s∈(0,t]∩{τo1 ,...,τom}
∆Zo,m

s (R) +
∑

s∈(0,t]\{τo1 ,...,τom}
∆Zo,m

s (R), t ≥ 0, a.s. (2.5)

where ∆γt := γt − γt− for every t ≥ 0 and real-valued càdlàg process (γt)t≥0. The first
term on the right hand side of (2.5) are the jumps induced by the ordinary branchings,
and the second term are the jumps induced by the catalytic branchings. From how those
jumps are induced, we can find their compensators. In fact, it is not hard to see that the
processes:

Mo,m
t :=

∑

s∈(0,t]∩{τo1 ,...,τom}
∆Zo,m

s (R) + Φ′(0+)

∫ t∧τom

0

Zo,m
s (R)ds, t ≥ 0,

and

M c,m
t :=

∑

s∈(0,t]\{τo1 ,...,τom}
∆Zo,m

s (R) +
1

2
Ψ′(0+)Lo,m

t , t ≥ 0,

are local-martingales (c.f. [BMS24b, Lemma 3.3].) Here, Lo,m
t is the total amount of in-

tersection local times induced by all the unordered pairs of atoms in the process of atomic
measures Zo,m

· up to the time t ≥ 0; and Ψ′(0+) > 0 according to (1.11). Therefore,
almost surely,

Zo,m
t (R)− n =Mo,m

t +M c,m
t − Φ′(0+)

∫ t∧τom

0

Zo,m
s (R)ds− 1

2
Ψ′(0+)Lo,m

t , t ≥ 0.
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Now, almost surely for every t ≥ 0,

eΦ
′(0+)(t∧τom)Zo,m

t (R)− n

=

∫ t

0

eΦ
′(0+)(s∧τom)dZo,m

s (R) + Φ′(0+)

∫ t∧τom

0

Zo,m
s (R)eΦ

′(0+)sds

=

∫ t

0

eΦ
′(0+)(s∧τom)(dMo,m

s + dM c,m
s )− 1

2
Ψ′(0+)

∫ t

0

eΦ
′(0+)(s∧τom)dLo,m

s (R). (2.6)

Note that the first term on the right hand side of (2.6) is a local-martingale, while the
second term is a non-increasing process with locally finite variation. The desired result
follows. �

For every t ≥ 0, define a random variable No,m
t := |{k ∈ N : τ ok < t, k ≤ m}| which is

the total number of ordinary branchings for the process (Zo,m
t )t≥0 in the time interval

[0, t).

Lemma 2.5. For every t ≥ 0, E[No,m
t ] ≤ nβo

∫ t

0
e−Φ′(0+)sds.

Proof. From Lemma 2.4, the process (eΦ
′(0+)(t∧τom)Zo,m

t (R))t≥0 is a local super-martingale.
Let (ρk)k∈N be a sequence of stopping times increasingly converges to ∞ such that
(eΦ

′(0+)(t∧ρk∧τom)Zo,m
t∧ρk(R))t≥0 is a (true) super-martingale for every k ∈ N. By Fatou’s

lemma, for every t ≥ 0,

E
[

eΦ
′(0+)(t∧τom)Zo,m

t (R)
]

= E

[

lim
k↑∞

eΦ
′(0+)(t∧ρk∧τom)Zo,m

t∧ρk(R)

]

≤ lim inf
k→∞

E
[

eΦ
′(0+)(t∧ρk∧τom)Zo,m

t∧ρk(R)
]

≤ n.

In particular, for every t ≥ 0,

E

[
∫ t∧τom

0

Zo,m
s (R)ds

]

≤
∫ t

0

e−Φ′(0+)sE
[

eΦ
′(0+)(s∧τom)Zo,m

s (R)
]

ds ≤ n

∫ t

0

e−Φ′(0+)sds.

Note that the following holds almost surely for every t ≥ 0:

No,m
t ≤ No,m

t+ =
∑

s∈(0,t]∩{τo1 ,...,τom}
1.

From how the ordinary branching are induced, we can find the compensator for the
process (No,m

t+ )t≥0. In fact, it is not hard to see that the process

N̂o,m
t+ := No,m

t+ −
∫ t∧τom

0

βoZ
o,m
s (R)ds, t ≥ 0,

is a (true) martingale (c.f. [BMS24b, Lemma 3.3].) Now we have

E[No,m
t ] ≤ E[No,m

t+ ] = E

[
∫ t∧τom

0

βoZ
o,m
s (R)ds

]

≤ n

∫ t

0

βoe
−Φ′(0+)sds,

as desired. �

We are now ready to present the proof of Proposition 1.1.
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Proof of Proposition 1.1. Note that m is arbitrarily chosen, and by lemma 2.5,

E[|{k ∈ N : τ ok < t, k ≤ m}|] ≤ n

∫ t

0

βoe
−Φ′(0+)sds, t ≥ 0.

Taking m ↑ ∞, we obtain from the monotone convergence theorem that

E[|{k ∈ N : τ ok < t}|] ≤ n

∫ t

0

βoe
−Φ′(0+)sds, t ≥ 0.

In particular, we can define the almost surely finite random variable

No,∞
t := |{k ∈ N : τ ok < t}| <∞, t ≥ 0.

Therefore, almost surely τ∞ ≥ τ ok |k=No,∞
t +1 ≥ t for every t ≥ 0. This implies the desired

result. �

In the rest of this section, we establish a result which will be used later in Section 5.
As it has been explained in Subsection 1.2 that, from Proposition 1.1, (Zt)t≥0 is a càdlàg
process taking values in N . It is also clear that Zt(R) <∞ almost surely for every t ≥ 0.

Proposition 2.6. Suppose that g is a smooth function with bounded derivatives of any
orders. Then the process

Mg
t := eΦ

′(0+)tZt(g)−
1

2

∫ t

0

eΦ
′(0+)sZs(g

′′)ds (2.7)

+
1

2
Ψ′(0+)

∫ t

0

eΦ
′(0+)s

∑

{α,β}⊂Is:α6=β

g(Xα
s )dL

{α,β}
s , t ≥ 0

is a (true) martingale. Here, (L
{α,β}
t )t≥0, the intersection local time between any two

particles labelled by α and β, is defined as the unique continuous process such that

L
{α,β}
t := lim

ǫ→0

1

ǫ

∫ t

0

1{{α,β}⊂Is}∩{|Xα
s −Xβ

s |≤ǫ}ds, a.s., t ≥ 0.

Proof. Define Θo := {τ ok : k ∈ N} ∩ [0,∞), and Θc := {τ ck : k ∈ N} ∩ [0,∞), the set
of the occurring times of the ordinary branchings, and the set of the occurring times
of the catalytic branchings, respectively. From Proposition 1.1, we know that almost
surely for every t ≥ 0, Θo ∩ (0, t] and Θc ∩ (0, t] are finite sets. Noticing that, between
each two consecutive branching times, Z· evolves as the empirical measure of a system
of independent Brownian motions. Therefore, we have the decomposition that almost
surely for every t ≥ 0,

Zt(g)− Z0(g) = m̃g′

t +
1

2

∫ t

0

Zs(g
′′)ds+

∑

s∈Θo∩(0,t]
∆Zs(g) +

∑

s∈Θc∩(0,t]
∆Zs(g)

where m̃g′

· is a continuous local martingale with quadratic variation

〈

m̃g′

·

〉

t
=

∫ t

0

Zs

(

(g′)2
)

ds, t ≥ 0.
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Here, ∆γs := γs − γs− for any s ≥ 0 and real-valued càdlàg process (γt)t≥0. Let U be the
(deterministic) countable set of all possible labels of the particles, and let U2 := {{α, β} ⊂
U : α 6= β} be the set of all the possible unordered pairs of labels. It is standard to see
that

∑

s∈Θo∩(0,t]
∆Zs(g) =

∫

Z+×U×(0,t]

(k − 1)g(Xα
s−)N

o(dk, dα, ds), t ≥ 0, a.s.

and
∑

s∈Θc∩(0,t]
∆Zs(g) =

∫

Z+×U2×(0,t]

(k − 2)g(Xα
s−)N

c(dk, d{α, β}, ds), t ≥ 0, a.s.

where No is a point process on Z+ × U × R+ with compensator

N̂o({k} × {α} × ds) := βopk1{α∈Is}ds, (k, α, s) ∈ Z+ × U × R+,

and N c is a point process on Z+ × U2 × R with compensator

N̂ c({k} × {{α, β}} × ds) :=
1

2
βcqkdL

{α,β}
s , (k, {α, β}, s) ∈ Z+ × U2 × R+,

in the sense of [IW89, Definition 3.1]. Now, by Ito’s formula [IW89, Theorem 5.1], we
have almost surely for every t ≥ 0,

eΦ
′(0+)tZt(g)− Z0(g)

=

∫ t

0

eΦ
′(0+)sdm̃g′

s +
1

2

∫ t

0

eΦ
′(0+)sZs(g

′′)ds+ Φ(0+)

∫ t

0

Zs(g)e
Φ′(0+)sds

+

∫

Z+×U×(0,t]

eΦ
′(0+)s(k − 1)g(Xα

s−)N
o(dk, dα, ds)

+

∫

Z+×U2×(0,t]

eΦ
′(0+)s(k − 2)g(Xα

s−)N
c(dk, d{α, β}, ds).

Observe that (Mg
t )t≥0 is a local martingale, since almost surely for every t ≥ 0,

Mg
t = Z0(g) +mg′

t +mo,g
t +mc,g

t

where

mg′

t :=

∫ t

0

eΦ
′(0+)sdm̃g′

s ,

mo,g
t :=

∫

Z+×U×(0,t]

eΦ
′(0+)s(k − 1)g(Xα

s−)
(

No(dk, dα, ds)− N̂o(dk, dα, ds)
)

,

and

mc,g
t :=

∫

Z+×U2×(0,t]

eΦ
′(0+)s(k − 2)g(Xα

s−)
(

N c(dk, d{α, β}, ds)− N̂ c(dk, d{α, β}, ds)
)

.
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Now, replacing g by 1R in (2.7), from the fact that Ψ′(0+) > 0, it is easy to see that
(eΦ

′(0+)tZt(R))t≥0 is a local super-martingale. Therefore, there exists a sequence of op-
tional times (ρk)k∈N converging increasingly to ∞ such that (eΦ

′(0+)t∧ρkZt∧ρk(R))t≥0 is a
super-martingale for every k ∈ N. By Fatou’s lemma, for every t ≥ 0,

E
[

eΦ
′(0+)tZt(R)

]

≤ lim inf
k→∞

E
[

eΦ
′(0+)t∧ρkZt∧ρk(R)

]

≤ Z0(R) = n. (2.8)

There also exists a sequence of optional times (ρ′k)k∈N converging increasingly to ∞ such
that (M1R

t∧ρ′k
)t≥0 is a martingale for every k ∈ N. Taking expectation on the both sides of

(2.7) while replacing g by 1R and t by t ∧ ρ′k, we obtain that for every k ∈ N and t ≥ 0,

n = E
[

M1R

t∧ρ′k

]

= E
[

eΦ
′(0+)t∧ρ′kZt∧ρ′k(R)

]

+
1

2
Ψ′(0+)E





∫ t∧ρ′k

0

eΦ
′(0+)s

∑

{α,β}⊂Is:α6=β

dL{α,β}
s



.

Taking k ↑ ∞, from the monotone convergence theorem, we have for any t ≥ 0,

E





∫ t

0

eΦ
′(0+)s

∑

{α,β}⊂Is:α6=β

dL{α,β}
s



 ≤ 2n/Ψ′(0+). (2.9)

From (2.8), we can verify that

E

[
∫ t

0

e2Φ
′(0+)sZs

(

(g′)2
)

ds

]

<∞, (2.10)

E

[
∫

Z+×U×(0,t]

∣

∣

∣
eΦ

′(0+)s(k − 1)g(Xα
s−)
∣

∣

∣
N̂o(dk, dα, ds)

]

<∞, (2.11)

and from (2.9) that

E

[
∫

Z+×U2×(0,t]

∣

∣

∣
eΦ

′(0+)s(k − 2)g(Xα
s−)
∣

∣

∣
N̂ c(dk, d{α, β}, ds)

]

<∞. (2.12)

From (2.10), (2.11) and (2.12) we can verify that (mg′

t )t≥0, (m
o,g
t )t≥0 and (mc,g

t )t≥0 are
(true) martingales, respectively. The desired result of this proposition follows. �

3. The dual SPDEs

Let the parameters (xi)
n
i=1, βo, (pk)

∞
k=0, βc and (qk)

∞
k=0 be given as in (1.1)–(1.5). As-

sume that (1.10) and (1.11) hold. Due to Proposition 1.1 (which is proved in the previ-
ous section), an SBBM w.r.t. above parameters can be constructed up to all time. Let

(I
(n)
t )t≥0, (X

(n),α
t )

α∈I(n)
t ,t≥0

and (Z
(n)
t )t≥0 be the corresponding notations for this SBBM,

given as in Subsection 1.2 (right after Proposition 1.1.)
In this section, we discuss the duality relation between this SBBM and the following

1-d stochastic partial differential equation (SPDE)






∂tut(x) =
∆

2
ut(x)− Φ(ut(x)) +

√

Ψ(ut(x))Ẇt,x, t > 0, x ∈ R,

u0(x) = f(x), x ∈ R,
(3.1)



SBBM 17

where Φ and Ψ are defined as in (1.14) and (1.15) respectively, and Ẇ is a space-time
white noise on [0,∞)×R. We need to be careful about the solution concept of the SPDE
(3.1). In particular, we want the random variable ut(x), for every t ≥ 0 and x ∈ R, to
take its values in a subinterval of R such that Ψ(ut(x)) is non-negative. To this end, let
us first analyze the function Ψ(·). Define

z∗ := inf{z ∈ [1, 2] : Ψ(z) = 0}

with the convention that inf ∅ = ∞. The following analytic lemma suggests that the
random field (ut(x))t≥0,x∈R should take its value in [0, z∗]. (We include the proof of this
analytic lemma in the Supplement Material [HS25].)

Lemma 3.1. It can be verified that z∗ ∈ [1, 2], Ψ(z∗) = 0, Φ(z∗) ≥ 0, Φ(0) = Ψ(0) = 0,
and Ψ(z) ≥ 0 for every z ∈ [0, z∗]. Furthmore, if (1.16) holds then z∗ < 2.

We now give the solution concept of SPDE (3.1). Denote by C(R, [0, z∗]) the collec-
tion of [0, z∗]-valued continuous functions on R, equipped with the topology of uniform
convergence on compact sets. Let f , the initial value of the SPDE (3.1), be an arbitrary

element of C(R, [0, z∗]). We say (Ω̃, F̃ , (F̃t)t≥0, P̃f ,W ) is a stochastic basis, if (Ω̃, F̃ , P̃f) is

a complete probability space equipped with an augmented filtration (F̃t)t≥0 in the sense

of [Kal21, Lemma 9.8], and W := (Wt(φ) : t ≥ 0, φ ∈ L2(R)) is an (F̃t)t≥0-adapted
cylindrical Wiener process on L2(R) with covariance structure

Ẽf [Wt(φ)Ws(ψ)] = (t ∧ s)
∫

φ(x)ψ(x)dx, t, s ≥ 0, φ, ψ ∈ L2(R)

in the sense of [DPZ14, Section 4.1.2.]. Given a stochastic basis (Ω̃, F̃ , (F̃t)t≥0, P̃f ,W ),

we say an (F̃t)t≥0-adapted C(R, [0, z∗])-valued continuous process (ut)t≥0 solves the SPDE
(3.1), if u0 = f and for every (t, x) ∈ (0,∞)× R, almost surely

ut(x) =

∫

pt(x− y)f(y)dy −
∫∫ t

0

pt−s(x− y)Φ(us(y))dsdy + (3.2)

∫∫ t

0

pt−s(x− y)
√

Ψ(us(y))W (dsdy).

Here,

pt(x) := e−x2/(2t)/
√
2πt, (t, x) ∈ (0,∞)× R

is the heat kernel, and the third term on the right hand side of (3.2) is the stochastic in-
tegral driven by the space-time white noise (see [Wal86] or equivalently [DPZ14, Section
4.2.1.]). In particular, for any (F̃t)t≥0-predictable L

2(R)-valued process (Ht)t≥0 satis-

fying that almost surely
∫ t

0
‖Hs‖2L2(R)ds < ∞ for every t ≥ 0, the stochastic integral

(
∫∫ t

0
Hs(y)W (dsdy))t≥0 is an (F̃t)t≥0-adapted continuous martingale with quadratic vari-

ation (
∫ t

0
‖Hs‖2L2(R)ds)t≥0. Equation (3.2) is also known as the mild form of the SPDE

(3.1).
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Let us be more precise about the existence of the solutions. In this paper, we will be
only considering the weak existence. By that, we mean the existence of a stochastic ba-
sis (Ω̃, F̃ , (F̃t)t≥0, P̃f ,W ), and an (F̃t)t≥0-adapted C(R, [0, z∗])-valued continuous process
(ut)t≥0 solving the SPDE (3.1).

Let us also be more precise about the uniqueness of the solutions. We will be only
considering the uniqueness in law. We say the uniqueness in law holds for the SPDE
(3.1) if any two solutions sharing the same initial value, but not necessarily the same
stochastic basis, induce the same law on the path space C([0,∞), C(R, [0, z∗])).
Lemma 3.2. The weak existence holds for the SPDE (3.1).

Proof. Thanks to Lemma 3.1, the existence of the SPDE (3.1) is standard. See [Shi94,
Theorem 2.6] and [MMR21, Section 2.1] for example. �

The uniqueness in law for the SPDE (3.1) also holds. To show this, let us first give the
moment duality relation between the SPDE (3.1) and the SBBM.

Proposition 3.3. Suppose that C(R, [0, z∗])-valued continuous process (ut)t≥0 is a solu-

tion to the SPDE (3.1) w.r.t. a stochastic basis (Ω̃, F̃ , (F̃t)t≥0, P̃f ,W ). Then it holds for
every t ≥ 0 that

Ẽf

[

n
∏

i=1

(1− ut(xi))

]

= E





∏

α∈I(n)
t

(

1− f(X
(n),α
t )

)



. (3.3)

Proof. In [AT00], Athreya and Tribe considered the moment dual for the SPDEs

∂twt(x) =
1

2
∆wt(x) + b(wt(x)) +

√

σ(wt(x))ξ̇t,x, t ≥ 0, x ∈ R (3.4)

where ξ̇ is a space-time white noise on [0,∞)× R,

b(z) :=

∞
∑

k=0

bkz
k, z ∈ (−Rb, Rb), (3.5)

and

σ(z) :=

∞
∑

k=0

σkz
k, z ∈ (−Rσ, Rσ). (3.6)

Here, Rb > 0 and Rσ > 0 are the convergence radius for the infinite series on the right
hand sides of (3.5) and (3.6) respectively. To utilize the result in [AT00], let us take

bk :=

{

β0pk, k ∈ Z+ \ {1},
−β0, k = 1,

(3.7)

and

σk :=

{

βcqk, k ∈ Z+ \ {2}
−βc, k = 2.
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In this way, it is clear from (1.11) that Rb > 1 and Rσ > 1. One can also verify that
the [1− z∗, 1]-valued continuous random field (1− ut(x))t≥0,x∈R satisfies the SPDE (3.4).
(Recall that we assumed p1 = q2 = 0 for convention.)

Let us assume for the moment that the ordinary offspring law is subcritical:
∞
∑

k=0

kpk < 1. (3.8)

Define

b̃(z) :=
∑

k∈Z+:z 6=1

|bk|zk−1 = βo

∞
∑

k=0

pkz
k−1, z ∈ (−Rσ, Rσ) \ {0},

and

σ̃(z) =
∑

k∈Z+:z 6=2

|σk|zk−2 = βc

∞
∑

k=0

qkz
k−2, z ∈ (−Rσ, Rσ) \ {0}.

Note that in this case,

b̃′(1) = βo

∞
∑

k=0

pk(k − 1) < 0, (3.9)

and

σ̃′(1) = βc

∞
∑

k=0

qk(k − 2) < 0.

Therefore, the condition (H1) in [AT00, Theorem 1] holds. Moreover, from

b̃(1) =
∑

k∈Z+:z 6=1

|bk| = β0

∞
∑

k=0

pk = β0,

and (3.9), there exists a γ > 0 such that

b̃(eγ) < β0 = −b1. (3.10)

Similarly, there exists a γ′ > 0 such that σ̃(eγ
′
) < −σ2. These give the condition (H2)

in [AT00, Theorem 1]. So, under the assumption (3.8), the desired relation (3.3) is a
corollary of [AT00, Theorem 1].

Note that the condition (3.8) is used to deduce (3.9), and (3.10), which is mainly used
in [AT00] to prevent the explosion of the dual particle system, and to ensure the finiteness
of the expectation of the following term

sup
0≤t≤T

exp

{

(µ+ b1)

∫ t

0

|I(n)s |ds
}

, (3.11)

respectively, where T > 0 and µ :=
∑

k∈Z+,k 6=1 |bk|. See Section 2.2, especially Lemma 3,

of [AT00].
For our case when

∑∞
k=0 kpk ≥ 1, since the explosion for the dual particle system

won’t happen by Proposition 1.1, and that the term (3.11) equals to 1 under our choice
of parameters (3.7), one can still verify the desired duality (3.3) following the steps of
[AT00]. We omit the details. �
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Lemma 3.4. The uniqueness in law holds for the SPDE (3.1).

Proof. This follows from Proposition 3.3 and [AT00, Lemma 1]. �

Recall that the initial value f ∈ C(R, [0, z∗]) of the SPDE (3.1) is chosen arbitrary. Let
Lf represent the law of the unique in law solution u = (ut(x))t≥0,x∈R to the SPDE (3.1)
on C([0,∞), C(R, [0, z∗])). The following lemma is standard, and is known as the weak
comparison principle. (We include its proof in the Supplement Material [HS25].)

