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Abstract In this paper we first establish a decomposition theorem for size-biased Poisson
random measures. As consequences of this decomposition theorem, we get a spine decom-
position theorem and a 2-spine decomposition theorem for some critical superprocesses.
Then we use these spine decomposition theorems to give probabilistic proofs of the asymp-
totic behavior of the survival probability and Yaglom’s exponential limit law for critical
superprocesses.
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1 Introduction

1.1 Motivation

It is well known that for a critical Galton-Watson process {(Zn)n∈N;P }, we have

nP (Zn > 0) −−−→
n→∞

2

σ 2
(1.1)

and {
Zn

n
;P (·|Zn > 0)

}
law−−−→

n→∞
σ 2

2
e, (1.2)

where σ 2 is the variance of the offspring distribution and e is an exponential random vari-
able with mean 1. The result (1.1) was first proved by Kolmogorov in [26] under a third
moment condition, and the result (1.2) is due to Yaglom [42]. For further references to these
results, see [21, 24]. Ever since these pioneering papers of Kolmogorov and Yaglom, lots
of analogous results have been obtained for more general critical branching processes. For
continuous time critical branching processes, see [3]; for discrete time multitype critical
branching processes, see [3, 22]; for continuous time multitype critical branching processes,
see [4]; and for critical branching Markov processes, see [2]. We will call results like (1.1)
Kolmogorov type results and results like (1.2) Yaglom type results. Similar results have also
been obtained for some superprocesses. Evans and Perkins [16] obtained both Kolmogorov
type and Yaglom type results for critical superprocesses when the branching mechanism
is (x, z) �→ z2 and the spatial motion satisfies some ergodicity conditions. Recently, Ren,
Song and Zhang [38] obtained similar limit results for a class of critical superprocesses with
general branching mechanisms and general spatial motions.

The proofs of the limit results in the papers mentioned above are all analytic in nature
and thus not very transparent. More intuitive probabilistic proofs would be very helpful. This
was first accomplished for critical Galton-Watson processes, see [17, 32] for probabilistic
proofs of (1.1), and [18, 32, 35] for probabilistic proofs of (1.2). For more general models,
Vatutin and Dyakonova [41] gave a probabilistic proof of a Kolmogorov type result for
multitype critical branching processes. Recently, Powell [34] gave probabilistic proofs of
both Kolmogorov type and Yaglom type results for a class of critical branching diffusions.
As far as we know, there is no probabilistic proof of Yaglom type result for multitype critical
branching processes, and there are no probabilistic proofs of both Kolmogorov type and
Yaglom type results for critical superprocesses yet.

In this paper, we will use the spine method to give probabilistic proofs of both Kol-
mogorov type and Yaglom type results for a class of critical superprocesses. We will first
establish a size-biased decomposition theorem for superprocesses (Theorem 1.2) which will
serve as a general framework for the spine method. Then, we will establish a spine de-
composition theorem for superprocesses (Theorem 1.5) which is more general than those
previously considered in [12, 13, 31]. We will also establish a 2-spine decomposition theo-
rem for a class of critical superprocesses (Theorem 1.9). Those spine decompositions are all
special forms of the aforementioned size-biased decomposition. Finally, we use these tools
to give probabilistic proofs of a Kolmogorov type result (Theorem 1.10) and a Yaglom type
result (Theorem 1.11) for critical superprocesses under slightly weaker conditions than [38].
To develop our decomposition for critical superprocesses, we first prove a size-biased de-
composition theorem for Poisson random measures (Theorem 1.3), which we think is of
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independent interest. Before we present our main results, we first give a brief review of
earlier results on the spine method.

The spine method was first introduced in [32]. Roughly speaking, the spine decompo-
sition theorem says that the size-biased transform of the branching process can be inter-
preted as an immigration branching process along with an immortal particle. This spine
approach is generic in the sense that it can be adapted to a variety of general branching
processes and is powerful in studying limit behaviors due to its relation with the size-
biased transforms. In this paper, by the size-biased transform of a stochastic process we
mean the following: Suppose that we are given, on some probability space (Ω,F ,P ), a
process (Xt)t∈Γ , with Γ being an arbitrary index set, and a non-negative random variable
G with P [G] ∈ (0,∞). We say a process {(Ẋt )t∈Γ ; Ṗ } is a G-transform of the process

{(Xt )t∈Γ ;P } if {(Ẋt )t∈Γ ; Ṗ } f.d.d.= {(Xt )t∈Γ ;P G}, where P G is a probability measure on Ω

given by dP G := (G/P [G]) dP . (This also give the definition of a size-biased transform of
a random variable since a random variable can be considered as a stochastic process whose
index is a singleton.)

Using the spine decomposition theorem for the Galton-Watson process (Zn)n≥0, Lyons,
Pemantle and Peres [32] investigated the Zn-transform of the process (Zk)0≤k≤n, which is
denoted by (Żk)0≤k≤n. Their key observation in the critical case is that U · Żn is distributed
approximately like Zn conditioned on {Zn > 0}, where U is an independent uniform random
variable on [0,1]. If one denotes by X the weak limit of Zn

n
conditioned on {Zn > 0}, and by

Ẋ the weak limit of Żn

n
, then [32] proved that Ẋ is the X-transform of the positive random

variable X and X
law= U · Ẋ, which implies that X is an exponential random variable.

The spine method is also used by Powell [34] to establish results parallel to (1.1) and (1.2)
for a class of critical branching diffusions {(Yt )t≥0; (Px)x∈D} in a bounded smooth domain
D ⊂ R

d . As have been discussed in [34], a direct study of the partial differential equation
satisfied by the survival probability (t, x) �→ Px(‖Yt‖ 
= 0) is tricky. Instead, by using a
spine decomposition approach, Powell [34] showed that the survival probability decays like
a(t)φ(x), where φ(x) is the principal eigenfunction of the mean semigroup of (Yt ) and a(t)

is a function capturing the uniform speed. In this paper, our proof of the Kolmogorov type
result for critical superprocesses follows a similar argument.

The spine method for superprocesses was developed in [12, 13, 31] and is very useful in
studying limit behaviors of supercritical superprocesses. Heuristically, the spine is the tra-
jectory of an immortal moving particle and the spine decomposition theorem says that, after
a martingale change of measure, the transformed superprocess can be decomposed in law
as an immigration process along this spine. The spine decomposition theorem established in
this paper is more general than those in [12, 13, 31]. We will say more about this in the next
subsection.