Lemma 3.5. Suppose that u(1) = (u
(1)
t (x))t≥0,x∈R and u(2) = (u

(2)
t (x))t≥0,x∈R are two

solutions to the SPDE (3.1) with initial values f (1) and f (2) in C(R, [0, z∗]) respectively.
Suppose that f (1) ≤ f (2) on R. Then u(1) is stochastically dominated by u(2), in the sense
that, there exists a probability kernel Kf(1),f(2) on C([0,∞), C(R, [0, z∗])) such that, for

Lf(1)-a.s. w(1) ∈ C([0,∞), C(R, [0, z∗])) and Kf(1),f(2)(w(1), ·)-a.s. w(2), we have

w
(1)
t (x) ≤ w

(2)
t (x), t ≥ 0, x ∈ R;

and that, for any Borel subset A of C([0,∞), C(R, [0, z∗])),

Lf(2)(A) =

∫

Kf(1),f(2)(w(1), A)Lf(1)(dw(1)).

For our purpose, we sometimes need the initial value of the SPDE (3.1) to be the
non-decreasing limit of a sequence of continuous functions on R.

Proposition 3.6. Let g be a measurable function on R which can be approximated by
the elements of C(R, [0, z∗]) monotonically from below, i.e. there exists a pointwisely non-
decreasing sequence (f (m))∞m=1 in C(R, [0, z∗]) such that f (m)(x) ↑ g(x) for every x ∈ R
as m ↑ ∞. Then, there exists a C(R, [0, z∗])-valued continuous process (ut)t>0 with initial

value u0 := g, on a probability space whose probability measure will be denoted by P̃g, such
that the following two statements hold.

(3.12) For each φ ∈ C∞
c (R), almost surely

∫

ut(x)φ(x)dx =

∫

g(x)φ(x)dx+

∫∫ t

0

us(y)
φ′′(y)

2
dsdy −

∫∫ t

0

Φ(us(y))φ(y)dsdy +M
(φ)
t , t ≥ 0,

where (M
(φ)
t )t≥0 is a (Gt)t≥0-adapted continuous martingale with quadratic varia-

tion
〈

M (φ)
·
〉

t
=

∫∫ t

0

Ψ(us(y))φ(y)
2dsdy, t ≥ 0

and (Gt)t≥0 is the natural filtration of the process (ut)t≥0.
(3.13) For every t ≥ 0, the duality formula (3.3) holds with f being replaced by g.

The proof of the above proposition is standard using the weak comparison principle.
(We include a proof in the Supplement Material [HS25].)
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4. Probabilistic estimates for the dual SPDE

In this section, we give some probabilistic estimates for the dual SPDE (ut)t≥0. Espe-
cially, we give upper/lower bounds for some finite/infinite moments of the random field
1 − ut when the initial value u0 is close to 0. Those bounds will be crucial for the proof
of Theorems 1.2 and 1.3 in the later sections.

Let (xi)
∞
i=1 and n be given as in (1.2). Let (I

(n)
t )t≥0, (X

(n),α
t )

α∈I(n)
t ,t≥0

and (Z
(n)
t )t≥0 be

notations given as in Subsection 1.2 (right after Proposition 1.1) for an SBBM with initial
configuration (xi)

n
i=1, and parameters βo, (pk)

∞
k=0, βc and (qk)

∞
k=0 given as in (1.2)–(1.5).

Assume that (1.10), (1.11) and (1.16) hold. Let (Λ, µ) ∈ T be given as in (1.12) and (1.13).

For every (Λ̃, µ̃) ∈ T , let (v
(Λ̃,µ̃)
t (x))t>0,x∈R ∈ C1,2((0,∞)×R) be the unique non-negative

solution to the MFE (1.17). Let Φ and Ψ be given as in (1.14) and (1.15) respectively.
Let f be a measurable function on R which can be approximated by the elements of
C(R, [0, z∗]) monotonically from below. Let (ut)t>0 be the continuous C(R, [0, z∗])-valued
process given as in Proposition 3.6, with initial value u0 := f , on a probability space
whose probability measure will be denoted by P̃f .

When the initial value u0 is close to 0, the behavior of the random field (ut)t≥0 is
largely related to the linearization of the function Φ and Ψ at 0. The following analytical
lemma helps us with the linearization technique. (We include its proof in the Supplement
Material [HS25].)

Lemma 4.1. Suppose that N ∈ N and (zi)
N
i=1 is a finite list in [0, 2], then

0 ≤ 1−
N
∏

i=1

(1− zi) ≤
N
∑

i=1

zi.

Combining Lemmas 3.1 and 4.1, as well as the facts that (1−z)k ≤ 1 for every z ∈ [0, 2]
and k ∈ N, we see that for all z ∈ [0, z∗] ⊂ [0, 2],

− λoz ≤ Φ′(0+)z ≤ Φ(z) ≤ βoz and 0 ≤ Ψ(z) ≤ 2βcz, (4.1)

where λo is defined in (2.1). Moreover, define

κ(γ̃) := inf
w∈[0,γ̃]

Ψ′(0+)w

Ψ(w)
, γ̃ ∈ [0, 1). (4.2)

It is clear that κ(γ̃) ∈ [0, 1] and limγ̃→0 κ(γ̃) = 1. With those linear bounds of the
functions Φ and Ψ, we have a preliminary upper bound for the first moment of the
random field ut.

Lemma 4.2. For every t > 0 and x ∈ R, it holds that

Ẽf [ut(x)] ≤ e−Φ′(0+)tEx[f(Bt)] ≤ eλotEx[f(Bt)],

where (Bt)t≥0 is a 1-d standard Brownian motion with initial value x under the expectation
operator Ex.
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Proof. Taking expectation in the mild formula (3.2), we see that for every t > 0 and
x ∈ R,

Ẽf [ut(x)] =

∫

pt(x− y)f(y)dy −
∫∫ t

0

pt−s(x− y)Ẽf [Φ(us(y))]dsdy.

By Feynman-Kac formula and (4.1), we conclude that for every t > 0 and x ∈ R,

Ẽf [ut(x)] = Ex

[

exp

{

−
∫ t

0

Ẽf [Φ(ut−s(z))]

Ẽf [ut−s(z)]

∣

∣

∣

∣

z=Bs

ds

}

f(Bt)

]

≤ e−Φ′(0+)tEx[f(Bt)] ≤ eλotEx[f(Bt)]. �

Rather than the first moment, we are more interested in the infinite moments of the
random field 1 − ut, since they arise naturally when one takes n to ∞ in the duality
relation (3.3). To this end, we need to work with the infinite product. For a sequence of
real numbers (zi)i∈N, define

∞
∏

i=1

zi = lim
m→∞

m
∏

i=1

zi

whenever the limit exists. (This definition is standard, see [Rud87, Definition 15.2].)
Recall that z∗ ∈ [0, 2). For every [0, z∗]-valued measurable function u on R, closed subset
Λ̃ of R, and integer-valued locally finite measure µ̃ on Λ̃c, define

∏

x∈Λ̃c

(1− u(x))µ̃({x}) :=

µ̃(Λ̃c)
∏

i=1

(1− u(zi))

where (zi)
µ̃(Λ̃c)
i=1 is a (possibly finite or infinite) sequence in Λ̃c such that µ̃ =

∑µ̃(Λ̃c)
i=1 δzi .

It is clear that this definition does not depends on the particular choice of the sequence

(zi)
µ̃(Λ̃c)
i=1 , since one can verify that

∏

x∈Λ̃c

(1− u(x))µ̃({x}) (4.3)

= 1{µ̃({x∈Λ̃c:u(x)∈(1,z∗]})<∞}(−1)µ̃({x∈Λ̃
c:u(x)∈(1,z∗]}) exp

{
∫

Λ̃c

log(|1− u(x)|)µ̃(dx)
}

.

It is worth to note from the above expression that

(4.4) for every [0, z∗]-valued measurable function u on R,

µ̃ 7→
∏

x∈R
(1− u(x))µ̃({x})

is a measurable map from N to (−1, 1].

The next lemma shows how the infinite moments of the random field 1− ut is related
to the SBBM. It motivates the rest of the results of this section.
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Lemma 4.3. For any t > 0,

lim
n→∞

E





∏

α∈I(n)
t

(

1− f
(

X
(n),α
t

))



 = Ẽf

[ ∞
∏

i=1

(1− ut(xi))

]

= Ẽf

[

1{ut(x)=0,∀x∈Λ}
∏

x∈Λc

(1− ut(x))
µ({x})

]

.

Proof. Thanks to Proposition 3.3, it suffices to consider the limit

lim
n→∞

E





∏

α∈I(n)
t

(

1− f
(

X
(n),α
t

))



 = lim
n→∞

Ẽf

[

n
∏

i=1

(1− ut(xi))

]

. (4.5)

Let us first explain that the infinite product
∞
∏

i=1

(1− ut(xi)) := lim
n→∞

n
∏

i=1

(1− ut(xi))

is a well-defined random variable. Note that ut(xi) takes their values in [0, z∗]. From
Lemma 3.1 and (1.16), we have z∗ < 2. On one hand, if there are infinitely many i such
that ut(xi) ∈ [1, z∗] ⊂ [1, 2), then

∏∞
i=1(1 − ut)(xi) = 0. On the other hand, if there are

only finitely many i such that ut(xi) ∈ [1, z∗], then the infinite product is also well-defined
since the sequence

n
∏

i=1

(1− ut)(xi), n ∈ N

is eventually monotone. Since ut(x) is continuous in x ∈ R, by (4.3), almost surely,
∞
∏

i=1

(1− ut(xi)) = 1{ut(x)=0,∀x∈Λ}
∏

x∈Λc

(1− ut(x))
µ({x}).

Now, by bounded convergence theorem, we can exchange the limit and the expectation
on the right hand side of (4.5), and get the desired result. �

The next lemma says that the infinite moments of the random field 1 − ut can be
estimated by the Laplace transform of ut.

Lemma 4.4. Let ε ∈ (0, 1
2
) and U ⊂ R be an open interval. Suppose that F is a closed

interval containing {xi : i ∈ N}. Define

θ(γ) :=

{

− log(1− γ)/γ, γ ∈ (0, 1),

1, γ = 0.
(4.6)

Then for any t > 0 and γ ∈ (ε, 1),

Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)

]

≥ Ẽε1U

[

exp

{

−θ(γ)
∞
∑

i=1

ut(xi)

}]

− 2P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

,
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and

Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)

]

≤ Ẽε1U

[

exp

{

−
∞
∑

i=1

ut(xi)

}]

+ P̃ε1U

(

sup
s≤t,y∈F

us(y) >
1

2

)

.

We omit the proof of the above lemma because it is similar to that of [BMS24a, Lemma
2.2] except some minor variations to incorporate the fact that one can not take the
logarithm of the random field 1− ut. (We include a detailed proof in the Supplementary
Material [HS25].)

Now, we want to give upper/lower bounds for the Laplace transform of the random
field ut in terms of the solution (vt)t≥0 to the MFE (1.17). The idea is to investigate
Doob’s decomposition of the semimartingale

s 7→ exp

{

−
∫

us(y)vt−s(y)dy

}

on [0, t]. To do this, we need several analytical results for (vt)t≥0. For every (Λ̃, µ̃) ∈ T ,

we use (v̂
(Λ̃,µ̃)
t (x))t>0,x∈R ∈ C1,2((0,∞)×R) to denote the unique non-negative solution of

(1.17) with Ψ′(0+) being replaced by 1. It is easy to check that for all (Λ̃, µ̃) ∈ T and
t > 0, x ∈ R,

v
(Λ̃,µ̃)
t (x) = Ψ′(0+)−1v̂

(Λ̃,Ψ′(0+)µ̃)
t (x). (4.7)

From this and [BMS24a, (2.4)–(2.10)], we can verify that for every (Λ̃, µ̃) ∈ T and
t > 0, x ∈ R,

v
(Λ̃,µ̃)
t (x) ≤ v

(R,0)
t (x) =

2

Ψ′(0+)t
, (4.8)

v
(Λ̃,0)
t (x) = v

(Λ̃+{z},0)
t (x+ z), ∀z ∈ R, (4.9)

v
(Λ̃,0)
t (x) = v

(−Λ̃,0)
t (−x). (4.10)

Here, we used Minkowski’s notation aA + bB := {ax + by : x ∈ A, y ∈ B} for a, b ∈ R
and A,B ⊂ R; and 0 represents the null measure. We also have that

v
((−∞,0],0)
t (|x|) . 1

t

(

1 +
|x|√
t

)

e−
x2

t , (4.11)

and

v
([−k,k],0)
t (x) .

1

t

(

1 +
dist({x}, [−k, k])√

t

)

e−
dist({x},[−k,k])2

2t (4.12)

uniformly for t > 0, x ∈ R and k ≥ 0. Here, dist(A,B) := inf{|a − b| : a ∈ A, b ∈ B}
represents the distance between two given sets A,B ⊂ R. For every t > 0, (Λ̃, µ̃) ∈ T
and closed interval F ⊂ R, define

V(Λ̃,µ̃,F )
t :=

∫ t

0

∫

F c

v(Λ̃,µ̃)r (z)2dzdr. (4.13)

Lemma 4.5. The following statements hold.
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(i) If U is an open interval such that U ∩ {xi : i ∈ N} is bounded, then for every
b ≥ a > 0,

sup
t∈[a,b]

∫

U

v
(Λ,µ)
t (y)dy <∞. (4.14)

(ii) If F is a closed interval containing ∪i∈N(xi − 1, xi + 1), then V(Λ,µ,F )
t < ∞ for

every t > 0. In particular, it holds in this case that limt↓0 V(Λ,µ,F )
t = 0.

(iii) Let

ΛK := [aK ,∞) and FK := [bK ,∞), K ∈ N

be unbounded intervals where (aK)K∈N, (bK)K∈N are sequences in R such that

lim
K→∞

dist(ΛK , F
c
K) = lim

K→∞
(aK − bK)

+ = ∞.

Then for every t > 0, limK→∞ V(ΛK ,0,FK)
t = 0.

Proof. Let us prove (i). Let us fix an arbitrary open interval U such that U ∩{xi : i ∈ N}
is bounded. Let F̃ be the smallest closed interval which contains {xi : i ∈ N}. There are
four different cases to consider.

• If F̃ = R, then it must be the case that U is bounded. In this case, (4.14) follows
from (4.8).

• If F̃ = (−∞, β] for some β ∈ R, then it must be the case that U is the subset of
(α,∞) for some α ∈ R. In this case, it was argued in the proof of [BMS24a, Lemma
2.3] that

∫

U

v
(Λ,µ)
t (y)dy ≤

∫ β

α

v
(R,0)
t (y)dy +

∫ ∞

0

v
((−∞,0],0)
t (y)dy.

The desired (4.14) now follows from (4.8) and (4.11).

• If F̃ = [α,∞) for some α ∈ R then, similarly to the previous case, (4.14) holds.
• If F̃ = [α, β] for some −∞ < α ≤ β < ∞, then it was argued in the proof of
[BMS24a, Lemma 2.3] that

∫

U

v
(Λ,µ)
t (y)dy ≤

∫

v
([α−β

2
,β−α

2
],0)

t (y)dy.

The desired (4.14) now follows from (4.12).

Noticing from (4.7), (ii) of this lemma are essentially given by [BMS24a, Lemma 2.3
and Lemma 3.1 (2)].

We now prove (iii). Without loss of generality, we assume that cK := aK − bK > 1 for
every K ∈ N. By (4.9), (4.10) and (4.11), uniformly for every K ∈ N and t > 0,

V(ΛK ,0,FK)
t =

∫ t

0

∫ bK

−∞
v([aK ,∞),0)
r (z)2dzdr =

∫ t

0

∫ −cK

−∞
v([0,∞),0)
r (z)2dzdr

=

∫ t

0

∫ ∞

cK

v((−∞,0],0)
r (z)2dzdr .

∫ t

0

∫ ∞

cK

z2

r

(

1 +
z√
r

)

e−
z2

r dzdr.
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Therefore, noticing

sup
{

a2(1 + a)e−
a2

2 : a > 0
}

<∞,

we have uniformly for every K ∈ N and t > 0,

V(ΛK ,0,FK)
t .

∫ t

0

∫ ∞

cK

e−
z2

2r dzdr ≤ t

∫ ∞

cK

e−
z2

2t dz.

The desired result of (iii) now follows. �

We now present our upper/lower bounds for certain Laplace transform of ut.

Lemma 4.6. Let F be a closed interval containing ∪i∈N(xi − 1, xi +1) and U be an open
interval. Let 0 ≤ ε ≤ γ < 1. Suppose that the initial value of (ut)t≥0 is f = ε1U . Let θ(γ)
be given as in (4.6). Then for any t > 0,

Ẽε1U

[

exp

{

−θ(γ)
∞
∑

i=1

ut(xi)

}]

(4.15)

≥ exp

{

− εeλot

1 − γ

∫

U

v
(Λ,µ)
t (y)dy

}

− P̃ε1U

(

sup
s≤t,y∈F

us(y) >
γ

2βc
Ψ′(0+)

)

−

εΨ′(0+)e2λot

2(1− γ)
V(Λ,µ,F )
t ,

and

Ẽε1U

[

exp

{

−
∞
∑

i=1

ut(xi)

}]

(4.16)

≤ exp

{

−εκ(γ)e−βot

∫

U

v
(Λ,µ)
t (y)dy

}

+ P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

+ εβce
λotV(Λ,µ,F )

t .

Here, Ψ′(0+), λo, Φ
′(0+) and κ are given as in (1.18), (2.1), (2.2) and (4.2) respectively.

We omit the tedious proof of Lemma 4.6 because it is similar to that of [BMS24a,
Lemma 2.4]. (We refer the diligent readers to the Supplementary Material [HS25] for a
detailed proof.)

In the upper/lower bounds for the Laplace transform of the random field ut in Lemma
4.6 above, except the terms involving the solution (vt)t≥0 to the MFE (1.17), there are
still terms related to the probability of the random field ut itself. In the next lemma, we
explain how these terms can be controlled by the initial data ε1U .

Lemma 4.7. Let U be an open interval and F be a closed interval. Let t > 0 and
γ ∈ (0, 1). Suppose that U ∩ F is bounded. Then

C1(U, F, t, γ) := sup
ε∈(0,γ/2)

1

ε
P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

<∞. (4.17)

In particular, lim supt↓0 C1(U, F, t, γ) < ∞. Moreover, if Ũ is an open interval such that
its intersection with FK := [K,∞) is bounded for every K ∈ R, then we also have that
limK→∞C1(Ũ , FK , t, γ) = 0.
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We omit the tedious proof of the above Lemma, because it is standard, and is similar to
that of [Tri95, Lemma 3.1]. (We refer the diligent readers to the Supplementary Material
[HS25] for a detailed proof.)

As an application of the results in this section, we establish a compact support property
for the random field ut.

Lemma 4.8. Let ε > 0 be small enough so that 4ε < 2−∑∞
k=1 kqk = Ψ′(0+)/βc. Let U

be a bounded open subset of R. Let f , the initial value of the SPDE (3.1), be bounded by
ε1U . Let t > 0 be arbitrary. Then, it holds that

lim
K→+∞

P̃f(ut(x) = 0, ∀x > K) = 1

and

lim
K→+∞

P̃f(ut(x) = 0, ∀x < −K) = 1.

Proof. We only prove the first limit, since the second one follows by symmetry. By the
weak comparison principle, i.e. Lemma 3.5, we can assume f = ε1U without loss of
generality. Let K ≥ 2 be arbitrary. We can construct a sequence (x̂i)i∈N in R such that
{x̂i : i ∈ N} = (K,+∞) ∩ Q. Note that (1.12) and (1.13) holds with (xi)

∞
i=1 and (Λ, µ)

being replaced by (x̂i)
∞
i=1 and (ΛK , 0) where ΛK := [K,+∞). Let γ = γ(ε) < 1 be close

enough to 1 such that 4ε < Ψ′(0+)
βc

γ. In particular, it holds that 0 ≤ ε ≤ γ < 1. Fix

θ = θ(γ) according to (4.6). By Lemma 4.6, with FK := [K/2,+∞), we have

P̃ε1U
(ut(x) = 0, ∀x > K) = Ẽε1U

[

exp

{

−θ(γ)
∞
∑

i=1

ut(x̂i)

}]

(4.18)

≥ exp

{

− εeλot

1 − γ

∫

U

v
(ΛK ,0)
t (y)dy

}

− P̃ε1U

(

sup
s≤t,y∈FK

us(y) >
γ

2βc
Ψ′(0+)

)

−

εΨ′(0+)e2λot

2(1− γ)
V(ΛK ,0,FK)
t .

By (4.9) and (4.11), since U is bounded, we have that

lim
K→+∞

exp

{

− εeλot

1− γ

∫

U

v
(ΛK ,0)
t (y)dy

}

= 1.

Also, by Lemma 4.5 (iii), we see that

lim
K→+∞

V(ΛK ,0,FK)
t = 0.

Therefore, it remains to prove that the second term on the right-hand side of (4.18)
converges to 0 as K → ∞. From ε ∈ (0, γ

4βc
Ψ′(0+)) and Lemma 4.7, the absolute value

of this term is bounded by εC1(U, FK , t,
γ
2βc

Ψ′(0+))
K→∞−→ 0. We arrive at the desired

result. �
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5. Existence: Proof of Theorem 1.2

In this section, we will prove Theorem 1.2.

Let (xi)
∞
i=1 and n be given as in (1.2). Let (I

(n)
t )t≥0, (X

(n),α
t )

α∈I(n)
t ,t≥0

and (Z
(n)
t )t≥0 be

notations given as in Subsection 1.2 (right after Proposition 1.1) for an SBBM w.r.t. ini-
tial configuration (xi)

n
i=1, ordinary branching rate βo, ordinary branching law (pk)

∞
k=0,

catalytic branching rate βc, and catalytic branching law (qk)
∞
k=0 given as in (1.2)–(1.5).

Assume that (1.10), (1.11), and (1.16) hold. Let (Λ, µ) ∈ T be given as in (1.12) and

(1.13). For every (Λ̃, µ̃) ∈ T , let (v
(Λ̃,µ̃)
t (x))t>0,x∈R ∈ C1,2((0,∞) × R) be the unique

non-negative solution to the equation (1.17). Let Φ and Ψ be given as in (1.14) and
(1.15) respectively. Let f be a measurable function on R which can be approximated
by the elements of C(R, [0, z∗]) monotonically from below. Let (ut)t>0 be the continuous
C(R, [0, z∗])-valued process given as in Proposition 3.6, with initial value u0 = f , on a

probability space whose probability measure will be denoted by P̃f .
The proof of Theorem 1.2 will be divided into three parts. In Subsection 5.1, we will

show the convergence in finite-dimensional distributions of (Z
(n)
t )t>0 as n → ∞ to a

Markov process (Z̃t)t>0. In Subsection 5.2, we will give several preliminary results on

the process (Z̃t)t>0, in particular, showing that it is stochastically right-continuous. In
Subsection 5.3, we will show that (Z̃t)t>0 has a càdlàg modification (Zt)t>0.