Very recently, we developed a 2-spine decomposition technique in [35] for critical
Galton-Watson processes and used it to give a new probabilistic proof of Yaglom’s re-
sult (1.2). One of the facts we used in [35] is that, if X is a strictly positive random variable
with finite second moment, then X is an exponential random variable if and only if

Ẍ
law= Ẋ + U · Ẋ′ (1.3)

where Ẋ and Ẋ′ are independent X-transforms of X; Ẍ is the X2-transform of X; and U

is again an independent uniform random variable on [0,1]. We then proved in [35] that the
Zn(Zn − 1)-transform of the critical Galton-Watson process (Zk)0≤k≤n, which is denoted as
(Z̈

(n)
k )0≤k≤n, can be interpreted as an immigration branching process along a 2-spine skele-

ton. One of those two spines is longer than the other. The spirit of our proof in [35] is to
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show that the immigration along the longer spine at generation n is distributed approxi-
mately like Żn, while the immigration along the shorter spine at generation n is distributed
approximately like Ż′

[U ·n]. Here Żn and Ż′
n are independent Zn-transforms of Zn. Roughly

speaking, we have Z̈(n)
n

law≈ Żn + Ż′
[U ·n], and therefore, if X is the weak limit of Zn

n
condi-

tioned on {Zn > 0}, then X is a positive random variable satisfying (1.3). In this paper, we
adapt the method of [35] to develop a 2-spine decomposition for critical superprocesses and
then use this 2-spine decomposition to give probabilistic proofs of Kolmogorov type and
Yaglom type results for superprocesses. The spirit of this paper is similar to that of [35], but
the arguments are more complicated.

The idea of multi-spine decomposition is not new. It was first introduced by Harris and
Roberts [19] in the context of branching processes. Our 2-spine methods for Galton-Watson
trees [35] and for superprocesses in this paper are both inspired by [19]. An analogous
k-spine decomposition theorem also appeared in [20] and [23] in the context of continuous
time Galton-Watson processes. The k-th size-biased transform of Galton-Watson trees is
also considered in [1]. A closely related infinite spine decomposition is also established in
[1] for the supercritical Galton-Watson tree.

There is another decomposition theorem for supercritical Galton-Watson trees with in-
finite spines which is first introduced in [3, Sect. 12] and is now known as the skeleton
decomposition. The infinite spines in [1] and the skeleton decomposition in [3, Sect. 12] are
two different decomposition theorems. Our 2-spine methods for Galton-Watson trees [35]
and for superprocesses in this paper are more relevant to [1].

We mention here that the analog of the skeleton decomposition in [3, Sect. 12] for super-
critical superprocesses is also available and is very popular. Heuristically, the skeleton is the
trajectories of all the prolific individuals, that is, individuals with infinite lines of descent.
The skeleton decomposition says that the supercritical superprocess itself can be decom-
posed in law as an immigration process along this skeleton. For the skeleton methods and its
applications under a variety of names, see [5, 6, 9, 12, 14, 15, 28, 29, 33, 36]. If we consider
critical superprocesses conditioned to be never extinct, then we will get the transformed su-
perprocesses (after a Doob’s h-transformation) considered in [12, 13, 31] for the classical
spine decomposition theorem. In this situation, there will be only one prolific individual
which is exactly the spine particle. So the natural analog of the skeleton decomposition in
the critical case is the classical spine decomposition. The skeleton decomposition will not
be used in this paper.

1.2 Main Results

Let E be a locally compact separable metric space. We will use bBE and pBE to denote
the collection of all bounded Borel functions and positive Borel functions on E respectively.
We write bpBE for bBE ∩ pBE . For any functions f,g and measure μ on E, we write
‖f ‖∞ := supx∈E |f (x)|, μ(f ) := ∫

E
f dμ, 〈μ,f 〉 := ∫

E
f dμ and 〈f,g〉μ := ∫

E
fgdμ as

long as they have meanings. We use 0 to denote the null measure and use f ≡ 0 to mean
that f is the zero function. If g(t, x) is a function on [0,∞)×E, we say g is locally bounded
if supt∈[0,T ],x∈E |g(t, x)| < ∞ for every T ≥ 0.

Let the spatial motion ξ = {(ξt )t≥0; (Px)x∈E} be an E-valued Hunt process with its life-
time denoted by ζ and its transition semigroup denoted by (Pt )t≥0. Let the branching mech-
anism ψ be defined as a function on E × [0,∞) by

ψ(x, z) = −β(x)z + α(x)z2 +
∫ ∞

0

(
e−zr − 1 + zr

)
π(x, dr), x ∈ E, z ≥ 0,
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with β ∈ bBE,α ∈ bpBE and π(x, dy) being a kernel from E to (0,∞) satisfying that

sup
x∈E

∫
(0,∞)

(
y ∧ y2

)
π(x, dy) < ∞.

Define an operator Ψ on pBE by

(Ψf )(x) := ψ
(
x,f (x)

)
, f ∈ pBE, x ∈ E.

Let Mf denote the space of all finite measures on E equipped with the weak topology.
A (ξ,ψ)-superprocess is an Mf -valued Hunt process X = {(Xt)t≥0; (Pμ)μ∈Mf

} satisfying

Pμ

[
e−Xt (f )

] = e−μ(Vt f ), t ≥ 0, μ ∈ Mf , f ∈ bpBE, (1.4)

where, for each f ∈ bpBE , the function (t, x) �→ Vtf (x) on [0,∞)×E is the unique locally
bounded positive solution to the equation

Vtf (x) + Px

[∫ t

0
(Ψ Vt−sf )(ξs)ds

]
= Px

[
f (ξt )

]
, t ≥ 0, x ∈ E. (1.5)

We refer our readers to [8, 10] and [30, Sect. 2.3 & Theorem 5.11] for detailed discussions
about the existence of such processes. Notice that we always have P0(Xt = 0) = 1 for each
t ≥ 0, i.e. the null measure 0 is an absorption state of the superprocess.

We will always assume that our superprocess is non-persistent:

Assumption 1 Pδx (Xt = 0) > 0 for each x ∈ E and t > 0.

By a size-biased transform of a measure we mean the following: For a non-negative
measurable function g on a measure space (D,FD,D) with D(g) ∈ (0,∞), we define the
g-transform Dg of the measure D by

dDg := g

D(g)
dD.

Note that, the measure D is not necessarily a probability measure, but after the g-transform,
Dg is always a probability measure.

Our first result is about a decomposition theorem of the size-biased transforms of super-
processes. To state it, we need to introduce the Kuznetsov measures (Nx)x∈E (also known as
the excursion measures or N-measures) of the superprocess X.

Lemma 1.1 ([30, Sect. 8.4 & Theorem 8.24]) Under Assumption 1, there exists an unique
family of σ -finite measures (Nx)x∈E defined on the Skorokhod space of measure-valued paths

W := {
w = (wt )t≥0 : w is an Mf -valued càdlàg function on [0,∞) having 0 as a trap

}

such that

(1) Nx{∀t > 0,wt = 0} = 0 for each x ∈ E;
(2) Nx{w0 
= 0} = 0 for each x ∈ E;
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(3) for each μ ∈ Mf , if N (dw) is a Poisson random measure on W with mean measure

Nμ(dw) :=
∫

E

Nx(dw)μ(dx), w ∈ W ,

then the process defined by

X̃0 := μ; X̃t :=
∫

W

wt N (dw), t > 0,

is a realization of the superprocess {X;Pμ}.

The measures (Nx)x∈E are called the Kuznetsov measures of the superprocess X. Note
that, the superprocess X itself can be considered as a W -valued random element. Roughly
speaking, the branching property of superprocess says that X can be considered as an “in-
finitely divisible” W -valued random element. The Kuznetsov measure Nx can then be inter-
preted as the “Lévy measure” of X under Pδx . We refer our readers to [11] and [30, Sect. 8.4]
for more details about such measures.