5.1. Convergence in finite dimensional distributions. In this subsection, we will

show the convergence in finite-dimensional distributions of (Z
(n)
t ) as n → ∞. Let us

start with an analytic lemma which gives the continuity of certain functions on N . (We
include its proof in the Supplement Material [HS25].)

Lemma 5.1. Suppose that νm converges to ν in N when m → ∞. Let g ∈ C(R, [−1, 1])
satisfy that 1− g has compact support. Then

lim
m→∞

∏

z∈R
g(z)νm({z}) =

∏

z∈R
g(z)ν({z}). (5.1)

Corollary 5.2. If f has compact support and is bounded by Ψ′(0+)/(4βc), then for each
t > 0,

lim
m→∞

Ẽf

[

∏

z∈R
(1− ut(z))

νm({z})
]

= Ẽf

[

∏

z∈R
(1− ut(z))

ν({z})
]

. (5.2)

Proof. For each K > 0 and t > 0, it holds that
∣

∣

∣

∣

∣

Ẽf

[

∏

z∈R
(1− ut(z))

νm({z})
]

− Ẽf

[

∏

z∈R
(1− ut(z))

ν({z})
]
∣

∣

∣

∣

∣

≤ Ẽf

[
∣

∣

∣

∣

∣

∏

z∈R
(1− ut(z))

νm({z}) −
∏

z∈R
(1− ut(z))

ν({z})
∣

∣

∣

∣

∣

1{ut(x)=0,∀|x|>K}

]

+ 2P̃f(∃x s.t. |x| > K, ut(x) > 0).
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From Lemma 5.1 and the bounded convergence theorem, we know that the first term on
the right hand side converges to 0 when m→ ∞. Now from Lemma 4.8, taking m→ ∞
first and then K → ∞, we get (5.2) as desired. �

In the next proposition, we show that (Z
(n)
t )t>0 converges to some Markov process in

finite dimensional distributions.

Proposition 5.3. There exists an N -valued time-homogeneous Markov process (Z̃t)t>0

such that (Z
(n)
t )t>0 converges to (Z̃t)t>0 as n → ∞ in finite dimensional distributions.

The entrance law (P
(Λ,µ)
t )t>0 of (Z̃t)t>0 are characterized so that, for any non-negative

continuous function g on R with compact support and t > 0,
∫

e−ν̃(g)
P

(Λ,µ)
t (dν̃) = Ẽ1−e−g

[ ∞
∏

i=1

(1− ut(xi))

]

= Ẽ1−e−g

[

1{ut(x)=0,∀x∈Λ}
∏

x∈Λc

(1− ut(x))
µ({x})

]

. (5.3)

The transition kernels (Qt)t≥0 of (Z̃t)t>0 are characterized so that, for any non-negative
continuous function g on R with compact support, t ≥ 0, and ν ∈ N ,

∫

e−ν̃(g)
Qt(ν, dν̃) = Ẽ1−e−g

[

∏

z∈R
(1− ut(z))

ν({z})
]

. (5.4)

In particular, the finite dimensional distributions of (Z̃t)t>0 is determined by (Λ, µ), Φ,
and Ψ.

Remark 5.4. Comparing (5.3) and (5.4), we have P
(∅,ν)
t = Qt(ν, ·) for any ν ∈ N and

t > 0.

Proof. Step 1. Let us fix an arbitrary t > 0 and show that the N -valued random element

Z
(n)
t converges in distribution to some N -valued random element Ẑt as n → ∞. Fix

an arbitrary non-negative continuous function g on R with compact support. From
[Kal17, Corollary 4.14], it suffices to show the convergence in distribution of the random

variable Z
(n)
t (g) as n→ ∞. By Lemma 4.3 with f := 1− e−θg, we see that the following

limit exists for each θ ≥ 0:

lim
n→∞

E
[

e−θZ
(n)
t (g)

]

= lim
n→∞

E





∏

α∈I(n)
t

e−θg(X
(n),α
t )



 (5.5)

= Ẽ1−e−θg

[ ∞
∏

i=1

(1− ut(xi))

]

= Ẽ1−e−θg

[

1{ut(x)=0,∀x∈Λ}
∏

x∈Λc

(1− ut(x))
µ({x})

]

.

To show the weak convergence of Z
(n)
t (g), by Lévy’s continuity theorem, it suffices to prove

that limθ→0 limn→∞ E[e−θZ
(n)
t (g)] = 1. Recall from (1.11) and (1.18) that Ψ′(0+)/βc =
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2−∑∞
k=0 kqk ∈ (0, 2). Let θ > 0 be small enough so that

0 < θ′ := 1− e−θ‖g‖∞ <
Ψ′(0+)

8βc
≤ 1

4
.

Let U be a bounded open interval containing the support of g, and F be a closed interval
containing ∪i∈N(xi − 1, x+ 1). By Lemma 4.3, we have that

lim
n→∞

E
[

e−θZ
(n)
t (g)

]

≥ lim
n→∞

E
[

(1− θ′)Z
(n)
t (U)

]

= Ẽθ′1U

[ ∞
∏

i=1

(1− ut)(xi)

]

.

From Lemmas 4.4 and 4.6, for γ = 1/2,

Ẽθ′1U

[ ∞
∏

i=1

(1− ut)(xi)

]

(5.6)

≥ exp

{

−θ
′eλot

1− γ

∫

U

v
(Λ,µ)
t (y)dy

}

− P̃θ′1U

(

sup
s≤t,y∈F

us(y) >
γ

2βc
Ψ′(0+)

)

−

θ′Ψ′(0+)e2λot

2(1− γ)
V(Λ,µ,F )
t − 2P̃θ′1U

(

sup
s≤t,y∈F

us(y) > γ

)

.

Note that θ′ → 0 as θ → 0. By Lemma 4.7, we have

P̃θ′1U

(

sup
s≤t,y∈F

us(y) >
γ

2βc
Ψ′(0+)

)

≤ θ′C1

(

U, F, t,
γ

2βc
Ψ′(0+)

)

θ→0−−→ 0,

and

P̃θ′1U

(

sup
s≤t,y∈F

us(y) > γ

)

≤ θ′C1(U, F, t, γ)
θ→0−−→ 0.

Here, C1(·, ·, ·, ·) is the constant given as in Lemma 4.7. From Lemma 4.5, we have

V(Λ,µ,F )
t <∞. Therefore, the third term on the right hand side of (5.6) converges to 0 as
θ → 0. Now, we have

lim inf
θ→0

lim
n→∞

E
[

e−θZ
(n)
t (g)

]

≥ lim inf
θ→0

Ẽθ′1U

[ ∞
∏

i=1

(1− ut)(xi)

]

≥ lim
θ→0

exp

{

−θ
′eλot

1− γ

∫

U

v
(Λ,µ)
t (y)dy

}

= 1,

as desired for this step. Moreover, we can verify from (5.5) that the distribution of Z̃t,

denoted by P
(Λ,µ)
t , satisfies (5.3). In fact, we know that P

(Λ,µ)
t is the unique probability

measure on N satisfying (5.3), thanks to [Kal17, Theorem 4.11 (iii)].
Step 2. Fixing integer m > 1 and real numbers 0 < t1 < · · · < tm, we will show in this

step the convergence in distribution of the Nm-valued random element (Z
(n)
t1 , . . . , Z

(n)
tm ) as

n→ ∞. From Step 1, for each k ∈ {1, . . . , m}, the family of N -valued random elements

{Z(n)
tk

: n ∈ N} is tight. From this, it is easy to see that the family of Nm-valued random

elements {(Z(n)
t1 , . . . , Z

(n)
tm ) : n ∈ N} is also tight, and therefore, by [Kal21, Theorem 23.2],

is relatively compact in distribution. This implies the existence of a strictly increasing
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sequence (nk)
∞
k=1 in N satisfying that the Nm-valued random element (Z

(nk)
t1 , . . . , Z

(nk)
tm )

converges in distribution as k → ∞. Let the Nm-valued random element (Ẑt1 , . . . , Ẑtm)
be the corresponding subsequential convergence in distribution limit. We will show that

(Ẑt1 , . . . , Ẑtm) is also the convergence in distribution limit of (Z
(n)
t1 , . . . , Z

(n)
tm ) as n → ∞.

To do this, by [Kal17, Theorem 4.11 (iii)], it suffices to show that

lim
n→∞

E
[

e−
∑m

i=1 Z
(n)
ti

(gi)
]

exists in R, (5.7)

where, for each i ∈ {1, . . . , m}, gi is an arbitrarily chosen non-negative continuous func-
tion on R with compact support satisfying that ‖1− e−gi‖∞ < Ψ′(0+)/(4βc). In fact, if
(5.7) holds, it must be the case that

E
[

e−
∑m

i=1 Ẑti(gi)
]

= lim
n→∞

E
[

e−
∑m

i=1 Z
(n)
ti

(gi)
]

. (5.8)

By the principle of induction, we can assume without loss of generality that (5.7) holds

with m being replaced by m − 1. In particular, we can assume that (Ẑt1 , . . . , Ẑtm−1) is

the convergence in distribution limit of (Z
(n)
t1 , . . . , Z

(n)
tm−1

) as n → ∞. By Skorokhod’s
representation theorem, we can further assume (in this step) without loss of generality

that {(Z(n)
t1 , . . . , Z

(n)
tm−1

) : n ∈ N} and (Ẑt1 , . . . , Ẑtm−1) are coupled in one probability space

so that (Z
(n)
t1 , . . . , Z

(n)
tm−1

) converges almost surely to (Ẑt1 , . . . , Ẑtm−1) when n→ ∞.
For every t > 0 and h ∈ C(R, [0,Ψ′(0+)/(4βc)]) with compact support, define

Hh
t (ν) := Ẽh

[

∏

z∈R
(1− ut(z))

ν({z})
]

, ν ∈ N , (5.9)

which is a bounded continuous function on N , according to Corollary 5.2. From Propo-

sition 3.3 and the Markov property of the process (Z
(n)
t )t≥0, almost surely

E
[

e−
∑m

i=1 Z
(n)
ti

(gi)
∣

∣

∣
(Z(n)

s )s≤tm−1

]

= e−
∑m−1

i=1 Z
(n)
ti

(gi)H1−e−gm

tm−tm−1
(Z

(n)
tm−1

).

Therefore, by the dominated convergence theorem, we have

lim
n→∞

E
[

e−
∑m

i=1 Z
(n)
ti

(gi)
]

= lim
n→∞

E
[

e−
∑m−1

i=1 Z
(n)
ti

(gi)H1−e−gm

tm−tm−1
(Z

(n)
tm−1

)
]

(5.10)

= E
[

e−
∑m−1

i=1 Ẑti(gi)H1−e−gm

tm−tm−1
(Ẑtm−1)

]

.

This implies (5.7), and therefore, the desired result of this step.
Step 3. For every integer m ∈ N and real numbers 0 < t1 < · · · < tm, denote

by P
(Λ,µ)
t1,...,tm the distribution of the Nm-valued random elements (Ẑt1 , . . . , Ẑtm) given as

in the previous steps. It is straightforward to verify that the family of distributions

(P
(Λ,µ)
t1,...,tm)m∈N,0<t1<···<tm is projective in the sense of [Kal21, p. 179]. Recall that N is

Polish. Therefore, by Kolmogorov’s extension theorem (see [Kal21, Theorem 8.23] for
example), there exists an N -valued process (Z̃t)t>0 such that, for every integer m ∈ N
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and real numbers 0 < t1 < · · · < tm, the distribution of (Z̃t1 , . . . , Z̃tm) is given by P
(Λ,µ)
t1,...,tm .

Moreover, from (5.8) and (5.10), we have

E
[

e−
∑m

i=1 Z̃ti
(gi)
]

= E
[

e−
∑m−1

i=1 Z̃ti
(gi)H1−e−gm

tm−tm−1
(Z̃tm−1)

]

(5.11)

for every m ∈ {2, 3, . . . }, 0 < t1 < · · · < tm and testing functions (gi)
m
i=1 given as in Step

2.
Step 4. Note that, the result in Step 1 essentially implies that, for any t > 0, closed

subset Λ̃ of R, and locally finite integer-valued measure µ̃ on Λ̃c, there exists a unique
probability measure P̃ on N , such that, for any non-negative continuous function g on
R with compact support,

∫

e−ν̃(g)
P̃(dν̃) = Ẽ1−e−g



1{ut(x)=0,∀x∈Λ̃}
∏

x∈Λ̃c

(1− ut(x))
µ̃({x})



.

For every t > 0 and ν ∈ N , by taking Λ̃ = ∅ and µ̃ = ν in the above statement, we
know that there exists a unique probability measure Qt(ν, ·) on N such that (5.4) holds.
(When t = 0, we set Qt(ν, ·) = δν .)

It can be verified that (Qt)t≥0 is a family of kernels onN . In fact, fixing t > 0, denote by
H the collection of bounded measurable function F on N such that ν 7→

∫

F (ν̃)Qt(ν, dν̃)
is a measurable map from N to R. It is clear that H is a monotone vector space (MVS)
in the sense of [Sha88, Appendix A0]. Denote by K the collection of bounded measurable
map ν̃ 7→ e−ν̃(g) from N to R where g is a non-negative continuous function on R with
compact support. Now, from (4.4), (5.4) and [Kal21, Lemma 1.28], It can been argued
that, for every F ∈ K, ν 7→

∫

F (ν̃)Qt(ν, dν̃) is a measurable map from N to R. In
other word, K ⊂ H. Also, note that K is a multiplicative class of bounded real functions
on N in the sense of [Sha88, Appendix A0]. It is also clear that σ(K) is the Borel σ-
field BN of N generated by the vague topology. So from [Sha88, Theorem A0.6], we
have Bb(N ) ⊂ H. Here, Bb(N ) represents the collection of bounded Borel measurable
functions on N . This proves that Qt is a kernel from N to itself.

Step 5. Let (Qt)t≥0 be the family of probability kernels given as in Step 4. For every
m ∈ {2, 3, . . . }, 0 < t1 < · · · < tm and testing functions (gi)

m
i=1 chosen as in Step 2, from

(5.11) we have

E
[

e−
∑m

i=1 Z̃ti(gi)
]

= E

[

e−
∑m−1

i=1 Z̃ti(gi)

∫

e−ν̃(gm)
Qtm−tm−1(Z̃tm−1 , dν̃)

]

.

From this, it is clear that (Z̃t)t>0 is a time-homogeneous Markov process with transi-
tion kernels (Qt)t≥0. The entrance laws of this Markov process, i.e. its one-dimensional

distributions (P
(Λ,µ)
t )t>0, was characterized already in Step 1 through (5.3). We are

done. �

5.2. Stochastic right continuity. In this subsection, we are going to give several pre-
liminary results on the Markov process (Z̃t)t>0 given as in Proposition 5.3. Without
loss of generality, we assume that (Z̃t)t≥0 is the canonical process defined on the path
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space Ω := N (0,∞), which is the collection of maps from (0,∞) to N . More precisely,

Z̃t(ω) = ω(t) for every ω ∈ Ω and t > 0. Let F Z̃ and (F Z̃
t )t>0 be the natural σ-field, and

the natural filtration, generated by the process (Z̃t)t>0. The corresponding probability
measure, and the expectation operator, will be denoted by P(Λ,µ), and E(Λ,µ), respectively.

To show the existence of a càdlàg modification of a process, one typically needs in-
formation about its finite dimensional distributions. Equations (5.3) and (5.4) can be
regarded as the duality formulas between the process (Z̃t)t>0 and the SPDE (3.1), which

essentially characterizes the finite dimensional distributions of (Z̃t)t>0. Note that they
hold under the condition that the initial value of the dual SPDE (ut)t≥0 is a non-negative,
compactly supported, continuous function bounded by 1. This condition will be relaxed
in Proposition 5.6 and Corollary 5.7 below where the following analytical lemma will play
a role. (The proof of this analytic lemma is included in the Supplement Material [HS25].)

Lemma 5.5. For each i ∈ N, let (z(m)
i )m∈N be an increasing sequence in [0, z∗] whose

limit is denoted by zi ∈ [0, z∗]. Then

lim
m→∞

∞
∏

i=1

(

1− z
(m)
i

)

=

∞
∏

i=1

(1− zi). (5.12)

Proposition 5.6. Let t > 0. It holds that

∫

(

∏

x∈R
(1− f(x))ν({x})

)

P
(Λ,µ)
t (dν) = Ẽf

[ ∞
∏

i=1

(1− ut(xi))

]

.

Proof. Step 1. Let us first assume that f is a continuous [0, z∗]-valued function on R with
compact support. From Lemma 5.1, we known that the map ν 7→ ∏

x∈R(1 − f(x))ν({x})

from N to [−1, 1] is continuous. Now, from Proposition 5.3 and Lemma 4.3, we have

E(Λ,µ)

[

∏

x∈R
(1− f(x))Z̃t({x})

]

= lim
n→∞

E

[

∏

x∈R
(1− f(x))Z

(n)
t ({x})

]

= Ẽf

[ ∞
∏

i=1

(1− ut(xi))

]

as desired.
Step 2. Let us now assume that f is a [0, z∗]-valued measurable function on R which

can be approximated by a sequence (f̃m)m∈N in C(R, [0, z∗]) monotonically from below.
Let (g̃m)m∈N be a sequence of continuous functions on R with compact support which
approximates 1R from below. Then it is clear that f can be approximated from below
by (fm)i∈N := (f̃mg̃m)m∈N, a sequence of [0, z∗]-valued continuous functions on R with
compact support. Without loss of generality, it is standard (see the proof of Proposition
3.6 in the Supplementary Material [HS25]) to assume the existence of a sequence of
C([0,∞), C(R, [0, z∗]))-valued random element (u(m))m∈N such that

• for each m ∈ N, u(m) has the law Lfm ;
• almost surely, u(m) ≤ u(m+1) on [0,∞)× R for each m ∈ N; and that
• almost surely, for almost every (s, y) ∈ (0,∞) × R w.r.t. the Lebesgue measure,

u
(m)
s (y) ↑ us(y).
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From what we have proved in Step 1, we have

E(Λ,µ)

[

∏

x∈R
(1− fm(x))

Z̃t({x})
]

= Ẽf

[ ∞
∏

i=1

(

1− u
(m)
t (xi)

)

]

.

Takingm ↑ ∞, from Lemma 5.5 and bounded convergence theorem, we obtain the desired
result. �

From Proposition 5.6 and Remark 5.4, one can verify the following result which gen-
eralizes (5.4).

Corollary 5.7. Let t > 0 and ν ∈ N . It holds that
∫

(

∏

x∈R
(1− f(x))ν̃({x})

)

Qt(ν, dν̃) = Ẽf

[

∏

x∈R
(1− ut(x))

ν({x})
]

.

As an application of Proposition 5.6, we can control the expected number of particles
in any given interval at any given time in the following proposition. This result will be
needed later when we show that (Z̃t)t>0 has a càdlàg version.

Proposition 5.8. Suppose that F is a closed interval containing ∪i∈N(xi − 1, xi + 1)
and that U is an open interval. Suppose that U ∩ F is bounded. Let γ ∈ (0, 1) and
γ0 = γΨ′(0+)/(2βc). Then for every t > 0,

E(Λ,µ)

[

Z̃t(U)
]

≤ eλot

1− γ

(
∫

U

v
(Λ,µ)
t (y)dy +

Ψ′(0+)eλot

2
V(Λ,µ,F )
t

)

+ 3C1(U, F, t, γ0) <∞.

Here, C1(·, ·, ·, ·) is the constant given as in Lemma 4.7.

We omit the proof of the above proposition because it is similar to that of [BMS24a,
Proposition 2.6]. (A detailed proof can be found in the Supplementary Material [HS25].)

Corollary 5.9. Suppose that g is a bounded non-negative continuous function whose
support is contained in an open interval U . Suppose that U ∩ F is bounded where F is a
closed interval containing ∪∞

i=1(xi − 1, xi + 1). Then for any b ≥ a > 0,

sup
t∈[a,b]

E(Λ,µ)

[

Z̃t(g)
]

<∞.

Proof. Fix arbitrary b ≥ a > 0. Let γ ∈ (0, 1) and γ0 = γΨ′(0+)/(2βc). From Proposition
5.8, for every t > 0,

E(Λ,µ)

[

Z̃t(g)
]

≤ ‖g‖∞E(Λ,µ)

[

Z̃t(U)
]

≤ ‖g‖∞
eλot

1− γ

(
∫

U

v
(Λ,µ)
t (y)dy +

Ψ′(0+)eλot

2
V(Λ,µ,R)
t

)

+ 3‖g‖∞C1(U,R, t, γ0).

From Lemma 4.5 (i),

sup
t∈[a,b]

∫

U

v
(Λ,µ)
t (y)dy <∞;
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from Lemma 4.5 (ii), t 7→ V(Λ,µ,R)
t is a finite increasing function on (0,∞); from Lemma

4.7, t 7→ C1(U,R, t, γ0) is a finite increasing function on (0,∞). Therefore, for every
b ≥ t ≥ a > 0, we have

sup
t∈[a,b]

E(Λ,µ)

[

Z̃t(g)
]

≤ ‖g‖∞
eλob

1− γ

(

sup
t∈[a,b]

∫

U

v
(Λ,µ)
t (y)dy +

Ψ′(0+)eλob

2
V(Λ,µ,R)
b

)

+ 3‖g‖∞C1(U,R, b, γ0)

<∞
as desired for this lemma. �

As mentioned earlier, we want to show that (Z̃t)t>0 has a càdlàg modification. The
idea is to consider, for each g ∈ C∞

c (R), the following “super-martingale”:

eΦ
′(0+)tZ̃t(g)−

1

2

∫ t

0

eΦ
′(0+)sZ̃s(g)ds, t ≥ 0. (5.13)

Two technical problems arise:

(5.14) To utilize the regularization theory of martingales/super-martingales, e.g. [Kal21,
Theorem 9.28], one typically needs to work with a filtration satisfying the usual

hypothesis rather than the natural filtration (F Z̃
t )t>0.

(5.15) The integral term on the right hand side of (5.13) is not well-defined yet, because

it is not clear whether Z̃s(g) is measurable in s or not.

Let the σ-field F and filtration (Ft)t>0 be the usual augmentation of F Z̃ and (F Z̃
t )t>0

w.r.t. the probability P(Λ,µ) in the sense of [Kal21, Lemma 9.8]. We will fix the first

technical problem (5.14) by showing that (Z̃t)t>0 is a Markov process w.r.t. the filtration
(Ft)t>0 in Proposition 5.12 below. We will fix the second problem (5.15) by showing that

(Z̃s(g))s>0 has a measurable version in Proposition 5.13 below. Here, we say a real-valued
process (At)t>0 defined on the probability space (Ω,F ,P(Λ,µ)) is measurable, if (ω, t) 7→
At(ω) is a measurable map from the product measurable space (Ω× (0,∞),F ⊗ B(0,∞))
to (R,B(R)). Our proofs of Propositions 5.12 and 5.13 rely on some preliminary results

saying that (Z̃t)t>0 is stochastically right-continuous. We will establish those results in
Lemmas 5.10 and 5.11 below.

Lemma 5.10. Suppose that F is a closed interval containing ∪i∈N(xi−1, xi+1) and that U
is an open interval. Suppose that U∩F is bounded. Let g be a bounded continuous function
on R such that the support of g is contained in U . Then (Z̃t(g))t>0 is stochastically right-
continuous, i.e., for any ǫ > 0 and s > 0,

lim
t↓s

P(Λ,µ)

(
∣

∣

∣
Z̃t(g)− Z̃s(g)

∣

∣

∣
> ǫ
)

= 0.

Proof. Without loss of generality, we assume that g is non-negative. Define

FU(ν) := ν(U) +
∑

i∈Z

ν((i− 1, i+ 1))

(|i|+ 1)2
, ν ∈ N . (5.16)
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Step 1. We will show in this step that E(Λ,µ)[FU(Z̃t)] <∞ for every t > 0. Let γ ∈ (0, 1)
and denote γ0 := γΨ′(0+)/(2βc). From Proposition 5.8, we have

E(Λ,µ)

[

Z̃t((i− 1, i+ 1))
]

≤ eλot

1− γ

(
∫ i+1

i−1

v
(Λ,µ)
t (y)dy +

Ψ′(0+)eλot

2
V(Λ,µ,F )
t

)

+ 3C1((i− 1, i+ 1), F, t, γ0).

From (4.8), (4.9) and how C1(·, ·, ·, ·) is defined in Lemma 4.7, we have

E(Λ,µ)

[

Z̃t((i− 1, i+ 1))
]

≤ eλot

1− γ

(

4

Ψ′(0+)t
+

Ψ′(0+)eλot

2
V(Λ,µ,F )
t

)

+ 3C1((−1, 1), F, t, γ0).

This, and Lemma 4.5 (ii), implies that supi∈Z E(Λ,µ)[Z̃t((i − 1, i + 1))] < ∞. Also from

Proposition 5.8, it holds that E(Λ,µ)[Z̃t(U)] < ∞. Therefore, the desired result for this
step follows.

Step 2. Fix an arbitrary ν ∈ N satisfying that FU(ν) <∞, we will show that

lim
s↓0

∫

e−θν̃(g)
Qs(ν, dν̃) = e−θν(g), θ ≥ 0. (5.17)

To do this, let us fix the arbitrary θ > 0. By Corollary 5.7, for any s > 0,
∫

e−θν̃(g)
Qs(ν, dν̃) = Ẽ1−e−θg

[

∏

z∈R
(1− us(z))

ν({z})
]

. (5.18)

It is clear that almost surely w.r.t. probability P̃1−e−θg , for every z ∈ R, us(z) converges
to 1− e−θg(z) when s ↓ 0. Define the closed interval

K :=

{

z ∈ R : dist({z}, U) ≤ 1 +
|z|
2

}

. (5.19)

Notice that U ⊂ K and K \ U is bounded. Since supp(g) ⊂ U ⊂ K, we see that
ν(g) = (1K · ν)(g). From the condition FU(ν) < ∞, we have ν(U) < ∞. Therefore
ν(K) = ν(U) + ν(K \U) <∞. In particular, 1K · ν is a finite integer-valued measure on
R. Therefore, by the bounded convergence theorem

lim
s→0

Ẽ1−e−θg

[

∏

z∈R
(1− us(z))

(1K ·ν)({z})
]

= e−θ(1K ·ν)(g) = e−θν(g). (5.20)

By Lemmas 4.1 and 4.2, for every s > 0,

Ẽ1−e−θg

[
∣

∣

∣

∣

∣

∏

z∈R
(1− us(z))

ν({z}) −
∏

z∈R
(1− us(z))

(1K ·ν)({z})
∣

∣

∣

∣

∣

]

≤ Ẽ1−e−θg

[
∣

∣

∣

∣

∣

∏

z∈R
(1− us(z))

(1Kc ·ν)({z}) − 1

∣

∣

∣

∣

∣

]
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≤
∑

z∈R
Ẽ1−e−θg [us(z)](1Kc · ν)({z}) ≤ eλos

∑

z∈R
Ez

[

1− e−θg(Bs)
]

1Kc(z)ν({z}).

From 1− e−θg ≤ 1U , (5.19), and Markov’s inequality, we have for every s > 0,

Ẽ1−e−θg

[
∣

∣

∣

∣

∣

∏

z∈R
(1− us(z))

ν({z}) −
∏

z∈R
(1− us(z))

(1K ·ν)({z})
∣

∣

∣

∣

∣

]

(5.21)

≤ eλos
∑

z∈R
Pz(Bs ∈ U)1{dist({z},U)>1+

|z|
2 }ν({z})

≤ eλos
∑

z∈R
P0

(

|Bs| ≥ 1 +
|z|
2

)

ν({z}) ≤ 4seλos
∑

z∈R

ν({z})
(2 + |z|)2

≤ 4seλos
∑

i∈Z

∑

z∈R

ν({z})
(2 + |z|)21{z∈(i−1,i+1)} ≤ 4seλos

∑

i∈Z

ν((i− 1, i+ 1))

(1 + |i|)2 .

Therefore, from the condition that FU(ν) < ∞, the left hand side of (5.21) converges to
0 when s→ 0. Combine this with (5.18) and (5.20), we get (5.17) as desired.

Step 3. We will finish the proof. Fixing an arbitrary θ > 0. According to Step 2, for
any ν ∈ N with FU(ν) <∞,

lim
s↓0

∫

(

e−θν̃(g) − e−θν(g)
)2

Qs(ν, dν̃)

= lim
s↓0

∫

e−2θν̃(g)
Qs(ν, dν̃)− 2e−θν(g) lim

s↓0

∫

e−θν̃(g)
Qs(ν, dν̃) + e−2θν(g) = 0.

Therefore, from Step 1, for every s > 0 almost surely,

lim
r↓0

∫

(

e−θν̃(g) − e−θZ̃s(g)
)2

Qr(Z̃s, dν̃) = 0.

By the Markov property of the process (Z̃·), we conclude from the bounded convergence
theorem that, for any s > 0,

lim
t↓s

E(Λ,µ)

[

(

e−θZ̃t(g) − e−θZ̃s(g)
)2
]

= lim
t↓s

E(Λ,µ)

[
∫

(

e−θν̃(g) − e−θZ̃s(g)
)2

Qt−s(Z̃s, dν̃)

]

= 0.

This says that, for any s > 0, the random variable e−θZ̃t(g) converges to e−θZ̃s(g) when t ↓ s
in L2, and therefore, in probability. From the continuous mapping theorem (e.g. [Kal21,
Lemma 5.3]), we get the desired result for this lemma. �

To pass the stochastic right-continuity of (Z̃t(g))t>0 to (Z̃t)t>0, we will use a metrization
of N . One can argue that, c.f. [Yan04, Theorem 6.5.8], there exists a sequence (hi)i∈N in
C∞
c (R) such that the vague topology of N is compatible with the complete metric

dN (ν0, ν1) :=
∞
∑

i=1

1

2i
(1 ∧ |ν0(hi)− ν1(hi)|), ν0, ν1 ∈ N .
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From now on, we will fix this sequence (hi)i∈N and treat N as a complete seperable metric
space.

Lemma 5.11. The process (Z̃t)t>0 is stochastically right-continuous, i.e., for any ǫ > 0
and s > 0,

lim
t↓s

P(Λ,µ)

(

dN (Z̃t, Z̃s) > ǫ
)

= 0.

Proof. From [Kal21, Lemma 5.2] and the fact that dN is bounded by 1, we only have to
show that, for any s > 0,

lim
t↓s

E(Λ,µ)

[

dN (Z̃t, Z̃s)
]

= lim
t↓s

∞
∑

i=1

2−iE(Λ,µ)

[

1 ∧
∣

∣

∣
Z̃t(hi)− Z̃s(hi)

∣

∣

∣

]

= 0.

Note that the above holds since, from [Kal21, Lemma 5.2] again and Lemma 5.10, we
have, for any s > 0 and i ∈ N,

lim
t↓s

E(Λ,µ)

[

1 ∧
∣

∣

∣
Z̃t(hi)− Z̃s(hi)

∣

∣

∣

]

= 0. �

As mentioned earlier, the first technical problem (5.14) will be handled with the help
of the next proposition.

Proposition 5.12. (Z̃t)t>0 is a Markov process with transition kernels (Qs)s≥0 w.r.t. the

filtration (Ft)t>0, i.e. (Z̃t)t>0 is (Ft)t>0-adapted and

P(Λ,µ)

(

Z̃t+s ∈ A
∣

∣

∣
Ft

)

= Qs(Z̃t, A), a.s., A ∈ BN , s ≥ 0, t > 0 (5.22)

where BN is the Borel σ-field of N generated by the vague topology.

Proof. It is clear that (Z̃t)t>0 is (Ft)t>0-adapted. So we only have to verify (5.22). Note
that (5.22) is trivial when s = 0. So, let us fix s > 0 and t > 0. Take a non-negative con-
tinuous function g on R with compact support satisfying that ‖1−e−g‖∞ ≤ Ψ′(0+)/(4βc).
Let N := {B ∈ F : P(Λ,µ)(B) = 0} be the collection of the null subsets of Ω. Define

F̄ Z̃
r := σ(F Z̃

r ,N ) for every r > 0. From [Kal21, Lemma 9.8], we have Ft = ∩∞
k=1F̄ Z̃

t+1/k.
From Proposition 5.3, we have almost surely for each k ∈ N,

E(Λ,µ)

[

e−Z̃t+1/k+s(g)
∣

∣

∣
F̄ Z̃

t+1/k

]

= E(Λ,µ)

[

e−Z̃t+1/k+s(g)
∣

∣

∣
F Z̃

t+1/k

]

=

∫

e−ν(g)
Qs(Z̃t+1/k, dν) = H1−e−g

s (Z̃t+1/k), (5.23)

where ν 7→ H1−e−g

s (ν) is the bounded continuous function on N given as in (5.9). Taking
k ↑ ∞, from the continuous mapping theorem (e.g. [Kal21, Lemma 5.3]) and Lemma 5.11,
we know that the most right hand side of (5.23) converges to H1−e−g

s (Z̃t) in probability
when k ↑ ∞. From [Dur19, Theorem 4.7.3], we know that

E(Λ,µ)

[

e−Z̃t+s(g)
∣

∣

∣
F̄ Z̃

t+1/k

]

L1

−−→
k↑∞

E(Λ,µ)

[

e−Z̃t+s(g)
∣

∣

∣
Ft

]

. (5.24)
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Also, from Jensen’s inequality, Lemma 5.11, and the bounded convergence theorem, we
have that

E(Λ,µ)

[
∣

∣

∣
E(Λ,µ)

[

e−Z̃t+1/k+s(g)
∣

∣

∣
F̄ Z̃

t+1/k

]

− E(Λ,µ)

[

e−Z̃t+s(g)
∣

∣

∣
F̄ Z̃

t+1/k

]
∣

∣

∣

]

≤ E(Λ,µ)

[

E(Λ,µ)

[
∣

∣

∣
e−Z̃t+1/k+s(g) − e−Z̃t+s(g)

∣

∣

∣

∣

∣

∣
F̄ Z̃

t+1/k

]]

= E(Λ,µ)

[
∣

∣

∣
e−Z̃t+1/k+s(g) − e−Z̃t+s(g)

∣

∣

∣

]

−−→
k↑∞

0.

Combine this with (5.24), we know that the most left hand side of (5.23) converges to
the right hand side of (5.24) in L1 when k ↑ ∞. Now, taking k ↑ ∞ in (5.23), we obtain
that almost surely

E(Λ,µ)

[

e−Z̃t+s(g)
∣

∣

∣
Ft

]

= H1−e−g

s (Z̃t) =

∫

e−ν(g)
Qs(Z̃t, dν).

From [Kal21, Theorem 8.5] and [Kal17, Theorem 2.2], we can verify the desired result for
this proposition. �

The second technical problem (5.15) will be handled by the next proposition.

Proposition 5.13. Suppose that F is a closed interval containing ∪i∈N(xi−1, xi+1) and
that U is an open interval. Suppose that U ∩F is bounded. Let g be a bounded continuous
function on R such that the support of g is contained in U . Then under P(Λ,µ), there

exists a measurable version (Ỹ g
t )t>0 of the process (Z̃t(g))t>0.

We omit the proof of the above proposition, because it follows the standard argument
similar to that of [Bor95, Theorem 6.2.3] noticing, from Lemma 5.10, that (Z̃t(g))t≥0 is
stochastically right continuous. (A detailed proof is included in the Supplement Material
[HS25].)

5.3. Càdlàg realization. In this subsection, we complete the proof of Theorem 1.2.

Lemma 5.14. Fix a smooth function g with bounded derivatives of any orders. Assume
that U is an open interval containing the support of g. Let ν ∈ N satisfy that FU(ν) <∞
where FU(ν) is given as in (5.16).

(i) It holds that
∣

∣

∣
E(∅,ν)

[

Z̃t(g)
]

− E(∅,1Uν)

[

Z̃t(g)
]
∣

∣

∣
≤ e−Φ′(0+)t

∫

Uc

Ex[|g(Bt)|]ν(dx), t > 0.

Here, for each x ∈ R, (Bt)t≥0 is a Brownian motion initiated at position x
w.r.t. the expectation operator Ex.

(ii) (E(∅,ν)[Z̃t(g)])t>0 is continuous, and limt↓0 E(∅,ν)[Z̃t(g)] = ν(g).
(iii) Suppose further that g is non-negative. Then for every t > 0,

eΦ
′(0+)tE(∅,ν)

[

Z̃t(g)
]

− ν(g)−
∫ t

0

eΦ
′(0+)s 1

2
E(∅,ν)

[

Z̃s(g
′′)
]

ds ≤ 0.
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Proof. (i). Fix an arbitrary t > 0. From FU (ν) < ∞ we have ν(U) < ∞. In particular,
since ν is an integer-valued measure, supp(ν) ∩U is bounded. Therefore, from Corollary

5.9, E(∅,ν)[Z̃t(g)] is finite, and similarly, so is E(∅,1Uν)[Z̃t(g)]. We can assume without loss
of generality that g is non-negative. By the monotone convergence theorem,
∣

∣

∣
E(∅,ν)

[

Z̃t(g)
]

− E(∅,1Uν)

[

Z̃t(g)
]
∣

∣

∣
=

∣

∣

∣

∣

lim
ε↓0

1

ε

(

E(∅,ν)
[

1− e−εZ̃t(g)
]

− E(∅,1Uν)

[

1− e−εZ̃t(g)
])

∣

∣

∣

∣

.

From Proposition 5.6, we see that
∣

∣

∣
E(∅,ν)

[

Z̃t(g)
]

− E(∅,1Uν)

[

Z̃t(g)
]
∣

∣

∣
=

∣

∣

∣

∣

lim
ε

1

ε

(

E(∅,ν)
[

e−εZ̃t(g)
]

− E(∅,1Uν)

[

e−εZ̃t(g)
])

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

lim
ε↓0

1

ε
Ẽ1−e−εg

[(

∏

x∈U
(1− ut(x))

ν({x})
)(

∏

x∈Uc

(1− ut(x))
ν({z}) − 1

)]
∣

∣

∣

∣

∣

≤ lim
ε↓0

1

ε
Ẽ1−e−εg

[
∣

∣

∣

∣

∣

∏

x∈Uc

(1− ut(x))
ν({z}) − 1

∣

∣

∣

∣

∣

]

From Lemmas 4.1 and 4.2, Fubini’s theorem, and inequality 1− e−|x| ≤ |x|, we get that
∣

∣

∣
E(∅,ν)

[

Z̃t(g)
]

− E(∅,1Uν)

[

Z̃t(g)
]
∣

∣

∣
≤ lim

ε↓0

1

ε
Ẽ1−e−εg

[
∫

Uc

ut(x)ν(dx)

]

≤ e−Φ′(0+)t lim
ε↓0

1

ε

∫

Uc

Ex

[

1− e−εg(Bt)
]

ν(dx) ≤ e−Φ′(0+)t

∫

Uc

Ex[g(Bt)]ν(dx).

(ii). Note that for each m ∈ N, Um := {z : dist({z}, U) < m} is an open interval
containing U and ν(Um) < ∞. Fixing an arbitrary m ∈ N in the rest of this paragraph.

Let (Ît)t≥0 := (I
(n)
t )t≥0, (X̂α

t )α∈Ît,t≥0 := (X
(n),α
t )

α∈I(n)
t ,t≥0

and (Ẑt)t≥0 := (Z
(n)
t )t≥0 be

notations given as in Subsection 1.2 (right after Proposition 1.1) for an SBBM with
ordinary branching rate βo, ordinary offspring law (pk)

∞
k=0, catalytic branching rate βc,

and catalytic offspring law (qk)
∞
k=0, given as in (1.2)–(1.5), and an initial configuration

(x̂i)
ν(Um)
i=1 satisfying that 1Umν =

∑ν(Um)
i=1 δx̂i

. It is clear from Propositions 3.3 and 5.6 that

E(∅,1Umν)

[

∏

x∈R
(1− f(x))Z̃t({x})

]

= E

[

∏

x∈R
(1− f(x))Ẑt({x})

]

, t > 0.

Since f is arbitrary, it is not hard to see that,

(5.25) for each t > 0, Z̃t under the probability measure P(∅,1Umν) has the same law as Ẑt

under P.

Define

R
(m)
t (g) := E

[

Ẑt(g)
]

= 1{0}(t)ν(1Umg) + 1(0,∞)(t)E(∅,1Umν)

[

Z̃t(g)
]

, t ≥ 0.

From Proposition 2.6, (2.8) and (2.9), we have for every t ≥ 0,

eΦ
′(0+)tE

[

Ẑt(g)
]

= ν(1Umg) + E

[
∫ t

0

eΦ
′(0+)s 1

2
Ẑs(g

′′)ds

]

(5.26)
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− 1

2
Ψ′(0+)E





∫ t

0

eΦ
′(0+)s

∑

{α,β}⊂Îs−:α6=β

g(X̂α
s )dL̂

{α,β}
s



.

Here, (L̂
{α,β}
t )t≥0 represents the intersection local time between any two particles labelled

by α and β. Combining (5.26), (2.8), (2.9) and the dominated convergence theorem, we

see that (R
(m)
t (g))t≥0 is continuous.

Define

Rt(g) := 1{0}(t)ν(g) + 1(0,∞)(t)E(∅,ν)
[

Z̃t(g)
]

, t ≥ 0.

We want to approximate (Rt(g))t≥0 by (R
(m)
t (g))t≥0. Notice that there exists a c0 > 0 such

that for every x ∈ U c
1 , dist({x}, U) ≥ c0(|x|+2). Also note that for every m ≥ 3 and i ∈ Z

with (i−1, i+1) * Um, we have (i−1, i+1) ⊂ U c
1 . Therefore, for every m ≥ 3, i ∈ Z with

(i−1, i+1) * Um, and x ∈ (i−1, i+1), it holds that dist({x}, U) ≥ c0(|x|+2) ≥ c0(|i|+1).
It also holds that U c

m ⊂ ⋃i∈Z:(i−1,i+1)*Um
(i− 1, i+ 1) for every m ∈ N. Now, by Lemma

5.14 (i), for t ≥ 0 and m ≥ 3,

eΦ
′(0+)t

∣

∣

∣
Rt(g)−R

(m)
t (g)

∣

∣

∣
≤
∫

Uc
m

Ex[|g(Bt)|]ν(dx)

≤
∑

i∈Z:(i−1,i+1)*Um

ν((i− 1, i+ 1)) sup
x∈(i−1,i+1)

Ex[|g(Bt)|]

≤ ‖g‖∞
∑

i∈Z:(i−1,i+1)*Um

ν((i− 1, i+ 1)) sup
x∈(i−1,i+1)

Px(Bt ∈ U)

≤ ‖g‖∞
∑

i∈Z:(i−1,i+1)*Um

ν((i− 1, i+ 1))P0(|Bt| ≥ c0(|i|+ 1)).

Together with Markov’s inequality, we have

eΦ
′(0+)t

∣

∣

∣
Rt(g)− R

(m)
t (g)

∣

∣

∣
≤ t

c20
‖g‖∞

∑

i∈Z:(i−1,i+1)*Um

ν((i− 1, i+ 1))

(|i|+ 1)2
, t ≥ 0.

By the condition FU(ν) <∞ and the monotone convergence theorem, we have

lim
m→∞

sup
t∈[0,T ]

∣

∣

∣
Rt(g)−R

(m)
t (g)

∣

∣

∣
= 0. (5.27)

By the uniform limit theorem, (Rt(g))t≥0 must be continuous.