In the remainder of this paper, we will always use (Nx)x∈E to denote the Kuznetsov mea-
sures of our superprocess X. We will always use w = (wt )t≥0 to denote a generic element
in W . With a slight abuse of notation, we always assume that our superprocess X is given
by

X0 := μ; Xt :=
∫

W

wt N (dw), t > 0,

where, for each μ ∈ Mf , {N ;Pμ} is a Poisson random measure on W with mean mea-
sure Nμ. Recall that, for any w ∈ W and t ≥ 0, wt is a finite measure on E, and thus
wt(f ) = ∫

E
f (x)wt (dx) for any f ∈ pBE .

Our first result is about the N (F )-transform of the superprocess X, where F is a non-
negative measurable function on W with Nμ[F ] ∈ (0,∞) for a given μ ∈ Mf . In this case,
according to Campbell’s formula, we have

Pμ

[
N (F )

] =Nμ[F ] ∈ (0,∞).

Therefore, both N
F
μ —the F -transform of Nμ, and PN (F )

μ —the N (F )-transform of Pμ, are
well defined probability measures.

Theorem 1.2 Suppose that Assumption 1 holds. Let μ ∈ Mf and F be a non-negative
measurable function on W with Nμ(F ) ∈ (0,∞). Let {(Yt )t≥0;Qμ} be a W -valued random

element with law N
F
μ . Then we have {(Xt)t≥0;PN (F )

μ } f.d.d.= {(Xt + Yt )t≥0;Pμ ⊗ Qμ}.

In order to prove Theorem 1.2, we develop a decomposition theorem for size-biased
transforms of Poisson random measures which we think should be of independent interest:

Theorem 1.3 Let (S,S ) be a measurable space with a σ -finite measure N . Let {N;P }
be a Poisson random measure on (S,S ) with mean measure N . Let g ∈ pS satisfy
N(g) ∈ (0,∞). Denote by Ng and P N(g) the g-transform of N and the N(g)-transform
of P , respectively. Let {ϑ;Q} be an S-valued random element with law Ng . Then we have

{N;P N(g)} law= {N + δϑ ;P ⊗ Q}.
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Define (St )t≥0 the mean semigroup of the superprocess X by

Stf (x) := Px

[
e

∫ t
0 β(ξs ) dsf (ξt )

]
, x ∈ E, t ≥ 0, f ∈ pBE.

For each μ ∈ Mf , we define (μP)(·) := ∫
E
Px(·)μ(dx). Note that μP is not necessarily a

probability measure. It is well known (see [30, Proposition 2.27] for example) that for each
μ ∈ Mf , t ≥ 0 and f ∈ pBE ,

Pμ

[
Xt(f )

] = Nμ

[
wt(f )

] = (μP)
[
e

∫ T
0 β(ξs ) dsf (ξT )1T <ζ

] = μ(Stf ). (1.6)

Thanks to Theorem 1.2, in order to study the size-biased transform of a superprocess
we only have to study the corresponding size-biased transform of its Kuznetsov measures.
We first consider the case when the function F in Theorem 1.2 takes the form of F(w) =
wT (g) where T > 0 and g ∈ pBE with μ(ST g) ∈ (0,∞) for a given μ ∈ Mf . In this case,
according to (1.6), we have

Pμ

[
XT (g)

] = Nμ

[
wT (g)

] = (μP)
[
e

∫ T
0 β(ξs ) dsg(ξT )1T <ζ

] ∈ (0,∞).

Therefore, PXT (g)
μ —the XT (g)-transform of Pμ, N

wT (g)
μ —the wT (g)-transform of the

Kuznetsov measure Nμ, and P
(g,T )
μ —the (e

∫ T
0 β(ξs ) dsg(ξT )1T <ζ )-transform of the mea-

sure μP, are all well defined probability measures. Also note that, in this case, we have
XT (g) = N (F ), therefore PXT (g)

μ = PN (F )
μ . Recall that the superprocess X itself can be

considered as a W -valued random element. Denote by Pμ(X ∈ dw) the push-forward of Pμ

under X, i.e., the distribution of X under Pμ. Then, Pμ(X ∈ dw) is a probability measure
on W . Recall that we always assume that Assumption 1 holds.

Definition 1.4 Suppose that μ ∈ Mf , T > 0 and g ∈ pBE satisfy μ(ST g) ∈ (0,∞). We
say {(ξt )0≤t≤T , (Yt )0≤t≤T ,nT ; Ṗ(g,T )

μ } is a spine representation of NwT (g)
μ if the following are

true:

(1) The spine process {(ξt )0≤t≤T ; Ṗ(g,T )
μ } is a copy of {(ξt )0≤t≤T ;P(g,T )

μ }.
(2) Conditioned on σ(ξt : 0 ≤ t ≤ T ), the immigration process {(Yt )0≤t≤T ; Ṗ(g,T )

μ } is an
Mf -valued process given by

Yt :=
∫

(0,t]×W

wt−snT (ds, dw), 0 ≤ t ≤ T , (1.7)

where, nT is a Poisson random measure on [0, T ] × W with mean measure

mξ

T (ds, dw) := 2α(ξs)Nξs (dw) · ds +
∫

(0,∞)

yPyδξs
(X ∈ dw)π(ξs, dy) · ds. (1.8)

We are now ready to present our theorem on the spine decomposition of superprocesses:

Theorem 1.5 Suppose that Assumption 1 holds. Suppose that μ ∈ Mf , T > 0 and g ∈ pBE

satisfy μ(ST g) ∈ (0,∞). Let {(ξt )0≤t≤T , (Yt )0≤t≤T ,nT ; Ṗ(g,T )
μ } be a spine representation of

N
wT (g)
μ . Then, {(Yt )t≤T ; Ṗ(g,T )

μ } f.d.d.= {(wt )t≤T ;NwT (g)
μ }.

As a simple consequence of Theorems 1.2 and 1.5, we have the following:
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Corollary 1.6 Suppose that Assumption 1 holds. Suppose that μ ∈ Mf , T > 0 and
g ∈ pBE satisfy μ(ST g) ∈ (0,∞). Let {(ξt )0≤t≤T , (Yt )0≤t≤T ,nT ; Ṗ(g,T )

μ } be a spine repre-

sentation of NwT (g)
μ . Then, {(Xt)t≥0;PXT (g)

μ } f.d.d.= {(Xt + Yt )t≥0;Pμ ⊗ Ṗ(g,T )
μ }.

Corollary 1.6 can be considered as a generalization of the classical spine decomposition
theorem for superprocesses developed in [12, 13, 31]. In these earlier papers, the testing
function g is chosen specifically to be the principal eigenfunction φ of the mean semigroup
of the superprocess (which will be introduced shortly). In the classical case (i.e. g = φ), the
four families of probability measures (PXT (g)

μ )T ≥0, (P(g,T )
μ )T ≥0, (Ṗ(g,T )

μ )T >0 and (NwT (g)
μ )T >0

are all consistent, but in the general case (i.e. g 
= φ), they are typically not consistent. More
details about these consistencies will be provided in Lemma 3.4 and Remark 3.6.