(iii). Fix an arbitrary m ∈ N, and let (Ẑt)t≥0 be the SBBM considered in (ii). From
(5.25), (5.26) and the condition that g is non-negative, we have for every t > 0

eΦ
′(0+)tE(∅,1Umν)

[

Z̃t(g)
]

− ν(1Umg)−
∫ t

0

eΦ
′(0+)s 1

2
E(∅,1Umν)

[

Z̃s(g
′′)
]

ds

= eΦ
′(0+)tE

[

Ẑt(g)
]

− ν(1Umg)−
∫ t

0

eΦ
′(0+)s 1

2
E
[

Ẑs(g
′′)
]

ds ≤ 0.
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Now, for any t > 0, we have

eΦ
′(0+)tE(∅,ν)

[

Z̃t(g)
]

− ν(g)−
∫ t

0

eΦ
′(0+)s 1

2
E(∅,ν)

[

Z̃s(g
′′)
]

ds

≤ eΦ
′(0+)tE(∅,1Umν)

[

Z̃t(g)
]

− ν(1Umg)−
∫ t

0

eΦ
′(0+)s1

2
E(∅,1Umν)

[

Z̃s(g
′′)
]

ds

+ eΦ
′(0+)t

∣

∣

∣
Rt(g)− R

(m)
t (g)

∣

∣

∣
+ ν(1Uc

m
g) +

∫ t

0

eΦ
′(0+)s

∣

∣Rs(g
′′)− R(m)

s (g′′)
∣

∣ds

≤ eΦ
′(0+)t

∣

∣

∣
Rt(g)−R

(m)
t (g)

∣

∣

∣
+ ν(1Uc

m
g) +

∫ t

0

eΦ
′(0+)s

∣

∣Rs(g
′′)− R(m)

s (g′′)
∣

∣ds. (5.28)

Noticing from ν(g) <∞, (5.27), and the fact that (5.27) also holds with g being replaced
by g′′, the right hand side of (5.28) converges to 0 when m→ ∞. Therefore, the desired
result in (iii) of this lemma holds. �

Lemma 5.15. Let g be a non-negative smooth function on R with bounded derivatives
of any order whose support is contained in an open interval U . Suppose that U ∩ F is
bounded where F is a closed interval containing ∪∞

i=1(xi − 1, xi + 1). Let a > 0. Let

(Ỹ g′′

t )t>0 be a measurable version of the process (Z̃t(g
′′))t>0 given as in Proposition 5.13.

Then

Mg(t; a) := eΦ
′(0+)tZ̃t(g)−

∫ t

a

eΦ
′(0+)s 1

2
Ỹ g′′

s ds, t ≥ a, (5.29)

is a super-martingale on the filtered probability space (Ω,F , (Ft)t≥a,P(Λ,µ)). In particular,
(Mg(t; a))t≥a has a càdlàg modification.

Proof. From Proposition 5.13 and Corollary 5.9, we know that the second term on the
right hand side of (5.29) is a well-defined random variable with finite mean. Clearly the
process (Mg(t; a))t≥a is adapted to the filtration (Ft)t≥a. Notice that almost surely, for
every t ≥ a and r ≥ 0,

Mg(t+ r; a)−Mg(t; a) = eΦ
′(0+)t

(

eΦ
′(0+)rZ̃t+r(g)− Z̃t(g)−

∫ r

0

eΦ
′(0+)s 1

2
Ỹ g′′

t+sds

)

.

Let us fix an arbitrary t ≥ a and an arbitrary bounded continuous function φ on R whose
support is contained in U . From Proposition 5.12, [Kal21, Theorem 8.5], and Remark
5.4, for each r ≥ 0 and m ∈ N, we have almost surely,

E(Λ,µ)

[

Xm

(

Z̃t+r(φ)
)
∣

∣

∣
Ft

]

=

∫

Xm(ν(φ))Qr(Z̃t, dν) = E(∅,Z̃t)

[

Xm

(

Z̃r(φ)
)]

,

where the truncation function Xm(z) := z1[−m,m](z) for every z ∈ R. Taking m ↑ ∞, it
can be verified from the dominated convergence theorem and Corollary 5.9 that, for each
r ≥ 0, almost surely, E(Λ,µ)[Z̃t+r(φ)|Ft] = E(∅,Z̃t)

[Z̃r(φ)]. Combine this with Proposition

5.13, we have, for each r ≥ 0, almost surely, E(Λ,µ)[Ỹ
φ
t+r|Ft] = E(∅,Z̃t)

[Z̃r(φ)]. Note from

Lemma 5.14 (ii), almost surely, E(∅,Z̃t)
[Z̃r(φ)] is continuous, and therefore measurable, in
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r > 0. From Corollary 5.9 and Fubini’s theorem, we can verify that, for each r ≥ 0,
almost surely,

E(Λ,µ)

[
∫ r

0

eΦ
′(0+)s 1

2
Ỹ φ
t+sds

∣

∣

∣

∣

Ft

]

=

∫ r

0

eΦ
′(0+)s 1

2
E(∅,Z̃t)

[

Z̃s(φ)
]

ds.

Now, we can verify that for each r ≥ 0, almost surely

E(Λ,µ)[Mg(t+ r; a)−Mg(t; a)|Ft]

= eΦ
′(0+)t

(

eΦ
′(0+)rE(∅,Z̃t)

[

Z̃r(g)
]

− Z̃t(g)−
∫ r

0

eΦ
′(0+)s 1

2
E(∅,Z̃t)

[

Z̃s(g
′′)
]

ds

)

.

From the Step 1 of the proof of Lemma 5.10, we know that FU(Z̃t) < ∞ almost surely
w.r.t. P(Λ,µ). Therefore, from Lemma 5.14 (iii), we know that, for each r ≥ 0, almost
surely, E(Λ,µ)[Mg(t + r; a) −Mg(t; a)|Ft] ≤ 0. Since t ≥ a is chosen arbitrarilly, we have
that (Mg(t; a))t≥a is a super-martingale w.r.t. the filtration (Ft)t≥a. It can also be verified
from Lemma 5.14 (ii) and dominated convergence theorem that (E(Λ,µ)[Mg(t; a)])t≥a is a
continuous process. Therefore, from [Kal21, Theorem 9.28], (Mg(t; a))t≥a has a càdlàg
modification. We are done. �

The following lemma is standard. (Its proof is induced in the Supplementary Material
[HS25].)

Lemma 5.16. Suppose that a ≥ 0 and (Z̃t)t≥a is a N -valued stochastic process such that

(Z̃t(g))t≥a admits a càdlàg modification for every smooth function g on R with compact

support. Then (Z̃t)t≥a itself admits a càdlàg modification.

Proof of Theorem 1.2. Since the convergence in finite dimensional distributions of the

processes (Z
(n)
t )t>0 is already established in Proposition 5.3, we only have to show that

the corresponding limit, i.e. the N -valued process (Z̃t)t>0, has a càdlàg modification. It
is suffice to show that (Z̃t)t≥a has a càdlàg modification for an arbitrarily fixed a > 0.
Note from Lemma 5.15 that, for any smooth function g on R with compact support, the
process (Z̃t(g))t≥a has a càdlàg modification. Now the desired result follows from Lemma
5.16. �

6. Coming down from infinity: Proof of Theorem 1.3

Let (xi)
∞
i=1, βo, (pk)

∞
k=0, βc and (qk)

∞
k=0 be given as in (1.2)–(1.5). Assume that (1.10),

(1.11) and (1.16) hold. Let (Λ, µ) ∈ T be given as in (1.12) and (1.13). Let Φ and Ψ be
given as in (1.14) and (1.15) respectively. Let (Zt)t>0 be an SBBM with initial trace (Λ, µ),
ordinary branching mechanism Φ, and catalytic branching mechanism Ψ. That is to say,
(Zt)t>0 is the unique in law N -valued càdlàg Markov process given as in Theorem 1.2.

Note that the entrance law (P
(Λ,µ)
t )t>0 and the transition kernels (Qt)t≥0 of the process

(Zt)t>0 are given as in Proposition 5.3. For every (Λ̃, µ̃) ∈ T , let (v
(Λ̃,µ̃)
t (x))t>0,x∈R ∈

C1,2((0,∞)× R) be the unique non-negative solution to the equation (1.17).
In this section, we will prove Theorem 1.3. We assume without loss of generality

that (Zt)t>0 is the canonical process of D((0,∞),N ), the space of N -valued càdlàg paths
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indexed by (0,∞). More precisely, for any ω ∈ D((0,∞),N ) and t > 0, Zt(ω) = wt. Note
that this setup is different from Section 5.2 where (Zt)t>0 was the càdlàg modification
of the canonical process of the path space N (0,∞). Correspondingly, we redefine our
probability space Ω := D((0,∞,N )). Let FZ and (FZ

t )t>0 be the natural σ-field and
the natural filtration generated by the process (Zt)t>0. For any closed subset Λ̃ of R and

integer-valued locally finite measure µ̃ on Λ̃c, denote by P(Λ̃,µ̃) the law of an SBBM with

initial trace (Λ̃, µ̃) induced on (Ω,FZ). Let the σ-field F and the filtration (Ft)t>0 be the
usual augmentation of FZ and (FZ

t )t>0 w.r.t. the probability P(Λ,µ).
Intuitively speaking, Zt behaves similarly to its mean field counterpart vt when t is

small. The next lemma gives the integrability of vt on a given interval U in term of the
intersection between U and the initial trace.

Lemma 6.1. Let U be an open interval of R.

(i) Let t > 0. Then
∫

U
v
(Λ,µ)
t (x)dx <∞ if and only if U ∩ supp(Λ, µ) is bounded.

(ii) Suppose that U ∩ supp(Λ, µ) is bounded. Then

Ū ∩ Λ = ∅ =⇒ lim sup
t↓0

∫

U

v
(Λ,µ)
t (x)dx <∞

and

Ū ∩ Λ 6= ∅ =⇒ lim
t↓0

∫

U

v
(Λ,µ)
t (x)dx = ∞.

Proof. (i). The sufficiency of the boundedness of U ∩ supp(Λ, µ) follows from Lemma 4.5
(i). To show its necessity, let us assume otherwise that U ∩ supp(Λ, µ) is unbounded. In
this case, we can find a sequence (zi)i∈N in U∩supp(Λ, µ) such that {(zi−1, zi+1) : i ∈ N}
is a family of disjoint subinterval of U . Then, by (4.7) and [BMS24a, (2.4)], we can verify

∫

U

v
(Λ,µ)
t (x)dx ≥

∞
∑

i=1

∫ zi+1

zi−1

v
(Λ,µ)
t (x)dx

≥
∞
∑

i=1

∫ zi+1

zi−1

v
(∅,δzi)
t (x)dx =

∞
∑

i=1

∫ 1

−1

v
(∅,δ0)
t (x)dx = ∞.

(ii). Observing (4.7), this is done in [BMS24a, Lemma 3.2]. �

The next two lemmas demenstrate how the ‘density’ of Zt is comparable to the solution

v
(Λ,µ)
t of the MFE.

Lemma 6.2. Let U be an open interval such that U ∩ supp(Λ, µ) is bounded. Suppose
that Ū ∩ Λ 6= ∅. Then

(
∫

U

v
(Λ,µ)
t (x)dx

)−1

E(Λ,µ)[Zt(U)]
t↓0−→ 1.

We omit the proof of the above lemma because it is similar to that of [BMS24a, Lemma
3.3]. (We include its proof in the Supplementary Material [HS25].)
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Lemma 6.3. Let U be an open interval such that U ∩ supp(Λ, µ) is bounded. Suppose
that Ū ∩ Λ 6= ∅. Then

(
∫

U

v
(Λ,µ)
t (x)dx

)−1

Zt(U)
t↓0−→ 1, in probability.

We omit the proof of Lemma 6.3 because it is similar to that of [BMS24a, Lemma 3.4].
(We include its proof in the Supplementary Material [HS25].)

The following technical lemma will be used in the proof of Theorem 1.3.

Lemma 6.4. Let m ∈ N, (ti)mi=1 be a list in (0,∞), and (fi)
m
i=1 be a list of non-negative

elements in Cc(R). Then

ν0 7→
∫

Nm

m
∏

i=1

(

e−νi(fi)Qti(νi−1, dνi)
)

is a continuous function on N .

Proof. Let (ν(N))N∈N be an arbitrary sequence in N converging to some element ν ∈ N .
From Corollaries 5.2 and 5.7, we know that

lim
N→∞

∫

N
e−ν1(f)Qt1(ν

(N), dν1) =

∫

N
e−ν1(f)Qt1(ν, dν1)

for every non-negative f ∈ Cc(R) satisfying ‖1 − e−f‖∞ ≤ Ψ′(0+)/(4βc). From this and
[Kal17, Theorem 4.11 (iii)], we know that the probability measures Qt1(ν

(N), ·) converges
weakly to Qt1(ν, ·) as N ↑ ∞. Therefore, for any bounded continuous function G on N ,

lim
N→∞

∫

N
G(ν1)Qt1(ν

(N), dν1) =

∫

N
G(ν1)Qt1(ν, dν1).

Since the converging sequence (ν(N))N∈N in N is chosen arbitrarily, the above says that

(6.1) the map ν0 7→
∫

N G(ν1)Qt1(ν0, dν1) from N to R is continuous for every bounded
continuous function G on N .

In particular, the desired result of this lemma holds when m = 1.
Let us now assume, for the sake of induction, that the desired result of this lemma

holds when m is replaced by m− 1. Under this assumption,

G̃(ν1) :=

∫

Nm−1

m
∏

i=2

(e−νi(fi)Qti(νi−1, dνi)), ν1 ∈ N

is a bounded continuous function on N . Taking G(ν1) := e−ν1(f1)G̃(ν1) in the statement
(6.1), we obtain the desired result for this lemma. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 (i). Step 1. Let T be an arbitrary (0,∞]-valued optional time
w.r.t. the filtration (Ft)t≥0. In this step, we show that for any m ∈ N, list of distinct



46 H. HOU AND Z. SUN

times (si)
m
i=1 in (0,∞), and list of non-negative functions (fi)

m
i=1 in Cc(R),

E(Λ,µ)

[

1{T<∞} exp

{

−
m
∑

i=1

ZT+si(fi)

}]

= E(Λ,µ)

[

1{T<∞}E(∅,ZT )

[

exp

{

−
m
∑

i=1

Zsi(fi)

}]]

.

Without loss of generality, we assume that 0 =: s0 < s1 < · · · < sm. Fix an arbitrary
k ∈ N. Define optional time

T (k) :=
⌊2kT ⌋+ 1

2k
1{T<∞} +∞1{T=∞}

which takes values in the discrete space 2−kN ∪ {∞}. Notice that T (k) ↓ T as k ↑ ∞
and that {T (k) = d} ∈ Fd for every d ∈ 2−kN. Using the Markov property of the process
(Zt)t>0 w.r.t. the augmented filtration (Ft)t>0, c.f. Proposition 5.12, we have

E(Λ,µ)

[

1{T (k)=d} exp

{

−
m
∑

i=1

Zd+si(fi)

}]

= E(Λ,µ)

[

1{T (k)=d}G(Zd)
]

, d ∈ 2−kN, (6.2)

where

G(ν0) :=

∫

Nm

m
∏

i=1

(

e−νi(fi)Qsi−si−1
(νi−1, dνi)

)

= E(∅,ν0)

[

exp

{

−
m
∑

i=1

Zsi(fi)

}]

, ν0 ∈ N

is a bounded continuous function on N , thanks to Lemma 6.4. Summing over d ∈ 2−kN
in (6.2), we get by Fubuni’s theorem that

E(Λ,µ)

[

1{T<∞} exp

{

−
m
∑

i=1

ZT (k)+si(fi)

}]

= E(Λ,µ)

[

1{T<∞}G(ZT (k))
]

.

Taking k ↑ ∞, from the fact that the process (Zt)t>0 is right-continuous, we obtain

E(Λ,µ)

[

1{T<∞} exp

{

−
m
∑

i=1

ZT+si(fi)

}]

= E(Λ,µ)

[

1{T<∞}G(ZT )
]

as desired for this step.
Step 2. Let T be an arbitrary (0,∞]-valued optional time w.r.t. the filtration (Ft)t≥0.

In this step, we will show that for any 0 < a < b <∞, x > 0 and non-negative f ∈ Cc(R),

P(Λ,µ)

(

T <∞, sup
s∈[a,b]

ZT+s(f) ≤ x

)

= E(Λ,µ)

[

1{T<∞}P(∅,ZT )

(

sup
s∈[a,b]

Zs(f) ≤ x

)]

.

To do this, let (si)
∞
i=1 be a sequential arrangement of the elements in [a, b] ∩ Q. From

Step 1, we see that for any m ∈ N,

P(Λ,µ)

(

T <∞, sup
1≤i≤m

ZT+si(f) ≤ x

)

= E(Λ,µ)

[

1{T<∞}P(∅,ZT )

(

sup
1≤i≤m

Zsi(f) ≤ x

)]

. (6.3)

Notice that sups∈[a,b]ws(f) = sups∈[a,b]∩Qws(f) for every w ∈ D((0,∞),N ). Therefore,
P(Λ,µ)-almost surely on the event {T <∞},

1{sups∈[a,b] ZT+s(f)≤x} = lim
m→∞

1{sup1≤i≤m ZT+si
(f)≤x};
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and similarly, for any ν ∈ N , P(∅,ν)-almost surely,

1{sups∈[a,b] Zs(f)≤x} = lim
m→∞

1{sup1≤i≤m Zsi(f)≤x}.

Taking m ↑ ∞ in (6.3), we get the desired result.
Step 3. Let T be an arbitrary (0,∞]-valued optional time w.r.t. the filtration (Ft)t≥0.

In this step, we will show that for any 0 < a < b <∞ and x > 0,

P(Λ,µ)

(

T <∞, sup
s∈[a,b]

ZT+s(U) ≤ x

)

= E(Λ,µ)

[

1{T<∞}P(∅,ZT )

(

sup
s∈[a,b]

Zs(U) ≤ x

)]

. (6.4)

Let (gN)N∈N be an increasing sequence of compactly supported non-negative continuous
functions on R approximating the indicator function 1U . We claim that for every ω ∈
Ω = D((0,∞),N ),

(6.5) sups∈[a,b]ws(gN) increasingly converges to sups∈[a,b]ws(U) as N ↑ ∞.

Indeed, it is obvious from the monotonicity that the large N limit of sups∈[a,b]ws(gN)
exists and is bounded by sups∈[a,b]ws(U). On the other hand:

• If sups∈[a,b]ws(U) < ∞, then for any ε > 0, there exists s0 ∈ [a, b] such that
ws0(U) > sups∈[a,b]ws(U)− ε, which implies that

sup
s∈[a,b]

ws(U)− ε < ws0(U) = lim
N→∞

ws0(gN) ≤ lim
N→∞

sup
s∈[a,b]

ws(gN).

Taking the arbitrary ε ↓ 0, we have sups∈[a,b]ws(U) ≤ limN→∞ sups∈[a,b]ws(gN).
• If sups∈[a,b]ws(U) = ∞, then for any K > 0, there exists s0 ∈ [a, b] such that
ws0(U) > K, which implies that

K < ws0(U) = lim
N→∞

ws0(gN) ≤ lim
N→∞

sup
s∈[a,b]

ws(gN).

Taking the arbitrary K ↑ ∞, we have sups∈[a,b]ws(U) ≤ limN→∞ sups∈[a,b]ws(gN).

Thus (6.5) is valid. From (6.5), we see that P(Λ,µ)-almost surely on the event {T <∞},
1{sups∈[a,b] ZT+s(U)≤x} = lim

N→∞
1{sups∈[a,b] ZT+s(gN )≤x}, x > 0;

and similarly, for any ν ∈ N , P(∅,ν)-almost surely,

1{sups∈[a,b] Zs(U)≤x} = lim
N→∞

1{sups∈[a,b] Zs(gN )≤x}, x > 0.

From Step 2, for every N ∈ N and x > 0,

P(Λ,µ)

(

T <∞, sup
s∈[a,b]

ZT+s(gN) ≤ x

)

= E(Λ,µ)

[

1{T<∞}P(∅,ZT )

(

sup
s∈[a,b]

Zs(gN) ≤ x

)]

.

Taking N ↑ ∞ we get the desired result for this step.
Step 4. Fix an arbitrary k ∈ N and define Tk := inf{t > 1/k : Zt(U) ≤ k} which is an

optional time w.r.t. (Ft)t>0. Let 0 < a < b <∞. We verify in this step that P(Λ,µ)-almost
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surely on the event {Tk <∞},

P(∅,ZTk
)

(

sup
s∈[a,b]

Zs(U) <∞
)

= 1.

Note that P(Λ,µ)-almost surely there exists a decreasing sequence (tm)m∈N in R+ converging
to 0 such that ZTk+tm(U) ≤ k. Let (gN)N∈N be an increasing sequence of compactly
supported continuous functions on R approximating the indicator function 1U . Then,
by the fact that (Zt)t>0 is an N -valued càdlàg process, P(Λ,µ)-almost surely on the event
{Tk <∞},

ZTk
(U) = lim

N→∞
ZTk

(gN) = lim
N→∞

lim
m→∞

ZTk+tm(gN) ≤ k. (6.6)

Fix an arbitrary ν ∈ N such that ν(U) <∞. Let

U1 := {x ∈ R : |x− x0| ≤ 1 for some x0 ∈ U}
be the unit enlargement of the open interval U , and let g be a smooth function with
bounded derivatives of all orders satisfying that 1U ≤ g ≤ 1U1 . Pay attention that g′′ is
compactly supported. Note that U1 ∩ F̃ is bounded if F̃ is the smallest closed interval
containing each (x− 1, x+ 1) such that ν({x}) > 0. Therefore, c.f. Lemma 5.15,

Mg(t; a) := eΦ
′(0+)tZt(g)−

∫ t

a

eΦ
′(0+)s 1

2
Zs(g

′′)ds, t ≥ a,

is a super-martingale on the filtered probability space (Ω,FZ , (FZ
t )t≥a,P(∅,ν)). From this

and [CW05, Theorem 1 of Section 1.4.], we can verify that P(∅,ν)-a.s.,

sup
q∈[a,b+1]∩Q

Zq(U) ≤ sup
q∈[a,b+1]∩Q

Zq(g) <∞.

Therefore, P(∅,ν)-a.s.,

sup
s∈[a,b]

Zs(U) = sup
s∈[a,b]

lim
N→∞

Zs(gN) = sup
s∈[a,b]

lim
N→∞

lim
q↓s,q∈Q

Zq(gN)

≤ sup
s∈[a,b]

lim
N→∞

lim sup
q↓s,q∈Q

Zq(U) ≤ sup
q∈[a,b+1]∩Q

Zq(U) <∞.

Now, since we have shown

P(∅,ν)

(

sup
s∈[a,b]

Zs(U) <∞
)

= 1

for the arbitrary ν ∈ N satisfying ν(U) <∞, the desired result for this step follows from
(6.6).

Step 5. In this step, we show that

P(Λ,µ)(Zt(U) = ∞, ∀t ∈ Q ∩ (0,∞)) = 1.

To do this, for any measurable function f on R which can be approximated by the
elements of C(R, [0, z∗]) monotonically from below, let (ut)t>0 be a C(R, [0, z∗])-valued
continuous process given as in Proposition 3.6 with initial value f on a probability space
whose expectation operator will be denoted by Ẽf . Let F be the smallest closed interval
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containing ∪∞
i=1(xi − 1, xi + 1). From the condition U ∩ supp(Λ, µ) is unbounded, we

have U ∩ F is unbounded. From Proposition 5.6, Lemmas 4.4, 4.6 and 6.1 (i), for any
ε ∈ (0, 1/2) and t > 0,

E(Λ,µ)

[

(1− ε)Zt(U)
]

= Ẽε1U

[ ∞
∏

i=1

(1− ut(xi))

]

≤ Ẽε1U

[

exp

{

−
∞
∑

i=1

ut(xi)

}]

+ P̃ε1U

(

sup
s≤t,y∈F

us(y) >
1

2

)

≤ exp

{

−εκ(1/2)e−βot

∫

U

v
(Λ,µ)
t (y)dy

}

+ 2P̃ε1U

(

sup
s≤t,y∈F

us(y) >
1

2

)

+ εβce
λotV(Λ,µ,F )

t

= 2P̃ε1U

(

sup
s≤t,y∈F

us(y) >
1

2

)

+ εβce
λotV(Λ,µ,F )

t .

Here, V(Λ,µ,F )
t , λo and κ(·) are given as in (4.13), (2.2) and (4.2) respectively. From Lemma

4.5 (ii) and Lemma 4.7, taking ε ↓ 0, we obtain that for any t > 0, P(Λ,µ)(Zt(U) = ∞) = 1.
The desired result for this step follows.

Step 6. Let k ∈ N be arbitrary, and let Tk be the optional time given as in Step 4. Let
0 < a < b < ∞ and x > 0 be arbitrary. From Step 3, we know that (6.4) holds with T
being replaced by Tk, which, by taking x ↑ ∞, implies that

P(Λ,µ)

(

Tk <∞, sup
s∈[a,b]

ZTk+s(U) <∞
)

= E(Λ,µ)

[

1{Tk<∞}P(∅,ZTk
)

(

sup
s∈[a,b]

Zs(U) <∞
)]

.

(6.7)
From Step 5, we know that the left hand side of (6.7) equals to 0. From Step 4, we know
that the right hand side of (6.7) equals to P(Λ,µ)(Tk <∞). Therefore, P(Λ,µ)(Tk <∞) = 0.
As a consequence,

1 = P(Λ,µ)(Tk = ∞) = P(Λ,µ)(Zt(U) > k, ∀t > 1/k).

Taking the arbitrary k ↑ ∞, by the monotone convergence theorem, we get the desired
result (i) of the Theorem 1.3. �

Proof of Theorem 1.3 (ii). Let the open interval U1 := {x ∈ R : ∃x0 ∈ U, |x − x0| ≤ 1}
be the unit enlargement of U , and let g be a smooth function with bounded derivatives
of all orders satisfying that 1U ≤ g ≤ 1U1 . Pay attention that g′′ is compactly supported.
Note that, from the condition that U ∩ supp(Λ, µ) is bounded, we have U1∩F is bounded
where F is the smallest closed interval containing ∪i∈N(xi − 1, xi + 1). Therefore, c.f.
Lemma 5.15, for any a > 0,

Mg(t; a) := eΦ
′(0+)tZt(g)−

∫ t

a

eΦ
′(0+)s 1

2
Zs(g

′′)ds, t ≥ a
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is a super-martingale w.r.t. the filtered probability space (Ω,F , (Ft)t≥a,P(Λ,µ)). From this
and [CW05, Theorem 1 of Section 1.4.], we can verify that P(∅,ν)-a.s., for any b > a > 0,

sup
q∈[a,b]∩Q

Zq(U) ≤ sup
q∈[a,b]∩Q

Zq(g) <∞.

Let (gN)N∈N be an increasing sequence of compactly supported continuous functions on
R approximating the indicator function 1U . Then, P(∅,ν)-almost surely, for every t > 0,

Zt(U) = lim
N↑∞

Zt(gN) = lim
N↑∞

lim
q↓t,q∈Q

Zq(gN) ≤ sup
q∈Q∩[t,t+1]

Zq(U) <∞

as desired. �

Proof of Theorem 1.3 (iii)–(v). (iii) follows from Proposition 5.8.
(iv) follows from Proposition 5.8, Lemmas 6.1 (i), 4.5 (ii), and 4.7.
(v) follows from Lemmas 6.2 and 6.3 and [Kal21, Theorem 5.12]. �
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SUPPLEMENT TO “ON THE SUBCRITICAL SELF-CATALYTIC

BRANCHING BROWNIAN MOTIONS”

HAOJIE HOU AND ZHENYAO SUN

This document serves as supplementary material for our paper titled “On the Subcrit-
ical Self-Catalytic Branching Brownian Motions.” It provides detailed proofs of several
propositions and lemmas presented in the main paper. The numerical labels and refer-
ences used in this supplementary material correspond to those in the main paper, while
labels with an alphabetic prefix are newly introduced and defined herein.

A. Proofs of Lemmas 3.1, 3.5, and Proposition 3.6

Proof of Lemma 3.1. From the continuity of the function Ψ(·), Ψ(1) = βcq0 ≥ 0 and that

Ψ(2) = βc

( ∞
∑

k=0

qk(−1)k − 1

)

≤ βc

( ∞
∑

k=0

qk − 1

)

= 0,

we have z∗ ∈ [1, 2] and Ψ(z∗) = 0. Observe that for any k ∈ Z+, z
k − z = z(zk−1−1) ≥ 0

for every z ∈ [−1, 0]. Therefore, for every z ∈ [1, 2], we have

Φ(z) = βo

(

p0z +
∞
∑

k=1

pk
(

(1− z)k − (1− z)
)

)

≥ 0.

In particular, Φ(z∗) ≥ 0. The fact Φ(0) = Ψ(0) = 0 can be verified directly from their
expressions. From the definition of z∗, the continuity of the function Ψ(·) and the fact
that Ψ(1) ≥ 0, we have Ψ(z) ≥ 0 for every z ∈ [1, z∗]. Finally observe that, for every
z ∈ [0, 1), since x 7→ zx is a convex function on R, by Jensen’s inequality and (1.11),

∞
∑

k=0

qkz
k ≥ z

∑∞
k=0 kqk ≥ z2.

This proves that Ψ(z) ≥ 0 for every z ∈ (0, 1].
If the additional assumption (1.16) holds, then just take an odd number k0 with qk0 > 0,

we see that

Ψ(2) = βc

( ∞
∑

k=0

qk(−1)k − 1

)

≤ βc

( ∞
∑

k 6=k0

qk − qk0 − 1

)

= −2βcqk0 < 0,

which implies that z∗ < 2. We are done. �
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Proof of Lemma 3.5. Let (σm)
∞
m=1 be a sequence of non-negative Lipschitz functions on

[0, z∗] converging to
√
Ψ uniformly, satisfying that σm(0) = σm(z

∗) = 0 for each m ∈ N.
For each i ∈ {1, 2} and m ∈ N, let u(i,m) be a C(R, [0, z∗])-valued solution to the SPDE

(3.1) with f and
√
Ψ being replaced by f (i) and σm respectively. For each i ∈ {1, 2}

and m ∈ N, the existence of the C([0,∞), C(R, [0, z∗]))-valued random element u(i,m)

is guaranteed by the standard theory of 1-d stochastic heat equation with Lipschitz
coefficients [Shi94].

By the strong comparison principle [Shi94, Corollary 2.4], we can assume without loss
of generality that, for each m ∈ N, u(1,m) and u(2,m) are defined on the same probability

space satisfying that almost surely u
(1,m)
t (x) ≤ u

(2,m)
t (x) for every t ≥ 0 and x ∈ R. For

each i ∈ {1, 2}, it is also standard to argue, c.f. [Shi94, Proof of Theorem 2.6], that the
family of C([0,∞), C(R, [0, z∗]))-valued random elements {u(i,m) : m ∈ N} is tight, and
any sub-sequential convergence-in-distribution limit has the law Lf(i) . This implies that

the family of C([0,∞), C(R, [0, z∗]))2-valued random elements {(u(1,m), u(2,m)) : m ∈ N} is
tight.

Let (u(1), u(2)) be one of its sub-sequential convergence-in-distribution limit. Clearly,
the law of u(1) and u(2) are given by Lf(1) and Lf(2) respectively; and almost surely,

u
(1)
t (x) ≤ u

(2)
t (x) for every t ≥ 0 and x ∈ R. By the disintegration theorem [Kal21,

Theorem 8.5], there exists a probability kernel Kf(1),f(2) on C([0,∞), C(R, [0, z∗])) such

that Kf(1),f(2)(u(1), ·) is the regular conditional distribution of u(2) conditioned on given

u(1). It is then straightforward to verify that Kf(1),f(2) satisfies all the properties desired
for this Lemma. �

Proof of Proposition 3.6. Construct a C([0,∞), C(R, [0, z∗]))-valued Markov chain (u(m))m∈N,
on a probability space with its probability measure denoted by P̃g, such that the initial
value u(1) has the law Lf(1) , and that, for each m ∈ N, the transition kernel from steps
m to m + 1 is Kf(m),f(m+1). Here, L· and K·,· are the same as in Lemma 3.5. It is clear

that u(m) has the law Lf(m) for each m ∈ N; and almost surely u
(m)
t (x) ≤ u

(m+1)
t (x) for

every t ≥ 0, x ∈ R and m ∈ N. This allows us to define a random field ū = (ūt(x))t≥0,x∈R
as the pointwisely non-decreasing limit of u(m) when m ↑ ∞.

It is standard (c.f. [BMS24a, p. 82]) to verify from the mild formulation (3.2), Burkholder-
Davis-Gundy inequality, Jensen’s inequality, the property of the heat kernels, and the fact
that (u(m))m∈N are bounded random fields, that, for any T > 0 and l > 2,

Ẽg

[

∣

∣

∣
U

(m)
t (x)− U (m)

s (y)
∣

∣

∣

2l
]

.
(

|x− y|+
√

|t− s|
)l

uniformly in m ∈ N, x, y ∈ R and t, s ∈ [0, T ]. Here, for any t > 0 and x ∈ R,

U
(m)
t (x) := u

(m)
t (x)−

∫

pt(x− y)f (m)(y)dy +

∫∫ t

0

pt−s(x− y)Φ
(

u(m)
s (y)

)

dsdy
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and U
(m)
0 (x) := 0. Taking m ↑ ∞, we know from the bounded convergence theorem that

for any T > 0 and l > 2,

Ẽg

[

∣

∣Ūt(x)− Ūs(y)
∣

∣

2l
]

.
(

|x− y|+
√

|t− s|
)l

(A.1)

uniformly in x, y ∈ R and t, s ∈ [0, T ], where, for each t > 0 and x ∈ R,

Ūt(x) := ūt(x)−
∫

pt(x− y)g(y)dy +

∫∫ t

0

pt−s(x− y)Φ(ūs(y))dsdy

and Ū0(x) := 0. From (A.1), we can verify (c.f. [Shi94, Lemma 6.3 (i)]) that there exists
a jointly continuous modification (Ut(x))t≥0,x∈R of (Ūt(x))t≥0,x∈R. Define, for every t > 0
and x ∈ R,

ut(x) := Ut(x) +

∫

pt(x− y)g(y)dy −
∫∫ t

0

pt−s(x− y)Φ(ūs(y))dsdy

and u0(x) := g(x). It is then not hard to see that (ut(x))t≥0,x∈R is a modification of
(ūt(x))t≥0,x∈R and that (ut)t>0 is a C(R, [0, z∗])-valued continuous process. In particular,
from Fubini’s theorem, almost surely, for almost every t > 0 and x ∈ R w.r.t. the Lebesgue
measure, ut(x) = ūt(x).

Notice from Proposition 3.3 that, for each m ∈ N, (3.3) holds with f and u being
replaced by f (m) and u(m) respectively. Taking m ↑ ∞, by the bounded convergence
theorem, we have

Ẽg

[

n
∏

i=1

(1− ūt(xi))

]

= E





∏

α∈I(n)
t

(

1− g
(

X
(n,α)
t

))



, t ≥ 0.

Now, since u is a modification of ū, the desired statement (3.13) holds.
Let us fix an arbitrary testing function φ ∈ C∞

c (R). From [Shi94, Theorem 2.1], almost
surely for every t ≥ 0 and m ∈ N,

∫

u
(m)
t (x)φ(x)dx =

∫

f (m)(x)φ(x)dx+

∫∫ t

0

u(m)
s (y)

φ′′(y)

2
dsdy − (A.2)

∫∫ t

0

Φ
(

u(m)
s (y)

)

φ(y)dsdy +M
(m,φ)
t

where M
(m,φ)
· is a (G(m)

t )t≥0-adapted continuous martingale with quadratic variation

〈

M (m,φ)
·

〉

t
:=

∫∫ t

0

Ψ
(

u(m)
s (y)

)

φ(y)2dsdy, t ≥ 0 (A.3)

and (G(m)
t )t≥0 is the natural filtration of the process (u

(m)
t )t≥0. In particular, for any

0 ≤ s ≤ t, N ∈ N, bounded continuous map G from RN to R, and list ((si, yi))
N
i=1 in

[0, s]× R, we have

Ẽg

[

G
(

u(m)
s1 (y1), . . . , u

(m)
sN

(yN)
)

M
(m,φ)
t

]

= Ẽg

[

G
(

u(m)
s1 (y1), . . . , u

(m)
sN

(yN)
)

M (m,φ)
s

]

(A.4)
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and

Ẽg

[

G
(

u(m)
s1

(y1), . . . , u
(m)
sN

(yN)
)

(

(

M
(m,φ)
t

)2

−
〈

M (m,φ)
·

〉

t

)]

(A.5)

= Ẽg

[

G
(

u(m)
s1 (y1), . . . , u

(m)
sN

(yN)
)

(

(

M (m,φ)
s

)2 −
〈

M (m,φ)
·

〉

s

)]

.

Taking m ↑ ∞ in (A.2), by the dominated convergence theorem, we know that M
(m,φ)
t

converges to M
(φ)
t almost surely for every t ≥ 0, where the continuous process (M

(φ)
t )t≥0

is defined through
∫

ut(x)φ(x)dx =

∫

g(x)φ(x)dx+

∫∫ t

0

us(y)
φ′′(y)

2
dsdy −

∫∫ t

0

Φ(us(y))φ(y)dsdy +M
(φ)
t , t ≥ 0.

Taking m ↑ ∞ in (A.3), we know that 〈M (m,φ)
· 〉t converges to 〈M (φ)

· 〉t almost surely for
every t ≥ 0, where

〈

M (φ)
·
〉

t
:=

∫∫ t

0

Ψ(us(y))φ(y)
2dsdy, t ≥ 0.

Note that, for each t ≥ 0, the families of random variables (M
(m,φ)
t : m ∈ N) and

((M
(m,φ)
t )2−〈M (m,φ)

· 〉t : m ∈ N) are bounded by a deterministic constant depending only
on Φ, Ψ, t and φ. Therefore, taking m ↑ ∞ in (A.4) and (A.5), for any 0 ≤ s ≤ t, N ∈ N,
bounded continuous map G from RN to R, and list ((si, yi))

N
i=1 in [0, s]× R, we have

Ẽg

[

G(us1(y1), . . . , usN (yN))M
(φ)
t

]

= Ẽg

[

G(us1(y1), . . . , usN (yN))M
(φ)
s

]

and

Ẽg

[

G(us1(y1), . . . , usN (yN))

(

(

M
(φ)
t

)2

−
〈

M (φ)
·
〉

t

)]

= Ẽg

[

G(us1(y1), . . . , usN (yN))
(

(

M (φ)
s

)2 −
〈

M (φ)
·
〉

s

)]

.

These imply that (M
(φ)
t )t≥0 is an (Gt)t≥0-adapted continuous martingale with quadratic

variation (〈M (φ)
· 〉t)t≥0. We are done. �

B. Proof of Lemmas 4.1, 4.4 and 4.6

Proof of Lemma 4.1. If zi ∈ [0, 1] for all i ∈ N, then the desired inequality follows from

Bernoulli’s inequality. If there is i 6= j such that zi, zj > 1, then 0 ≤ 1−∏N
i=1(1− zi) ≤

2 <
∑N

i=1 zi. Otherwise, there exists only one i0 such that zj ∈ [0, 1] for all j 6= i0 and
that zi0 ∈ (1, 2]. Without loss of generality, we assume in this case i0 = 1. Then by
Bernoulli’s inequality,

N
∏

i=1

(1− zi) = −z1
2

N
∏

i=2

(1− zi) + (1− z1
2
)

N
∏

i=2

(1− zi) ≥ −z1
2
+ 1− z1

2
−

N
∑

i=2

zi,
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which again implies the desired result. �

Proof of Lemma 4.4. Let t > 0 and γ ∈ (ε, 1). Define τγ := inf
{

s ≥ 0 : supy∈F us(y) > γ
}

.

For the lower bound, noticing that 1− w ≥ e−θ(γ)w for w ∈ [0, γ], we have

Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)

]

= Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)1{τγ≤t}

]

+ Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)1{τγ>t}

]

≥ −P̃ε1U
(τγ ≤ t) + Ẽε1U

[

exp

{

−θ(γ)
∞
∑

i=1

ut(xi)

}

1{τγ>t}

]

≥ Ẽε1U

[

exp

{

−θ(γ)
∞
∑

i=1

ut(xi)

}]

− 2P̃ε1U
(τγ ≤ t).

For the upper bound, using the inequality 1 − w ≤ e−w and the fact that 1 − ut(xi) ≥ 0
for every i ∈ N almost surely on the event {τ1/2 > t}, we have

Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)

]

= Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)1{τ1/2≤t}

]

+ Ẽε1U

[ ∞
∏

i=1

(1− ut)(xi)1{τ1/2>t}

]

≤ P̃ε1U

(

τ1/2 ≤ t
)

+ Ẽε1U

[

exp

{

−
∞
∑

i=1

ut(xi)

}]

.

We are done. �

Proof of Lemma 4.6. Define τz := inf{s ≥ 0 : supy∈F us(y) > z} for every z ∈ (0, 1). Let
t > 0. For every γ̃ ∈ [0, 1), define

M (γ̃ ,n)
s :=











1

1− γ̃

∫

us(y)v
(∅,µ(γ̃,n))
t−s (y)dy, s ∈ [0, t);

1

1− γ̃

∫

ut(y)µ
(γ̃,n)(dy), s = t,

with µ(γ̃,n) := (1 − γ̃)θ(γ̃)
∑n

i=1 δxi
. From stochastic Fubini’s theorem [DPZ14, Theorem

4.33], one can verify that almost surely for every γ̃ ∈ [0, 1) and s ∈ [0, t],

M (γ̃ ,n)
s −M

(γ̃ ,n)
0 (B.1)

=
1

1− γ̃

∫∫ s

0

(

−v(∅,µ(γ̃,n))
t−r (y)Φ(ur(y)) +

Ψ′(0+)

2
v
(∅,µ(γ̃,n))
t−r (y)2ur(y)

)

drdy

+
1

1− γ̃

∫∫ s

0

v
(∅,µ(γ̃,n))
t−r (y)

√

Ψ(ur(y))W (drdy).

In particular, (M
(γ̃,n)
s )s∈[0,t] is a continuous semi-martingale. By (B.1) and Itô’s formula,

it is easy to verify that almost surely for every s ∈ [0, t],

exp
{

−eλo(t−s)M (γ,n)
s

}

− exp
{

−eλotM
(γ,n)
0

}

(B.2)
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=

∫∫ s

0

exp
{

−eλ0(t−r)M (γ,n)
r

}eλ0(t−r)

1− γ
×

(

− v
(∅,µ(γ,n))
t−r (y)

√

Ψ(ur(y))W (drdy) +

v
(∅,µ(γ,n))
t−r (y)(Φ(ur(y)) + λour(y))drdy −
1

2
v
(∅,µ(γ,n))
t−r (y)2

(

Ψ′(0+)ur(y)−
eλ0(t−r)

1− γ
Ψ(ur(y))

)

drdy

)

.

Set

γ0 :=
γ

2βc
Ψ′(0+) =

γ

2

(

2−
∞
∑

k=0

kqk

)

∈ (0, γ).

We see that for any w ∈ (0, γ0],

Ψ(w) =

∫ w

0

Ψ′(z)dz = βc

∫ w

0

(

2(1− z)−
∞
∑

k=1

kqk(1− z)k−1

)

dz (B.3)

≥ βcw

(

2(1− γ0)−
∞
∑

k=1

kqk

)

= (1− γ)Ψ′(0+)w.

Note the fact that almost surely for r ≤ τγ0 ∧ t and y ∈ F ,

Ψ′(0+)ur(y)−
eλo(t−r)

1− γ
Ψ(ur(y)) ≤ Ψ′(0+)ur(y)−

1

1− γ
Ψ(ur(y)) ≤ 0,

where the last inequality follows from (B.3). Combining this with (4.1), λo > 0, and

M
(γ,n)
r ≥ 0, we get by taking expectation for (B.2) with s = τγ0 ∧ t that

Ẽε1U

[

exp
{

−eλo(t−τγ0∧t)M (γ,n)
τγ0∧t

}]

≥ exp
{

−eλotM
(γ,n)
0

}

−
1

2(1− γ)2
Ẽε1U

[
∫ τγ0∧t

0

∫

F c

exp
{

−eλo(t−r)M (γ,n)
r

}

eλo(t−r)v
(∅,µ(γ,n))
t−r (y)2 ×

(

(1− γ)Ψ′(0+)ur(y)−Ψ(ur(y))e
λo(t−r)

)

dydr

]

≥ exp
{

−eλotM
(γ,n)
0

}

− Ψ′(0+)eλot

2(1− γ)

∫ t

0

∫

F c

v
(∅,µ(γ,n))
t−r (y)2Ẽε1U

[ur(y)]dydr.