In the papers mentioned in the paragraph above, the Kuznetsov measures have already
been used to describe infinitesimal immigrations along the spine. However, our Theorem 1.5
provides another relation between immigration and the Kuznetsov measures: the total im-
migration {(Yt )t≥0; Ṗ(g,T )

μ } actually has the law of a size-biased transform of the Kuznetsov
measures. It seems that this fact has not been exploited before, even in the classical case.

The study of the limit behavior of superprocesses X relies heavily on the spectral property
of the mean semigroup. In this paper, we assume the following:

Assumption 2 There exist a σ -finite Borel measure m with full support on E and a family
of strictly positive, bounded continuous functions {p(t, ·, ·) : t > 0} on E × E such that,

Ptf (x) =
∫

E

p(t, x, y)f (y)m(dy), t > 0, x ∈ E, f ∈ bBE, (1.9)

∫
E

p(t, x, y)m(dx) ≤ 1, t > 0, y ∈ E, (1.10)

∫
E

∫
E

p(t, x, y)2m(dx)m(dy) < ∞, t > 0, (1.11)

and that x �→ ∫
E

p(t, x, y)2m(dy) and y �→ ∫
E

p(t, x, y)2m(dx) are both continuous on E.

In the reminder of this paper, we will always use m to denote the reference measure in
Assumption 2.

Assumption 2 is a pretty weak assumption. (1.10) implies that the adjoint operator P ∗
t

of Pt is also Markovian, and (1.11) implies that Pt and P ∗
t are Hilbert-Schmidt opera-

tors. Under Assumption 2, it is proved in [38] and [39] that the semigroup (Pt )t≥0 and
its adjoint semigroup (P ∗

t )t≥0 are both strongly continuous semigroups of compact oper-
ators on L2(E,m). According to [38, Lemma 2.1], there exists a function q(t, x, y) on
(0,∞) × E × E which is continuous in (x, y) for each t > 0 such that

e−‖β‖∞tp(t, x, y) ≤ q(t, x, y) ≤ e‖β‖∞tp(t, x, y), t > 0, x, y ∈ E,

and that for any t > 0, x ∈ E and f ∈ bBE ,

Stf (x) =
∫

E

q(t, x, y)f (y)m(dy). (1.12)

(From (1.6), we see that q(t, x, y)m(dy) can be roughly interpreted as the density of the
expected mass of Xt at position y, under probability Pδx .) Define a family of transition
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kernels (S∗
t )t≥0 on E by

S∗
0 = I ; S∗

t f (y) :=
∫

E

q(t, x, y)f (x)m(dx), t > 0, y ∈ E, f ∈ bBE.

It is clear that (S∗
t )t≥0 is the adjoint semigroup of (St )t≥0 in L2(E,m). It is proved in [38]

and [39] that (St )t≥0 and (S∗
t )t≥0 are also strongly continuous semigroups of compact oper-

ators in L2(E,m). Let L and L∗ be the generators of the semigroups (St )t≥0 and (S∗
t )t≥0,

respectively. Denote by σ(L) and σ(L∗) the spectra of L and L∗, respectively. According
to [40, Theorem V.6.6.], λ := sup Re(σ (L)) = sup Re(σ (L∗)) is a common eigenvalue of
multiplicity 1 for both L and L∗. Using the argument in [38], the eigenfunctions φ of L

and φ∗ of L∗ associated with the eigenvalue λ can be chosen to be strictly positive and con-
tinuous everywhere on E. We further normalize φ and φ∗ so that 〈φ,φ〉m = 〈φ,φ∗〉m = 1.
Moreover, for each t ≥ 0, x ∈ E, we have Stφ(x) = eλtφ(x) and S∗

t φ
∗(x) = eλtφ∗(x). We

call φ the principal eigenfunction of the mean semigroup (St )t≥0.

Remark 1.7 Note that we do not require the operators (Pt )t≥0 to be self-adjoint in L2(E,m),
i.e., we do not assume p(t, x, y) = p(t, y, x) for each x, y ∈ E and t > 0. In other word,
the spatial motion ξ considered in this paper is not necessarily a symmetric Markov process
with respect to the measure m. As a consequence, (St )t≥0 are not necessarily self-adjoint
either.

We will use the following function

A(x) := 2α(x) +
∫

(0,∞)

y2π(x, dy), x ∈ E

in Assumption 3 below.
For all t ≥ 0 and x ∈ E, it is now clear that Pδx [Xt(φ)] = Stφ(x) = eλtφ(x). If λ > 0,

the mean of Xt(φ) will increase exponentially; if λ < 0, the mean of Xt(φ) will decrease
exponentially; and if λ = 0, the mean of Xt(φ) will be a constant. Because of this, we say X

is supercritical, critical or subcritical, according to λ > 0, λ = 0 or λ < 0, respectively. In
this paper, we are mainly interested in critical superprocesses with finite second moments.
So, for the remainder of this paper, we always assume the following:

Assumption 3 (1) The superprocess X is critical, i.e., λ = 0.
(2) The function φA : x �→ φ(x)A(x) is bounded on E.

Assumption 3.(2) is satisfied, for example, when φ and A are bounded on E. These
conditions appeared in the literature and was used by [38] in the proof of the Kolmogorov
type and the Yaglom type results for critical superprocesses.

Denote by M
φ

f the collection of all the measures μ ∈ Mf such that μ(φ) ∈ (0,∞). It

will be proved in Proposition 4.2 that Pμ[Xt(φ)2] < ∞ for each μ ∈ M
φ

f and t > 0 provided
the function φA : x �→ φ(x)A(x) is bounded on E.

Taking μ ∈ M
φ

f , T ≥ 0 and g = φ in Definition 1.4.(1), it will be proved in Lemma 3.4
that the family of probability measures (P(φ,T )

μ )T ≥0 is consistent, i.e., there exists an

E-valued process {(ξt )t≥0; Ṗμ} such that

{
(ξt )0≤t≤T ;P(φ,T )

μ

} f.d.d= {
(ξt )0≤t≤T ; Ṗμ

}
, T ≥ 0.

The process {(ξt )t≥0; Ṗμ} is exactly the spine process in the classical spine decomposition.
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It will also be proved in Proposition 4.2 that, under Assumptions 1, 2 and 3, for all
μ ∈ M

φ

f and T > 0, we have

Nμ

[
wT (φ)2

] = 〈μ,φ〉Ṗμ

[∫ T

0
(Aφ)(ξs) ds

]
∈ (0,∞).

As a consequence, NwT (φ)2

μ —the wT (φ)2-transform of Nμ, and P̈
(T )
μ —the (

∫ T

0 (Aφ)(ξs)ds)-

transform of Ṗμ, are both well defined probability measures. Recall that we always assume
that Assumptions 1, 2 and 3 hold.

Definition 1.8 Let μ ∈ M
φ

f and T > 0. We say

{
(ξt )0≤t≤T , κ,

(
ξ ′
t

)
κ≤t≤T

, (Yt )0≤t≤T ,nT ,
(
Y ′

t

)
κ≤t≤T

,n′
T ,

(
X′

t

)
κ≤t≤T

, (Zt )0≤t≤T ; P̈(T )
μ

}

is a 2-spine representation of NwT (φ)2

μ if the following are true:

(1) The main spine {(ξt )0≤t≤T ; P̈(T )
μ } is a copy of {(ξt )0≤t≤T ; P̈(T )

μ }.
(2) Conditioned on (ξt )0≤t≤T , the splitting time κ is a random variable taking values in

[0, T ] with law

P̈(T )
μ

(
κ ∈ ds|(ξt )0≤t≤T

) = 10≤s≤T (Aφ)(ξs) ds∫ T

0 (Aφ)(ξr ) dr
.

(3) Conditioned on (ξt )t≤T and κ , the auxiliary spine (ξ ′
t )κ≤t≤T is defined such that

{(
ξ ′
κ+t

)
0≤t≤T −κ

; P̈(T )
μ (·|ξ, κ)

} law= {
(ξt )0≤t≤T −κ; Ṗξκ

}
. (1.13)

(4) Write G := σ {(ξt )t≤T , κ, (ξ ′
t )κ≤t≤T }. Conditioned on G , the main immigration (Yt )0≤t≤T

is given by

Yt :=
∫

(0,t]×W

wt−snT (ds, dw), t ∈ [0, T ],

where nT is a Poisson random measure on [0, T ] × W with mean measure

mξ

T (ds, dw) := 2α(ξs)Nξs (dw) · ds +
∫

(0,∞)

yPyδξs
(X ∈ dw)π(ξs, dy) · ds.

(5) Conditioned on G , the auxiliary immigration (Y ′
t )κ≤t≤T is given by

Y ′
t :=

∫
(κ,t]×W

wt−sn′
T (ds, dw), t ∈ [κ,T ],

where n′
T is a Poisson random measure on [κ,T ] × W with mean measure

mξ ′
κ,T (ds, dw) := 2α

(
ξ ′
s

)
Nξ ′

s
(dw) · ds +

∫
(0,∞)

yPyδ
ξ ′
s
(X ∈ dw)π

(
ξ ′
s , dy

) · ds.

(6) Conditioned on G , the splitting-time immigration (X′
t )κ≤t≤T is defined by

{(
X′

κ+t

)
0≤t≤T −κ

; P̈μ(·|G )
} law= {

(Xt )0≤t≤T −κ ; P̃ξκ

}
,
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where, for each x ∈ E, the probability measure P̃x is given by

P̃x(·) :=
⎧⎨
⎩

2α(x)P0(·)+∫
(0,∞) y2Pyδx (·)π(x,dy)

2α(x)+∫
(0,∞) y2π(x,dy)

, if A(x) > 0,

P0(·), if A(x) = 0.
(1.14)

(7) Conditioned on G , the main immigration {Y,nT }, the auxiliary immigration {Y ′,n′
T }

and the splitting-time immigration X′ are mutually independent. Setting Y ′
t = 0 and

X′
t = 0 for each t ≤ κ , the total immigration (Zt )0≤t≤T is given by

Zt := Yt + Y ′
t + X′

t , 0 ≤ t ≤ T .

We are now ready to state our 2-spine decomposition theorem for critical superprocesses:

Theorem 1.9 Suppose that Assumptions 1, 2 and 3 hold. Let μ ∈ M
φ

f and T > 0. Sup-

pose that {(ξt )0≤t≤T , κ, (ξ ′
t )κ≤t≤T , (Yt )0≤t≤T ,nT , (Y ′

t )κ≤t≤T ,n′
T , (X′

t )κ≤t≤T , (Zt )0≤t≤T ; P̈(T )
μ }

is a 2-spine representation of NwT (φ)2

μ . Then {(Zt )t≤T ; P̈(T )
μ } f.d.d.= {(wt )t≤T ;NwT (φ)2

μ }.
As mentioned earlier in Sect. 1.1, this 2-spine decomposition theorem for superprocesses

is an analog of the 2-spine decomposition theorem for Galton-Watson trees in [35], and
is closely related to the multi-spine theory appeared in [19, 20, 23], and [1]. Of course,
depend on the choice of F , there are many versions of Theorem 1.2. We only consider the
cases when F(w) takes the forms of wt(g) and wt(φ)2, because they are sufficient for our
purpose to give probabilistic proofs of the Kolmogorov type and Yaglom type results for
critical superprocesses.

We now turn our attention to the limit behavior of critical superprocesses. First, we want
to consider the asymptotic behavior of vt (x) := − log Pδx (Xt = 0), where t > 0 and x ∈ E.
(They are well defined thanks to Assumption 1.) From (1.4) and monotone convergence, we
have

vt (x) = lim
θ→∞Vt(θ1E)(x), t > 0, x ∈ E, (1.15)

and

Pμ(Xt = 0) = e−μ(vt ), μ ∈ Mf , t ≥ 0, (1.16)

where the operators (Vt )t≥0 are given by (1.4). We call (Vt )t≥0 the cumulant semigroup of
the superprocess X, because it satisfies the semigroup property in the sense that, for all
f ∈ pBE, t, s ≥ 0 and x ∈ E, it holds that VtVsf (x) = Vt+sf (x) (see [30, Theorem 2.21]).

Let ψ0 be a function on E × [0,∞) defined by

ψ0(x, z) := ψ(x, z) + β(x)z = α(x)z2 +
∫

(0,∞)

(
e−rz − 1 + rz

)
π(x, dr), x ∈ E, z ≥ 0.

Let Ψ0 be an operator on pBE defined by

(Ψ0f )(x) := ψ0

(
x,f (x)

)
, f ∈ pBE, x ∈ E.

It is known, see [30, Theorem 2.23] for example, that for each f ∈ bpBE , (t, x) �→ Vtf (x)

is the solution of the equation

Vtf (x) +
∫ t

0
(St−sΨ0Vsf )(x) ds = Stf (x), t ≥ 0, x ∈ E. (1.17)
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Indeed, (1.17) can be obtained from (1.5) using a Feynman–Kac type argument. It is also
clear that

Vtvs(x) = − log Pδx

[
e−〈Xt ,limθ→∞ Vs (θ1E)〉] = − lim

θ→∞ log Pδx

[
e−〈Xt ,Vs (θ1E)〉]

= − lim
θ→∞VtVs(θ1E)(x) = vt+s(x), s, t > 0, x ∈ E. (1.18)

So, if we allow extended values, it follows from (1.17) and (1.18) that we have the following
equation for (vt )t≥0:

vt+s(x) +
∫ t

0
(St−rΨ0vr+s)(x) dr = Stvs(x), x ∈ E, t ≥ 0. (1.19)

In order to study the asymptotic behavior of (vt )t≥0 using (1.19), we need to understand the
asymptotic behavior of the mean semigroup (St )t≥0. The following assumption is commonly
used for this purpose:

Assumption 2′ In addition to Assumption 2, we further assume that the mean semigroup
(St )t≥0 is intrinsically ultracontractive, that is, for each t > 0 there exists ct > 0 such that
for all x, y ∈ E, we have q(t, x, y) ≤ ctφ(x)φ∗(y).