From Lemma 4.2, we get that

Ẽε1U

[

exp
{

−eλo(t−τγ0∧t)M (γ,n)
τγ0∧t

}]

≥ exp
{

−eλotM
(γ,n)
0

}

− εΨ′(0+)e2λot

2(1− γ)

∫ t

0

∫

F c

v
(∅,µ(γ,n))
t−r (y)2dydr.
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By the definition of M
(γ,n)
t and that

Ẽε1U

[

e−M
(γ,n)
t

]

≥ Ẽε1U

[

exp
{

−eλo(t−τγ0∧t)M (γ,n)
τγ0∧t

}]

− P̃ε1U
(τγ0 < t),

we have

Ẽε1U

[

exp

{

−θ(γ)
n
∑

i=1

ut(xi)

}]

(B.4)

≥ exp

{

− εeλot

1− γ

∫

U

v
(∅,µ(γ,n))
t (y)dy

}

− εΨ′(0+)e2λot

2(1− γ)

∫ t

0

∫

F c

v
(∅,µ(γ,n))
t−r (y)2drdy −

P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ0

)

.

It has been explained in [BMS24a, (2.19)] that

v(∅,µ
(γ,n))

r,y

increasingly−−−−−−→
n↑∞

v(Λ,(1−γ)θ(γ)µ)
r,y ≤ v(Λ,µ)r,y , r > 0, y ∈ R.

Now we get the first desired result (4.15) by monotone convergence theorem while taking
n ↑ ∞ in (B.4).

Let us now prove the upper bound (4.16). Similarly using (B.1) and Itô’s formula, we
see that almost surely for every s ∈ [0, t],

exp
{

−κ(γ)e−βo(t−s)M (0,n)
s

}

− exp
{

−κ(γ)e−βotM
(0,n)
0

}

= κ(γ)

∫∫ s

0

exp
{

−κ(γ)eβ0(t−r)M (0,n)
r

}

e−βo(t−r) ×
(

− v
(∅,µ(0,n))
t−r (y)

√

Ψ(ur(y))W (drdy)) +

v
(∅,µ(0,n))
t−r (y)(Φ(ur(y))− βour(y))drdy −
1

2
v
(∅,µ(γ,n))
t−r (y)2

(

Ψ′(0+)ur(y)− κ(γ)Ψ(ur(y))e
−βo(t−r)

)

drdy

)

.

Replacing s with τγ∧ t and taking the expectation of the above equation, combining (4.1)
and the fact that almost surely for all r ≤ t ∧ τγ and y ∈ F ,

Ψ′(0+)ur(y)− κ(γ)Ψ(ur(y))e
−βo(t−r) ≥ Ψ′(0+)ur(y)− κ(γ)Ψ(ur(y)) ≥ 0,

we have

Ẽε1U

[

exp
{

−κ(γ)e−βo(t−t∧τγ )M (0,n)
τγ∧t

}]

≤ exp
{

−κ(γ)e−βotM
(0,n)
0

}

−
κ(γ)

2
Ẽε1U

[
∫ τγ∧t

0

∫

F c

exp
{

−κ(γ)e−βo(t−r)M (0,n)
r

}

e−βo(t−r)v
(∅,µ(0,n))
t−r (y)2 ×
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(

Ψ′(0+)ur(y)− κ(γ)Ψ(ur(y))e
−βo(t−r)

)

drdy

]

≤ exp
{

−κ(γ)e−βotM
(0,n)
0

}

+
1

2
Ẽε1U

[
∫ t

0

∫

F c

v
(∅,µ(0,n))
t−r,y (y)2Ψ(ur(y))drdy

]

,

where in the last inequality we used the fact that κ(γ) ≤ 1.
According to (4.1) and Lemma 4.2, we concluded from above inequality that

Ẽε1U

[

exp
{

−κ(γ)e−βo(t−t∧τγ )M (0,n)
τγ∧t

}]

≤ exp
{

−κ(γ)e−βotM
(0,n)
0

}

+ εβce
λot

∫ t

0

∫

F c

v
(∅,µ(0,n))
t−r (y)2drdy.

Finally, noticing that

0 ≤ κ(γ)e−βo(t−t∧τγ )M (0,n)
τγ∧t ≤ e−βo(t−t∧τγ )M (0,n)

τγ∧t

and that

Ẽε1U

[

exp
{

−e−βo(t−t∧τγ )M (0,n)
τγ∧t

}]

≥ Ẽε1U

[

exp
{

−M (0,n)
t

}]

− P̃ε1U
(τγ ≤ t),

we conclude that

Ẽε1U

[

exp

{

−
n
∑

i=1

ut(xi)

}]

= Ẽε1U

[

exp
{

−M (0,n)
t

}]

≤ exp
{

−κ(γ)e−βotM
(0,n)
0

}

+ P̃ε1U
(τγ ≤ t) + εβce

λot

∫ t

0

∫

F c

v
(∅,µ(0,n))
t−r (y)2drdy.

Combining the above inequality and the fact that v
(0,µ(0,n))
t converges to v

(Λ,µ)
t (c.f. the

argument below [BMS24a, (2.18)]), we get (4.16). �

C. Proof of Lemma 4.7

Let βo, (pk)
∞
k=0, βc and (qk)

∞
k=0 be given as in (1.2)–(1.5). Suppose that (1.10), (1.11)

and (1.16) hold. Let Φ and Ψ be given as in (1.14) and (1.15) respectively. Let f be
a measurable function on R which can be approximated by the elements of C(R, [0, z∗])
monotonically from below. Let (ut)t>0 be the continuous C(R, [0, z∗])-valued process given
as in Proposition 3.6, with initial value u0 = f , on a probability space whose probability
measure will be denoted by P̃f .

In this section, we prove Lemma 4.7 following the standard strategy of [Tri95]. From
(3.12), we can assume without loss of generality, c.f. [KS88, Proof of Lemma 2.4], that

there exists a stochastic basis (Ω̃, F̃ , (F̃t)t≥0, P̃f ,W ) such that (ut)t>0 is an (F̃t)t≥0-
adapted C(R, [0, z∗])-valued continuous process, and that, for each φ ∈ C∞

c (R), almost
surely,

∫

ut(x)φ(x)dx =

∫

f(x)φ(x)dx+

∫∫ t

0

us(y)
φ′′(y)

2
dsdy −
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∫∫ t

0

Φ(us(y))φ(y)dsdy +

∫∫ t

0

Ψ(us(y))W (dsdy), t ≥ 0.

It is then standard, c.f. [Shi94, Theorem 2.1], that the mild form (3.2) holds almost
surely for every (t, x) ∈ (0,∞)×R. Define continuous random fields (M(s, y))s≥0,y∈R and
(N(s, y))s≥0,y∈R such that for any s > 0 and y ∈ R,

M(s, y) :=

∫∫ s

0

ps−r(y − z)Φ(ur(z))drdz,

N(s, y) := us(y)−
∫

ps(y − z)f(z)dz +

∫∫ t

0

ps−r(y − z)Φ(ur(z))drdz

and M0(y) := N0(y) = 0. Note that, for every s > 0 and y ∈ R, almost surely

N(s, y) =

∫∫ s

0

ps−r(y − z)
√

Ψ(ur(z))W (drdz). (C.1)

In the following, we take ps(x) := 0 when s ≤ 0 and x ∈ R for the sake of notation
conveniences.

Lemma C.1. For every t > 0, uniformly for every (s, y), (s′, y′) ∈ [0, t]× R,

K(1)
s,y;s′y′ :=

∫∫ ∞

0

|ps−r(y − z)− ps′−r(y
′ − z)| dzdr . |y − y′|+

√

|s− s′| (C.2)

and

K(2)
s,y;s′y′ :=

∫∫ ∞

0

(ps−r(y − z)− ps′−r(y
′ − z))

2
dzdr . |y − y′|+

√

|s− s′|. (C.3)

Proof. For (C.3), see [Shi94, Lemma 6.2 (i)]. We now prove (C.2). Let t > 0 and let
(s, y), (s′, y′) ∈ [0, t]×R be arbitrary. Without loss of generality, let us assume that s′ ≤ s

and define δs := s− s′ and δy := |y − y′|. Note that K(1)
s,y;s′y′ ≤ I1 + I2 where

I1 :=

∫∫ ∞

0

|ps−r(y − z)− ps−r(y
′ − z)|drdz =

∫∫ s

0

|pr(z + δy)− pr(z)|drdz

and

I2 :=

∫∫ ∞

0

|ps−r(y
′ − z)− ps′−r(y

′ − z)|drdz =
∫∫ s′

−δs

|pδs+r(z)− pr(z)| drdz.

For I1, we get that uniformly for the arbitrary (s, y), (s′, y′) ∈ [0, t]× R,

I1 ≤
∫∫ s

0

∫ δy

0

|ξ + z|√
2πr3

e−(ξ+z)2/(2r)dξdrdz = δy

∫ |z|√
2π
e−z2/2dz

∫ s

0

1√
r
dr . δy.

For I2, we decompose it as I2 = I21+I22 where uniformly for the arbitrary (s, y), (s′, y′) ∈
[0, t]× R,

I21 :=

∫∫

√
δs∧s′

−δs

|pδs+r(z)− pr(z)|drdz ≤ 2δs + 2
√

δs ∧ s′ .
√

δs
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and

I22 :=

∫∫ s′

√
δs∧s′

|pδs+r(z)− pr(z)|drdz =
∫∫ s′∨

√
δs

√
δs

|pδs+r(z)− pr(z)|drdz

≤
∫∫ s′∨

√
δs

√
δs

∫ δs+r

r

∣

∣

∣

∣

− 1

2a
+

z2

2a2

∣

∣

∣

∣

pa(z)dadrdz ≤
∫ s′∨

√
δs

√
δs

∫ δs+r

r

1

a
dadr

=

∫ s′∨
√
δs

√
δs

log

(

δs + r

r

)

dr ≤
∫ s′∨

√
δs

√
δs

δs
r
dr ≤

∫ s′∨
√
δs

√
δs

√

δsdr .
√

δs.

We are done. �

Lemma C.2. Let U be an open interval and ε ∈ (0, 1). Let the initial value f of the
process (ut)t≥0 be given by f = ε1U . Then for any p > 1 and t > 0, uniformly for the
arbitrary open interval U , the arbitrary parameter ε ∈ (0, 1), s, s′ ∈ (0, t) and y, y′ ∈ R,
we have

Ẽε1U

[

|M(s, y)−M(s′, y′)|p
]

. ε
(

|y − y′|+
√

|s− s′|
)p−1

(Py(Bs ∈ U) +Py′(Bs′ ∈ U)),

and

Ẽε1U

[

|N(s, y)−N(s′, y′)|2p
]

. ε
(

|y − y′|+
√

|s− s′|
)p−1

(Py(Bs ∈ U) +Py′(Bs′ ∈ U)).

Proof. From (4.1) we know that the random field Ψ(u) is bounded by a deterministic
constant. Therefore, uniformly for the arbitrary open interval U , the arbitrary parameter
ε ∈ (0, 1), s, s′ ∈ (0, t) and y, y′ ∈ R, we have

|M(s, y)−M(s′, y′)| ≤
∫∫ ∞

0

|ps−r(y − z)− ps′−r(y
′ − z)| |Φ(ur(z))|drdz . K(1)

s,y′;s′,y′.

From (4.1), Lemma 4.2, and the Markov property of the Brownian motion that, uniformly
for the arbitrary open interval U , the arbitrary parameter ε ∈ (0, 1), and (s, y) ∈ [0, t]×R,

Ẽε1U
[|M(s, y)|] ≤

∫∫ s

0

ps−r(y − z)Ẽε1U
[|Φ(ur(z))|]drdz

.

∫∫ s

0

ps−r(y − z)Ẽε1U
[ur(z)]drdz . ε

∫∫ s

0

ps−r(y − z)Pz(Br ∈ U)drdz

= ε

∫ s

0

Ey

[

PBs−r(Br ∈ U)
]

dr = εsPy(Bs ∈ U).

Therefore, for every p > 1, from Lemma C.1, uniformly for the arbitrary open interval
U , the arbitrary parameter ε ∈ (0, 1), and (s, y), (s′, y′) ∈ [0, t]× R,

Ẽε1U

[

|M(s, y)−M(s′, y′)|p
]

.
(

K(1)
s,y′;s′,y′

)p−1(

Ẽε1U
[|M(s, y)|] + Ẽε1U

[|M(s′, y′)|]
)

. ε
(

|y − y′|+
√

|s− s′|
)p−1

(Py(Bs ∈ U) +Py′(Bs′ ∈ U))

as desired for the first inequality.
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For the second inequality, by (C.1), Burkholder-Davis-Gundy’s inequality, (4.1), the
fact that the random field u is bounded by 2, and the trivial inequality (a−b)2 ≤ 2(a2+b2),
we verify that, for every p > 1, and uniformly for the arbitrary open interval U , the
arbitrary parameter ε ∈ (0, 1), and (s, y), (s′, y′) ∈ [0, t]× R,

Ẽε1U

[

|N(s, y)−N(s′, y′)|2p
]

= Ẽε1U

[

∣

∣

∣

∣

∫∫ ∞

0

(ps−r(y − z)− ps′−r(y
′ − z))

√

Ψ(ur(z))W (drdz)

∣

∣

∣

∣

2p
]

. Ẽε1U

[(
∫∫ ∞

0

(ps−r(y − z)− ps′−r(y
′ − z))

2
Ψ(ur(z))drdz

)p]

. Ẽε1U

[(
∫∫ ∞

0

(ps−r(y − z)− ps′−r(y
′ − z))

2
ur(z)drdz

)p]

.
(

K(2)
s,y;s′,y′

)p−1
∫∫ ∞

0

(ps−r(y − z)− ps′−r(y
′ − z))

2Ẽε1U
[ur(z)]drdz

.
(

K(2)
s,y;s′,y′

)p−1
∫∫ ∞

0

(

ps−r(y − z)2 + ps′−r(y
′ − z)2

)

Ẽε1U
[ur(z)]drdz.

From Lemma 4.2, we have uniformly for the arbitrary open interval U , the arbitrary
parameter ε ∈ (0, 1), and (s, y) ∈ [0, t]× R,

∫∫ ∞

0

ps−r(y − z)2Ẽε1U
[ur(z)]drdz . ε

∫∫ ∞

0

ps−r(y − z)2Pz(Br ∈ U)drdz

≤ ε

∫∫ ∞

0

1
√

2π(s− r)
ps−r(y − z)Pz(Br ∈ U)drdz

= ε

∫ s

0

1
√

2π(s− r)
Py(Bs ∈ U)dr . εPy(Bs ∈ U).

Now, from above and Lemma C.1, for every p > 1, uniformly for the arbitrary open
interval U , the arbitrary parameter ε ∈ (0, 1), and (s, y), (s′, y′) ∈ [0, t]× R, we have

Ẽε1U

[

|N(s, y)−N(s′, y′)|2p
]

. ε
(

K(2)
s,y;s′,y′

)p−1

(Py(Bs ∈ U) +Py′(Bs′ ∈ U))

. ε
(

|y − y′|+
√

|s− s′|
)p−1

(Py(Bs ∈ U) +Py′(Bs′ ∈ U)),

which implies the second inequality. We are done. �

Proof of Lemma 4.7. Let us first show (4.17). Let ε ∈ (0, γ/2) be arbitrary, and assume
that f , the initial value of the process (ut)t≥0, is given by ε1U . By (3.2), we see that

us(y) ≤ ε+ |M(s, y)|+ |N(s, y)|, (s, y) ∈ [0,∞)× R, a.s.

Therefore, we only need to prove that uniformly for the arbitrary ε ∈ (0, γ/2),

P̃ε1U

(

sup
s≤t,y∈F

(|M(s, y)|+ |N(s, y)|) > γ

2

)

. ε. (C.4)
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Without loss of generality, we assume that F̃ = F \ {sup(F )} is non-empty. In the

following, we construct a dyadic approximation of the time-space region [0, t)× F̃ . Note
that there exists an (at most) countable set F0 and a constant δ ∈ (0, 1] such that F̃ is
the disjoint union ∪y∈F0 [y, y + δ). Define a sequence of time-space lattices (Lm)m∈Z+ , so
that L0 := {(0, y) : y ∈ F0}, and inductively,

Lm :=
⋃

(s,y)∈Lm−1

{(s, y), (s+ t2−m, y), (s, y + δ2−m), (s+ t2−m, y + δ2−m)}, m ∈ Z+.

For each m ∈ Z+, define a map Γm from [0, t) × F̃ to the lattice Lm such that for

every (s, y) ∈ [0, t)× F̃ , (sm, ym) = Γm(s, y) is the unique element in Lm satisfying that
sm ≤ s < sm + t2−m and ym ≤ y < ym + δ2−m. It is not hard to observe that

(C.5) Γm ◦ Γm = Γm and Γm−1 ◦ Γm = Γm−1 for each m ∈ N;

and that

(C.6) Γm(s, y) converges to (s, y) when m ↑ ∞ for every (s, y) ∈ [0, t)× F̃ .

Moreover, for every m ∈ N, and (s, y) ∈ [0, t)× R,

|ym − ym−1|+
√

|sm − sm−1| ≤ t2−(m−1) +
√
δ2−(m−1) ≤ (2t+

√
2δ)2−m/2 (C.7)

provided (sm, ym) = Γm(s, y) and (sm−1, ym−1) = Γm−1(s, y).
Let us consider an event on which the fluctuations of the random fields M and N on

the dyadic lattices (Lm)
∞
m=0 are delicately controlled. That is, we consider the event

A :=

∞
⋂

m=1

⋂

(s,y)∈Lm

2
⋂

k=1

Ak
m(s, y) (C.8)

where, for any (s, y) ∈ [0, t)× F̃ ,

A1
m(s, y) :=

{

|(M ◦ Γm −M ◦ Γm−1)(s, y)| ≤ γ02
−m/10

}

,

A2
m(s, y) :=

{

|(N ◦ Γm −N ◦ Γm−1)(s, y)| ≤ γ02
−m/10

}

and γ0 > 0 is a constant determined so that γ0
∑∞

m=1 2
−m/10 = γ/4. Now, almost surely

on the event A, from (C.6), the fact that M and N are continuous random fields, that

N ◦ Γ0 =M ◦ Γ0 = 0 on [0, t)× F̃ , and (C.5), we have, for every (s, y) ∈ [0, t)× F̃ ,

|M(s, y)| =
∣

∣

∣

∣

∣

∞
∑

m=1

(M ◦ Γm −M ◦ Γm−1)(s, y)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

m=1

(M ◦ Γm −M ◦ Γm) ◦ Γm−1(s, y)

∣

∣

∣

∣

∣

≤
∞
∑

m=1

γ02
−m/10 = γ/4,

and similarly, |N(s, y)| ≤ γ/4. In particular, the event in (C.4) is contained in Ac.
Therefore, to show (C.4), it is suffice to show that

(C.9) uniformly for the arbitrary ε ∈ (0, γ/2), P̃ε1U
(Ac) . ε.
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Define ΘU(s, y) := Py(Bs ∈ U) the probability that a Brownian motion initiated at
location y ∈ R is in the interval U at time s ≥ 0. By the Markov inequality, (C.7), and
Lemma C.2, uniformly for the arbitrary open interval U , the arbitrary closed interval
F satisfying that U ∩ F is bounded, the arbitrary parameter ε ∈ (0, γ/2), m ∈ N, and
(s, y) ∈ Lm, we have

P̃ε1U

(

A1
m(s, y)

c
)

≤ Ẽε1U

[

|(M ◦ Γm −M ◦ Γm−1)(s, y)|20
]

/(γ02
−m/10)20

. ε
(

(2t+
√
2δ)2−m/2

)19

(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y)/(γ02
−m/10)20

. ε2−15m/2(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y)

and

P̃ε1U

(

A2
m(s, y)

c
)

≤ Ẽε1U

[

|(N ◦ Γm −N ◦ Γm−1)(s, y)|40
]

/(γ02
−m/10)40

. ε
(

(2t+
√
2δ)2−m/2

)19

(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y)/(γ02
−m/10)40

. ε2−11m/2(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y).

Now, from (C.8), uniformly for the arbitrary open interval U , the arbitrary closed interval
F satisfying that U ∩ F is bounded, the arbitrary parameter ε ∈ (0, γ/2), we have

P̃ε1U
(Ac) ≤

∞
∑

m=1

∑

(s,y)∈Lm

(

P̃ε1U

(

A1
m(s, y)

c
)

+ P̃ε1U

(

A2
m(s, y)

c
)

)

. ε
∞
∑

m=1

2−11m/2
∑

(s,y)∈Lm

(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y)

. ε

∞
∑

m=1

2−7m/2 1

t2−mδ2−m

∑

(s,y)∈Lm

(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y)

= ε

∞
∑

m=1

2−7m/2

∫

F

∫ t

0

(ΘU ◦ Γm +ΘU ◦ Γm−1)(s, y)dsdy

. ε

∞
∑

m=0

2−7m/2

∫

F

∫ t

0

(ΘU ◦ Γm)(s, y)dsdy. (C.10)

Since U ∩ F is bounded, it is not hard to verify the following analytic results:
∫

F

∫ t

0

(ΘU ◦ Γm)(s, y)dsdy <∞, m ∈ Z+

and

lim
m→∞

∫

F

∫ t

0

(ΘU ◦ Γm)(s, y)dsdy =

∫

F

∫ t

0

ΘU(s, y)dsdy <∞,

which together imply that
∞
∑

m=0

2−7m/2

∫

F

∫ t

0

(ΘU ◦ Γm)(s, y)dsdy <∞.
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Now, from (C.10) we have (C.9), and therefore, the desired (4.17).
Note that C1(U, F, t, γ) is increasing in t > 0. Therefore, lim supt↓0 C1(U, F, t, γ) <∞.

Finally, let us take Ũ to be an arbitrary open interval such that its intersection with
FK := [K,∞) is bounded for every K ∈ R. From (C.10), we can verify that, uniformly
for every K ∈ R,

C1(Ũ , FK , t, γ) .

∞
∑

m=0

2−7m/2

∫ ∞

K

∫ t

0

(ΘŨ ◦ Γm)(s, y)dsdy <∞.