The concept of intrinsic ultracontractivity was first introduced by Davies and Simon [7] in
the symmetric setting and was extended to the non-symmetric setting in [25]. Assumption 2′
is a pretty strong condition on the mean semigroup (St )t≥0. For instance, it excludes the case
of super Brownian motions in the whole space. However, it is satisfied in a lot of cases. For
a long list of (symmetric and non-symmetric) Markov processes satisfying Assumption 2′,
see [37, 38].

A consequence of this assumption is that (see [25, Theorem 2.7]) there exist constants
c > 0 and γ > 0 such that

∣∣∣∣ q(t, x, y)

φ(x)φ∗(y)
− 1

∣∣∣∣ ≤ ce−γ t , x ∈ E, t > 1. (1.20)

We will see in Sect. 3.2 that, under Assumption 2, the spine process {(ξt )t≥0; (Ṗx)x∈E} in
the classical spine decomposition is a time homogeneous Markov process with invariant
measure φ(x)φ∗(x)m(dx). It can be verified that its transition density with respect to mea-
sure φ(x)φ∗(x)m(dx) is q(t,x,y)

φ(x)φ∗(y)
. Therefore Assumption 2′ implies that the spine process

in classical spine decomposition is exponentially ergodic.
Define ν(dy) := φ∗(y)m(dy). Under Assumption 2′, ν(dy) is a finite measure on E.

In fact, according to (1.20), for t > 0 large enough, there is a c′
t > 0 such that φ∗(y) ≤

q(t, x, y)(c′
t )

−1φ−1(x), and clearly, the right hand of this inequality is integrable in y with
respect to measure m. Therefore, we can consider a superprocess X with initial configuration
ν. Under Assumptions 1 and 2′, it will be proved in Lemma 5.2 that the following statements
are equivalent:

• Stvs(x) < ∞ for some s > 0, t > 0 and some x ∈ E.
• Pν(Xt = 0) > 0 for some t > 0.

Note that, in order to take advantage of (1.19), we need Stvs(x) to be finite at least for some
large s, t > 0 and some x ∈ E. Therefore, we also need the following assumption:
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Assumption 1′ In addition to Assumption 1, we further assume that Pν(Xt = 0) > 0 for
some t > 0.

We are now ready to state our Kolmogorov type and Yaglom type limit results for super-
processes:

Theorem 1.10 Suppose that Assumptions 1′, 2′ and 3 hold. Then,

tPμ(Xt 
= 0) −−−→
t→∞

〈μ,φ〉
1
2 〈Aφ,φφ∗〉m

, μ ∈ M
φ

f ,

where m is the reference measure appeared in Assumption 2.

Theorem 1.11 Suppose that Assumptions 1′, 2′ and 3 hold. Let f ∈ bpB
φ

E and μ ∈ M
φ

f .
Then,

{
t−1Xt(f );Pμ(·|Xt 
= 0)

} law−−−→
t→∞

1

2

〈
φ∗, f

〉
m

〈
φA,φφ∗〉

m
e,

where e is an exponential random variable with mean 1, and m is the reference measure in
Assumption 2.

As mentioned earlier, our Kolmogorov type and Yaglom type results for critical superpro-
cesses are established under slightly weaker conditions than [38]. We now make this more
precise. In [38], the authors considered a (ξ,ψ)-superprocess {(Xt)t≥0; (Pμ)μ∈Mf

} which
also satisfies Assumption 1, 2 and 3.(1) as the basic setting. In addition to that, [38] assumed
the following

(a) the transition semigroup (Pt ) of the spatial motion is intrinsically ultracontractive,
(b) the principal eigenfunction of (Pt ) is bounded,
(c) the function A is bounded, and
(d) there exists t0 > 0 such that infx∈E Pδx (Xt0 = 0) > 0.

It is shown in [38] that, under conditions (a) and (b), the mean semigroup (St ) is also intrinsi-
cally ultracontractive, and the principal eigenfunction φ of (St ) is also bounded. Therefore,
conditions (a), (b) and (c) combined together are stronger than our Assumption 1′ and 3.
Condition (d) is stronger than our Assumption 2′ because according to (1.16), we always
have the following:

Pν(Xt = 0) = exp
{−〈vt , ν〉} = exp

{〈
log Pδ·(Xt = 0), ν

〉}
, t > 0.

2 Size-Biased Decomposition

2.1 Size-Biased Transform of Poisson Random Measures

In this subsection, we digress briefly from superprocesses and prove the size-biased decom-
position theorem for Poisson random measures, i.e., Theorem 1.3. Let (S,S ) be a measur-
able space with a σ -finite measure N . Let {N;P } be a Poisson random measure on (S,S )

with mean measure N . Campbell’s theorem, see [27, Proof of Theorem 2.7] for example,
characterizes the law of {N;P } by its Laplace functionals:

P
[
e−N(g)

] = e−N(1−e−g), g ∈ pS .
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According to [27, Theorem 2.7], we also have that P [N(g)] = N(g) for each g ∈ S with
N(|g|) < ∞. By monotonicity, one can verify that

P
[
N(g)

] = N(g), g ∈ pS .

Lemma 2.1 If g ∈ L1(N) and f ∈ pS , then N(g)e−N(f ) is integrable and

P
[
N(g)e−N(f )

] = P
[
e−N(f )

]
N

[
ge−f

]
. (2.1)

Furthermore, (2.1) is true for each g,f ∈ pS if we allow extended values.

Proof Since N is a σ -finite measure on (S,S ), there exists a strictly positive measurable
function h on S such that N(h) < ∞. According to [27, Theorem 2.7.], N(h) has finite mean.
For any g ∈ bpS h := {g ∈ pS : ‖h−1g‖∞ < ∞} and f ∈ pS , it is clear that N(g) and
N(g)e−N(f ) are integrable. Therefore, by the dominated convergence theorem, we deduce
that

P
[
N(g)e−N(f )

] = P
[−∂θ |θ=0e

−N(f +θg)
] = −∂θ |θ=0P

[
e−N(f +θg)

]
= −∂θ |θ=0e

−N(1−e−(f +θg)) = e−N(1−e−f )∂θ |θ=0N
(
1 − e−(f +θg)

)
= P

[
e−N(f )

]
N

[
ge−f

]
.