By the monotone convergence theorem, we have limK↑∞C1(Ũ , FK , t, γ) = 0 as desired.
We are done. �

D. Proofs of Lemmas 5.1, 5.5, Propositions 5.8, 5.13, and Lemma 5.16

Proof of Lemma 5.1. It is clear that there exists K > 0 such that g(x) = 1 for every
|x| > K and ν({−K,K}) = 0. Therefore, c.f. [Kal17, proof of Lemma 4.12], we have
limm→∞ νm((−K,K)) = ν((−K,K)). Furthermore, there exists a finite integer κ ≥ 0, a
finite list of distinct points (zi)

κ
i=1 in R, and a finite list (li)

κ
i=1 in N, such that 1(−K,K)ν =

∑κ
i=1 liδzi . Note that ν((−K,K)) =

∑κ
i=1 li. Let ǫ > 0 be small enough so that, for every

i 6= j in {1, . . . , κ}, [zi − ǫ, zi + ǫ] and [zj − ǫ, zj + ǫ] are disjoint subsets of (−K,K). Now
for every i ∈ {1, . . . , κ}, since ν({zi− ǫ, zi+ ǫ}) = 0, we have, c.f. [Kal17, proof of Lemma
4.12] again,

lim
m→∞

νm([zi − ǫ, zi + ǫ]) = ν([zi − ǫ, zi + ǫ]) = ν({zi}) = li.

Denoting

A := (−K,K) \
(

κ
⋃

i=1

[zi − ǫ, zi + ǫ]

)

,

we also have, with a similar reason, that limm→∞ νm(A) = ν(A) = 0. Noticing that for
any subset B ⊂ R and m ∈ N, νm(B) takes non-negative integer values. Therefore, there
exists M0 > 0 such that for all m ≥M0, we have νm(A) = 0 and

νm([zi − ǫ, zi + ǫ]) = li, i ∈ {1, . . . , κ}.

So, for every m ≥M0 and i ∈ {1, . . . , κ}, there is a finite list (z(m)
i,j )lij=1 in [zi−ǫ, zi+ǫ] such

that 1[zi−ǫ,zi+ǫ]νm =
∑li

j=1 δz(m)
i,j
. In particular, for every m ≥ M0, we have 1(−K,K)νm =

∑κ
i=1

∑li
j=1 δz(m)

i,j
. Now, for every m ≥ M0,

∣

∣

∣

∣

∣

∏

z∈R
g(z)νm({z}) −

∏

z∈R
g(z)ν({z})

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

κ
∏

i=1

li
∏

j=1

g(z
(m)
i,j )−

κ
∏

i=1

li
∏

j=1

g(zi)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

κ
∑

i0=1

li0
∑

j0=1

(

i0
∏

i=1

j0−1
∏

j=1

g(z
(m)
i,j )

)(

κ
∏

i=i0

li
∏

j=j0+1

g(zi)

)

(

g(z
(m)
i0,j0

)− g(zi0)
)

∣

∣

∣

∣

∣

∣
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≤
κ
∑

i=1

li
∑

j=1

∣

∣

∣
g(z

(m)
i,j )− g(zi)

∣

∣

∣
≤

κ
∑

i=1

li
∑

j=1

sup{|g(y)− g(zi)| : y ∈ [zi − ǫ, zi + ǫ]}.

Taking m→ ∞ in the above inequality, we get

lim sup
m→∞

∣

∣

∣

∣

∣

∏

z∈R
g(z)νm({z}) −

∏

z∈R
g(z)ν({z})

∣

∣

∣

∣

∣

≤
κ
∑

i=1

li
∑

j=1

sup{|g(y)− g(zi)| : y ∈ [zi − ǫ, zi + ǫ]}.

From the fact that ǫ > 0 can be taken arbitrarily small, κ and (li)
κ
i=1 do not depend on

ǫ when ǫ→ 0, and that g is a continuous function, we have

lim sup
m→∞

∣

∣

∣

∣

∣

∏

z∈R
g(z)νm({z}) −

∏

z∈R
g(z)ν({z})

∣

∣

∣

∣

∣

= 0.

Now the desired result (5.1) holds. �

Proof of Lemma 5.5. Recall that z∗ ∈ [1, 2). Define I := {i ∈ N : zi ∈ (1, z∗]} and
J := {i ∈ N : zi = 1}.

Step 1. Suppose that J 6= ∅. Without loss of generality, we assume that z1 = 1.
Clearly, the right hand side of (5.12) is 0. Notice that

∣

∣

∣

∣

∣

k
∏

i=1

(

1− z
(m)
i

)

∣

∣

∣

∣

∣

≤ |1− z
(m)
1 |.

Taking k → ∞ first, and then m→ ∞, we obtain that

lim sup
m→∞

∣

∣

∣

∣

∣

∞
∏

i=1

(

1− z
(m)
i

)

∣

∣

∣

∣

∣

= 0.

This implies the desired (5.12) in this case.
Step 2. Suppose that |I| = ∞. It is clear that the right hand side of (5.12) is 0. In

this case, for any k ∈ N, there exists Nk ∈ N such that |Ik| = k where Ik := {i ∈ N : i ≤
Nk, zi ∈ (1, z∗]}. Note that, for each k ∈ N, there exists an Mk ∈ N, such that for any

m ≥Mk and i ∈ Ik, z
(m)
i ∈ (1, z∗]. So for any k ∈ N and m ≥Mk,
∣

∣

∣

∣

∣

∞
∏

i=1

(1− z
(m)
i )

∣

∣

∣

∣

∣

≤
∏

i∈Ik

∣

∣

∣
1− z

(m)
i

∣

∣

∣
≤ |1− z∗|k.

Taking m→ ∞ first, and then k → ∞, we obtain that

lim sup
m→∞

∣

∣

∣

∣

∣

∞
∏

i=1

(1− z
(m)
i )

∣

∣

∣

∣

∣

= 0.

So (5.12) holds in this case.
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Step 3. Suppose that |J | = 0 and |I| = K for some finite integer K. Without loss of
generality, we assume that I = {1, . . . , K}. Then, for any m ∈ N and integer i > K,

0 ≤ z
(m)
i ≤ zi < 1. Therefore,

K+l
∏

i=1

(

1− z
(m)
i

)

=

(

K
∏

i=1

(

1− z
(m)
i

)

)

exp

{

−
K+l
∑

i=K+1

− log
(

1− z
(m)
i

)

}

.

Taking l → ∞ first, and then m→ ∞, by the monotone convergence theorem, we have

lim
m→∞

∞
∏

i=1

(

1− z
(m)
i

)

=

(

K
∏

i=1

(1− zi)

)

exp

{

−
∞
∑

i=K+1

− log(1− zi)

}

.

So (5.12) also holds in this case. We are done. �

Proof of Proposition 5.8. It is clear from (1.11) and (1.18) that γ0 ≤ γ. Let t > 0 and
ε ∈ (0, γ0 ∧ 1

2
). From Proposition 5.6,

E(Λ,µ)

[

(1− ε)Z̃t(U)
]

= Ẽε1U

[ ∞
∏

i=1

(1− ut(xi))

]

.

Together with Lemmas 4.4 and 4.6, we conclude from the above equality that

E(Λ,µ)

[

(1− ε)Z̃t(U)
]

≥ Ẽε1U

[

exp

{

−θ(γ)
∞
∑

i=1

ut(xi)

}]

− 2P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

≥ exp

{

− εeλot

1− γ

∫

U

v
(Λ,µ)
t (y)dy

}

− P̃ε1U

(

sup
s≤t,y∈F

us(y) >
γ

2βc
Ψ′(0+)

)

− εΨ′(0+)e2λot

2(1− γ)
V(Λ,µ,F )
t − 2P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

≥ exp

{

− εeλot

1− γ

∫

U

v
(Λ,µ)
t (y)dy

}

− 3εC1(U, F, t, γ0)−
εΨ′(0+)e2λot

2(1− γ)
V(Λ,µ,F )
t

where in the last inequality we used Lemma 4.7. It is clear from the monotone convergence
theorem that E[Z] = limε↓0

1
ε
E[1− (1− ε)Z ] for any non-negative integer-valued random

variable Z. Therefore,

E(Λ,µ)

[

Z̃t(U)
]

= lim
ε↓0

1

ε

(

1− E(Λ,µ)

[

(1− ε)Z̃t(U)
])

≤ lim
ε↓0

1

ε

(

1− exp

{

− εeλot

1 − γ

∫

U

v
(Λ,µ)
t (y)dy

})

+ 3C1(U, F, t, γ0) +
Ψ′(0+)e2λot

2(1− γ)
V(Λ,µ,F )
t

=
eλot

1− γ

∫

U

v
(Λ,µ)
t (y)dy +

Ψ′(0+)e2λot

2(1− γ)
V(Λ,µ,F )
t + 3C1(U, F, t, γ0), (D.1)

which implies the desired result. From Lemma 4.5 (i) and (ii), we know that the right
hand side of (D.1) is finite. �



SUPPLEMENTARY MATERIAL 17

Proof of Proposition 5.13. Without loss of generality, we assume that g is non-negative.
Also, it is suffice to show that the process (Z̃t(g))t∈[a,b), restircted on an fixed arbitrary
interval [a, b) ⊂ (0,∞), has a measurable version.

Step 1. Let us consider the dyadic discretization of the interval [a, b). That is, for each
t ∈ [a, b) and m ∈ N, we define

tm := inf

{

s > t : ∃k ∈ N, s = a+
k

2m
(b− a)

}

.

In particular, 0 < tm − t ≤ 1/2m. Define X
(m)
t := Z̃tm(g) for every t ∈ [a, b) and m ∈ N.

Clearly, for every w ∈ Ω and m ∈ N, the map t 7→ X
(m)
t (ω) is measurable on [a, b)

w.r.t. the Borel σ-field B[a,b). This allows us to define, for each m ∈ N, a measurable map

X(m) : (t, ω) 7→ X
(m)
t (ω) on the product measurable space ([a, b) × Ω,B[a,b) ⊗ F), which

will be equipped with a product probability measure

M[a,b)(dx, dω) :=
1[a,b)(x)dx

b− a
⊗ P(Λ,µ)(dω), (x, ω) ∈ [a, b)× Ω.

Step 2. We investigate the limit of the measurable map X(m) when m ↑ ∞. Fixing

an arbitrary ǫ > 0. Define Gl,m(t) := P(Λ,µ)(|X(l)
t − X

(m)
t | > ǫ) for every t ∈ [a, b) and

l, m ∈ N. By Lemma 5.10, we get that for each t ∈ [a, b),

sup
l,m≥N

Gl,m(t)

≤ sup
l≥N

P(Λ,µ)

(

|X(l)
t − Z̃t(g)| >

ǫ

2

)

+ sup
m≥N

P(Λ,µ)

(

|X(m)
t − Z̃t(g)| >

ǫ

2

)

−−−→
N→∞

0.

From Fubini’s theorem and bounded convergence theorem, we see that

sup
l,m≥N

M[a,b)

(

|X(l) −X(m)| > ǫ
)

= sup
l,m≥N

1

b− a

∫ b

a

Gl,n(t)dt

≤ 1

b− a

∫ b

a

sup
l,m≥N

Gl,m(t)dt −−−→
N→∞

0.

Therefore,

lim sup
N→∞

sup
l,m≥N

∫

(
∣

∣

∣
X

(l)
t (ω)−X

(m)
t (ω)

∣

∣

∣
∧ 1
)

M[a,b)(dt, dω)

≤ ǫ+ lim sup
N→∞

sup
l,m≥N

M[a,b)

(

|X(l) −X(m)| > ǫ
)

= ǫ.

Since ǫ > 0 is arbitrarily chosen, we have

sup
l,m≥N

∫

(
∣

∣

∣
X

(l)
t (ω)−X

(m)
t (ω)

∣

∣

∣
∧ 1
)

M[a,b)(dt, dω) −−−→
N→∞

0.

Therefore, (X(m))m∈N is a Cauchy sequence in probability w.r.t. M[a,b) in the sense of

[Kal21, p. 104]. The limit, denoted by Ŷ g, is clearly a measurable function on ([a, b) ×
Ω,B[a,b) ⊗ F).
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Step 3. By Step 1 and [Kal21, Lemma 5.2], there exists a strictly increasing sequence

(mk)
∞
k=1 in N such that (X(mk))k∈N converges almost surely to Ŷ g w.r.t. M[a,b). Let Ξ

be a measurable null subset of the probability space ([a, b) × Ω,B[a,b) ⊗ F ,M[a,b)) which

contains all elements (t, ω) such that X
(mk)
t (ω) does not converge to Ŷ g(t, ω) when k ↑ ∞.

By the Fubini’s theorem, the Lebesgue measure of the Borel measurable set K := {t ∈
[a, b) :

∫

1Ξ(t, ω)PΛ,µ(dω) > 0} is 0. Now for each t ∈ [a, b), define a random variable Ỹ g
t

on Ω such that Ỹ g
t (ω) = Z̃t(g)(ω)1K(t) + Ŷ g(t, ω)1Kc(t) for every ω ∈ Ω. It is clear that

(Ỹ g
t )t∈[a,b) is a measurable process.

Step 4. We finish the proof by showing that (Ỹ g
t )t∈[a,b) is a version of (Z̃t(g))t∈[a,b).

Note that for any t ∈ K, we already have P(Λ,µ)(Ỹ
g
t = Z̃t(g)) = 1 according to how Ỹ g

t is
defined. Therefore, we only have to consider the case when t ∈ [a, b)\K. In this case, we

have
∫

1Ξ(t, ω)P(Λ,µ)(dω) = 0, which implies that X
(mk)
t converges to Ỹ g

t almost surely

when k ↑ ∞ w.r.t. P(Λ,µ). From Lemma 5.10, we have that X
(mk)
t converges to Z̃t(g) in

probability. So we must have P(Λ,µ)(Ỹ
g
t = Z̃t(g)) = 1 as desired in this case. We are

done. �

Proof of Lemma 5.16. Step 1. We will show in this step that there exists an N -valued
process (Zt)t≥a such that almost surely, for every t ≥ a and every strictly decreasing

sequence (qm)m∈N in Q which converges to t, (Z̃qm)m∈N converges to Zt in N . We will
also show that, almost surely, for every strictly increasing sequence (qm)m∈N in Q∩ [a,∞),

(Z̃qm)m∈N converges in N .
Recall that N is equipped with the complete metric dN which is defined using a se-

quence (hi)i∈N in C∞
c (R). Note that almost surely for every q ∈ Q ∩ [a,∞) and i ∈ N,

Y hi
q = Z̃q(hi). Therefore, almost surely, for every strictly decreasing, or strictly increasing,

sequence (qm)m∈N in Q ∩ [a,∞),

sup
m,l≥N

dN
(

Z̃qm, Z̃ql

)

= sup
m,l≥N

∞
∑

i=1

1

2i

(

1 ∧
∣

∣

∣
Z̃qm(hi)− Z̃ql(hi)

∣

∣

∣

)

= sup
m,l≥N

∞
∑

i=1

1

2i
(

1 ∧
∣

∣Y hi
qm − Y hi

ql

∣

∣

)

≤
∞
∑

i=1

1

2i

(

1 ∧ sup
m,l≥N

∣

∣Y hi
qm − Y hi

ql

∣

∣

)

N→∞−−−→ 0.

Here, in the last step, we used the fact that almost surely for every i ∈ N, Y hi
s is càdlàg in

s > 0. Now, almost surely, for every strictly decreasing, or strictly increasing, sequence
(qm)m∈N in Q∩ [a,∞), (Z̃qm)m∈N is a Cauchy sequence w.r.t. the metric dN . The desired
result for this step must follow.

Step 2. We argue that (Zt)t≥a is anN -valued càdlàg process. On one hand, from Step 1,
we know that almost surely, for every t ≥ a and every strictly decreasing sequence (tm)m∈N
in R which converges to t, since there exists a strictly decreasing sequence (qm)m∈N in Q
such that q1 > t1 > q2 > t2 > . . . and that dN (Z̃qm, Ztm) ≤ 1/m for every m ∈ N, we
have

dN (Ztm , Zt) ≤ dN (Ztm , Z̃qm) + dN (Z̃qm, Zt)
m→∞−−−→ 0.
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On the other hand, from Step 1 again, almost surely, for every strictly increasing sequence
(tm)m∈N in [a,∞), since there exists a strictly increasing sequence (qm)m∈N in Q such that

t1 < q1 < t2 < q2 < . . . and that dN (Z̃qm, Ztm) ≤ 1/m for every m ∈ N, we have

sup
l,m≥N

dN (Ztm , Ztl) ≤ sup
l,m≥N

(

dN (Ztm , Z̃qm) + dN (Z̃qm, Z̃ql) + dN (Z̃ql, Ztl)
)

≤ 2

N
+ sup

l,m≥N
dN (Z̃qm, Z̃ql)

N→∞−−−→ 0.

Now, the desired result for this step holds.
Step 3. We argue that the process (Zt)t≥a is a modification of (Z̃t)t≥a. Let us fix an

arbitrary t ≥ a. Let (qm)m∈N be a strictly decreasing sequence in Q which converges to t.
Note that almost surely for each m, i ∈ N, Y hi

qm = Z̃qm(hi). Combined with Step 1, almost
surely, for each i ∈ N, we have

Zt(hi) = lim
m→∞

Z̃qm(hi) = lim
m→∞

Y hi
qm = Y hi

t

where in the last step we used the fact that almost surely Y hi
s is càdlàg in s > 0. Therefore,

we have almost surely Zt(hi) = Z̃t(hi) for each i ∈ N, which further implies that almost

surely dN (Zt, Z̃t) = 0. The desired result for this step now follows.
Step 4. Combining the results from Steps 2 and 3, (Z̃t)t≥a has a càdlàg modification.

According to the discussion at the beginning of this proof, we are done. �

E. Proof of Lemmas 6.2 and 6.3

Proof of Lemma 6.2. Let γ ∈ (0, 1) be arbitrary and γ0 = γΨ′(0+)/(2βc). Let F be the
smallest closed interval containing ∪∞

i=1(xi − 1, xi +1). It is clear that U ∩F is bounded.
By Lemmas 4.5 (ii), 4.7 and 6.1 (ii), we have

lim
t↓0

V(Λ,µ,F )
t

∫

U
v
(Λ,µ)
t (x)dx

= lim
t↓0

C1(U, F, t, γ0)
∫

U
v
(Λ,µ)
t (x)dx

= lim
t↓0

C1(U, F, t, γ)
∫

U
v
(Λ,µ)
t (x)dx

= 0. (E.1)

Therefore, by Proposition 5.8, we see that

lim sup
t↓0

E(Λ,µ)[Zt(U)]
∫

U
v
(Λ,µ)
t (x)dx

≤ 1

1− γ

γ↓0−→ 1. (E.2)

On the other hand, combining Proposition 5.6, Lemmas 4.4, 4.6 and 4.7, we have for any
γ ∈ (0, 1/2), ε ∈ (0, γ/2) and t > 0, taking κ(γ) as in (4.2),

E(Λ,µ)

[

(1− ε)Zt(U)
]

= Ẽε1U

[ ∞
∏

i=1

(1− ut(xi))

]

(E.3)

≤ Ẽε1U

[

exp

{

−
∞
∑

i=1

ut(xi)

}]

+ P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

.

≤ exp

{

−εκ(γ)e−βot

∫

U

v
(Λ,µ)
t (y)dy

}

+ 2P̃ε1U

(

sup
s≤t,y∈F

us(y) > γ

)

+ εβce
λotV(Λ,µ,F )

t



20 H. HOU AND Z. SUN

≤ exp

{

−εκ(γ)e−βot

∫

U

v
(Λ,µ)
t (y)dy

}

+ 2εC1(U, F, t, γ) + εβce
λotV(Λ,µ,F )

t .

Therefore, for any γ ∈ (0, 1/2) and t > 0,

E(Λ,µ)[Zt(U)] = lim
ε↓0

1

ε

(

1− E(Λ,µ)

[

(1− ε)Zt(U)
])

≥ κ(γ)e−βot

∫

U

v
(Λ,µ)
t (y)dy − 2C1(U, F, t, γ)− βce

λotV(Λ,µ,F )
t .

Using (E.1), we conclude that

lim inf
t↓0

E(Λ,µ)[Zt(U)]
∫

U
v
(Λ,µ)
t (x)dx

≥ κ(γ)
γ↓0−→ 1. (E.4)

Therefore, we arrive at the desired result by (E.2) and (E.4). �

Proof of Lemma 6.3. For any ϑ > 0 and t > 0, define

ε(U, ϑ, t) := 1− exp

{

−
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

ϑ

}

.

By Lemma 6.1 (ii), we have

e−βotε(U, ϑ, t)

∫

U

v
(Λ,µ)
t (x)dx

t↓0−→ ϑ, ϑ > 0.

Let F be the smallest closed interval containing ∪i∈N(xi−1, xi+1). Note from (E.1) that
for any ϑ > 0,

lim
t↓0

ε(U, ϑ, t)C1(U, F, t, γ) = lim
t↓0

ε(U, ϑ, t)

(
∫

U

v
(Λ,µ)
t (x)dx

)

C1(U, F, t, γ)
∫

U
v
(Λ,µ)
t (x)dx

= 0,

and similarly, limt↓0 ε(U, ϑ, t)V(Λ,µ,F )
t = 0. From (E.3), for every γ ∈ (0, 1/2), ϑ > 0, and

t > 0 small enough such that ε(U, ϑ, t) < γ/2,

E(Λ,µ)

[

exp

{

−ϑ
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

Zt(U)

}]

= E(Λ,µ)

[

(1− ε(U, ϑ, t))Zt(U)
]

≤ exp

{

−ε(U, ϑ, t)κ(γ)e−βot

∫

U

v
(Λ,µ)
t (y)dy

}

+ 2ε(U, ϑ, t)C1(U, F, t, γ)

+ ε(U, ϑ, t)βce
λotV(Λ,µ,F )

t

t↓0−→ e−ϑκ(γ) γ↓0−→ e−ϑ.

Therefore, for every ϑ > 0,

lim sup
t↓0

E(Λ,µ)

[

exp

{

−ϑ
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

Zt(U)

}]

≤ e−ϑ.
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On the other hand, by Jensen’s inequality E
[

e−|Y |] ≥ e−E[|Y |] and Lemma 6.2, for every
ϑ > 0,

E(Λ,µ)

[

exp

{

−ϑ
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

Zt(U)

}]

≥ exp

{

−ϑ
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

E(Λ,µ)[Zt(U)]

}

t↓0−→ e−ϑ.

Therefore, we have

lim
t↓0

E(Λ,µ)

[

exp

{

−ϑ
(
∫

U

v
(Λ,µ)
t (x)dx

)−1

Zt(U)

}]

= e−ϑ, ϑ > 0.

We are done. �
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