For any g ∈ pS and s ∈ S, define g(n)(s) := h(s)min{h(s)−1g(s), n}. Then (g(n))n∈N is a
bpS h-sequence which increasingly converges to g pointwise. Note that (2.1) is true for
each g(n) and f . Letting n → ∞, by monotonicity, we see that if we allow extended values,
then (2.1) is true for each g,f ∈ pS . In the case when g ∈ L1(N), we simply consider its
positive and negative parts. �

Proof of Theorem 1.3 By Lemma 2.1, it is easy to see that, for any f ∈ pS ,

P N(g)
[
e−N(f )

] = N(g)−1P
[
N(g)e−N(f )

] = N(g)−1P
[
e−N(f )

]
N

[
ge−f

]
= P

[
e−N(f )

]
Ng

[
e−f

] = (P ⊗ Q)
[
e−N(f )−f (ϑ)

] = (P ⊗ Q)
[
e−(N+δϑ )(f )

]
,

which completes the proof. �

Lemma 2.2 For all g,f ∈ L1(N) ∩ L2(N), N(g)N(f ) is integrable and

P
[
N(g)N(f )

] = N(g)N(f ) + N(gf ). (2.2)

Furthermore, (2.2) is true for all g,f ∈ pS if we allow extended values.

Proof Since N is a σ -finite measure on (S,S ), there exists a strictly positive measurable
function h̃ on S such that N(h̃) < ∞. Define h(s) := min{h̃(s), h̃(s)1/2} for each s ∈ S.
It is clear that h is a strictly positive measurable function on S such that N(h) < ∞ and
N(h2) < ∞. According to [27, Theorem 2.7], N(h) has finite 1st and 2nd moments. For any
g,f ∈ bpS h := {g ∈ pS : ‖h−1g‖∞ < ∞}, it is easy to see that N(g),N(f ),N(f )N(g)
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are integrable. Thus, using Lemma 2.1 and the dominated convergence theorem, we have

P
[
N(g)N(f )

] = −P
[
∂θ |θ=0N(g)e−N(θf )

] = −∂θ |θ=0P
[
N(g)e−N(θf )

]
= −∂θ |θ=0P

[
e−N(θf )

]
N

(
ge−θf

)
= −N [g]∂θ |θ=0P

[
e−N(θf )

] − ∂θ |θ=0N
(
ge−θf

)
= −N(g)P

[
∂θ |θ=0e

−N(θf )
] − N

(
∂θ |θ=0ge−θf

)
= N(g)N(f ) + N(gf ).

For any g,f ∈ pS and s ∈ S, define g(n)(s) := h(s)min{h(s)−1g(s), n}. Then (g(n))n∈N is
a bpS h-sequence which increasingly converges to g pointwise. Define f (n) similarly. Then
from what we have proved, (2.2) is true for g(n) and f (n). Letting n → ∞, by monotonicity,
(2.2) is true for each g,f ∈ pS if we allow extended values. In the case when g,f ∈
L1(N) ∩ L2(N) we simply consider their positive and negative parts. �

2.2 Size-Biased Transform of the Superprocesses

Let X = {(Xt )t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which sat-

isfies Assumption 1. In this subsection, we will give a proof of Theorem 1.2. Recall that,
for any μ ∈ Mf , {N ;Pμ} is a Poisson random measure with mean measure Nμ, and our
(ξ,ψ)-superprocess (Xt )t≥0 is given by

X0 := μ; Xt(·) := N
[
wt(·)

]
, t > 0.

For any T > 0, we write (K,f ) ∈ KT if f : (s, x) �→ fs(x) is a bounded non-negative
Borel function on (0, T ] × E and K is an atomic measure on (0, T ] with finitely many
atoms. For any (K,f ) ∈ KT and any Mf -valued process (Yt )t>0, we define the random
variable

K
f

(s,T ](Y ) :=
∫

(s,T ]
Yr−s(fr)K(dr), s ∈ [0, T ].

It is clear that the two Mf -valued processes (Yt )t>0 and (Xt )t>0 have same finite-
dimensional distributions if and only if

E
[
e

−K
f
(0,T ](X)

] = E
[
e

−K
f
(0,T ](Y )

]
, (K,f ) ∈ KT , T > 0.

Proof of Theorem 1.2 Since Nμ(F ) ∈ (0,∞), it follows from Campbell’s formula that
Pμ[N (F )] = Nμ(F ) ∈ (0,∞). Therefore, PN (F )

μ —the N (F )-transform of Pμ, and N
F
μ —

the F -transform of Nμ, are both well defined probability measures. Notice that, under
PN (F )

μ , X0
a.s.= μ is deterministic, and so is X0 + Y0 under Pμ ⊗ Qμ since X0 + Y0

a.s.= μ.
Therefore, we only have to show that,

{
(Xt )t>0;PN (F )

μ

} f.d.d.= {
(Xt + Yt )t>0;Pμ ⊗ Qμ

}
.

It then immediately follows from Theorem 1.3 that

{
N ;PN (F )

μ

} law= {N + δY ;Pμ ⊗ Qμ}.
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This completes the proof since for any T > 0 and (K,f ) ∈ KT ,

PN (F )
μ

[
e

−K
f
(0,T ](X)

] = PN (F )
μ

[
e

−N [Kf
(0,T ](w)]] = (Pμ ⊗ Qμ)

[
e

−(N +δY )[Kf
(0,T ](w)]]

= (Pμ ⊗ Qμ)
[
e

−K
f
(0,T ](X+Y)

]
. �

3 Spine Decomposition of Superprocesses

The classical spine decomposition theorem characterizes the superprocess X after a martin-
gale change of measure, and has been investigated in the literature in different situations, see
[12, 13, 31] for example. The martingale that is used for the change of measure is defined
by Mt := e−λtXt (φ), where φ is the principal eigenfunction of the generator of the mean
semigroup of X with λ being the corresponding eigenvalue. After this martingale change
of measure, the transformed process preserves the Markov property, and thus, to prove the
spine decomposition theorem, one only needs to focus on the one-dimensional distribution
of the transformed process.

In this section, we generalize this classical result by considering the XT (g)-transform
of the superprocess X, where g is a non-negative Borel function on E. If g is not equal
to φ, the XT (g)-transformed process is typically not a Markov process. So we have to use a
different method to develop the theorem. Thanks to Theorem 1.2, we only have to consider
the wT (g)-transform of the Kuznetsov measures.

3.1 Spine Decomposition Theorem

Let X = {(Xt )t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which sat-

isfies Assumption 1. In this subsection, we will give a proof of Theorem 1.5. Recall that
(Nx)x∈E are the Kuznetsov measures defined in Lemma 1.1. We now recall a result from
[30] which is useful for calculations related to (Nx)x∈E .

Lemma 3.1 ([30, Theorems 5.15 and 8.23]) Under Assumption 1, for all T > 0 and
(K,f ) ∈ KT , we have

Nμ

[
1 − e

−K
f
(s,T ](w)

] = μ(us) = − log Pμ

[
e

−K
f
(s,T ](X)

]
, s ∈ [0, T ], μ ∈ Mf ,

where the function u : (s, x) �→ us(x) on [0, T ] × E is the unique bounded positive solution
to the following integral equation:

us(x) = Px

[∫
(s,T ]

fr(ξr−s)K(dr) −
∫ T

s

(Ψ ur)(ξr−s) dr

]
, s ∈ [0, T ], x ∈ E.

We now prove the following lemmas:

Lemma 3.2 For all x ∈ E,T > 0, (K,f ) ∈ KT and g ∈ pBE , we have

Nx

[
wT (g)e

−K
f
(0,T ](w)

] = Px

[
g(ξT )e− ∫ T

0 ψ ′(ξs ,us (ξs )) ds
]
, (3.1)

where

ψ ′(x, z) := ∂zψ(x, z) = −β(x) + 2α(x)z +
∫

(0,∞)

(
1 − e−yz

)
yπ(x, dy), x ∈ E, z ≥ 0,

and u : (s, x) �→ us(x) on [0, T ] × E is defined in Lemma 3.1.
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Proof We first prove assertion (3.1) in the case when g ∈ bpBE . Throughout this proof, we
fix (K,f ) ∈ KT and consider 0 ≤ θ ≤ 1. Define

uθ
s (x) :=Nx

[
1 − e

−K
f
(s,T ](w)−wT −s (θg)

]
, s ≥ 0, x ∈ E. (3.2)

Let

K̃(dr) := 10≤r<T K(dr) + δT (dr),

f̃r := 10≤r<T fr + 1r=T

(
K

({T })fT + θg
)
.

Then (K̃, f̃ ) ∈ KT and (3.2) can be rewritten as

uθ
s (x) :=Nx

[
1 − e

−K̃
f̃
(s,T ](w)

]
, s ≥ 0, x ∈ E.

It follows from Lemma 3.1 that, for any θ ≥ 0, (s, x) �→ uθ
s (x) is the unique bounded posi-

tive solution to the equation

uθ
s (x) = Px

[∫
(s,T ]

f̃r (ξr−s)K̃(dr) −
∫ T

s

(
Ψ uθ

r

)
(ξr−s) dr

]
, s ∈ [0, T ], x ∈ E,

which is equivalent to

uθ
s (x) = Px

[∫
(s,T ]

fr(ξr−s)K(dr) + θg(ξT −s) −
∫ T

s

(
Ψ uθ

r

)
(ξr−s) dr

]
. (3.3)

We claim that uθ
s (x) is differentiable in θ at θ = 0. In fact, since

|e−K
f
(s,T ](w)−wT −s (θg) − e

−K
f
(s,T ](w)|

θ
≤ wT −s(g), 0 < θ ≤ 1, (3.4)

and

Nx

[
wT −s(g)

] = ST −sg(x) = Px

[
e

∫ T −s
0 β(ξr )drg(ξT −s)

] ≤ eT ‖β‖∞‖g‖∞, (3.5)

it follows from (3.2) and the dominated convergence theorem that

u̇s(x) := ∂θ |θ=0u
θ
s (x) = Nx

[
wT −s(g)e

−K
f
(s,T ](w)

] ≤ eT ‖β‖∞‖g‖∞. (3.6)

From (3.2), we also have the following upper bound for uθ
s (x) with 0 ≤ θ ≤ 1:

uθ
s (x) ≤ Nx

[∫
(s,T ]

wr−s(fr)K(dr) + wT −s(θg)

]

=
∫

(s,T ]
Nx

[
wr−s(fr )

]
K(dr) +Nx

[
wT −s(θg)

]

≤ eT ‖β‖∞(‖f ‖∞K
(
(0, T ]) + ‖g‖∞

) =: L0. (3.7)

By elementary analysis, one can verify that, for each L > 0, there exists a constant Cψ,L > 0
such that for each x ∈ E and 0 ≤ z, z0 ≤ L,

|ψ(x, z0) − ψ(x, z)| ≤ Cψ,L|z − z0|. (3.8)
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In fact, one can choose Cψ,L := ‖β‖∞+2L‖α‖∞+max{L,1} supx∈E

∫
(0,∞)

(y∧y2)π(x, dy).
This upper bound also implies that

∣∣ψ ′(x, z)
∣∣ ≤ Cψ,L, x ∈ E,0 ≤ z ≤ L.

Therefore, we can verify that Px[
∫ T

s
(Ψ uθ

r )(ξr−s) dr] is differentiable in θ at θ = 0. In fact,
by (3.8), (3.7), (3.2), (3.4) and (3.5), we have

|(Ψ uθ
r )(x) − (Ψ u0

r )(x)|
θ

≤ Cψ,L0

|uθ
r (x) − u0

r (x)|
θ

≤ Cψ,L0 · eT ‖β‖∞‖g‖∞, 0 ≤ θ ≤ 1.

Therefore, by the bounded convergence theorem, we have

∂θ |θ=0Px

[∫ T

s

(
Ψ uθ

r

)
(ξr−s) dr

]
= Px

[∫ T

s

ψ ′(ξr−s , u
0
r (ξr−s)

)
u̇r (ξr−s) dr

]
. (3.9)

Now, taking ∂θ |θ=0 on the both sides of (3.3), we obtain from (3.9) that

u̇s(x) = Px

[
g(ξT −s) −

∫ T

s

ψ ′(ξr−s , u
0
r (ξr−s)

)
u̇r (ξr−s) dr

]
, s ∈ [0, T ], x ∈ E. (3.10)

Notice that the function u̇ : (s, x) �→ u̇s(x) is bounded on [0, T ] × E by eT ‖β‖∞‖g‖∞; g is
bounded on E by ‖g‖∞; and ψ ′(x,u0

r (x)) is bounded on E by Cψ,L0 . These bounds allow
us to apply the classical Feynman–Kac formula, see [10, Lemma A.1.5] for example, to
equation (3.10) and get that

u̇0(x) = Px

[
g(ξT )e− ∫ T

0 ψ ′(ξs ,us (ξs )) ds
]
. (3.11)

The desired result when g ∈ bpBE then follows from (3.6) and (3.11).
In the case when g ∈ pBE , we write g(n)(x) := min{g(x), n} for x ∈ E and n ∈N. Then,

from what we have proved, we know that

Nx

[
wT

(
g(n)

)
e

−K
f
(0,T ](w)

] = Px

[
g(n)(ξT )e− ∫ T

0 ψ ′(ξs ,us (ξs )) ds
]
, n ∈N.

Letting n → ∞ we complete the proof. �

Lemma 3.3 Let T > 0, k ∈ [0, T ] and (K,f ) ∈ KT . Let μ ∈ Mf and g ∈ pBE satisfy that
μ(ST g) ∈ (0,∞). Suppose that {(ξt )0≤t≤T , (Yt )0≤t≤T ,nT ; Ṗ(g,T )

μ } is a spine representation
of NwT (g)

μ . Then, we have

− log Ṗ(g,T )
μ

[
e

−K
f
(k,T ](Y )

∣∣ξ] =
∫ T

k

ψ ′
0

(
ξs−k, us(ξs−k)

)
ds, (3.12)

where the function u is defined in Lemma 3.1.

Proof Throughout this proof, we denote by nT −k and mξ

T −k the restriction of nT and mξ

T on
[0, T − k] × W respectively. It follows from properties of Poisson random measures that,
conditioned on ξ , nT −k is a Poisson random measure with mean measure mξ

T −k .



Spine Decompositions and Limit Theorems for a Class of Critical. . .

It follows from (1.7) and Fubini’s theorem that

K
f

(k,T ](Y ) =
∫

(k,T ]
Yr−k(fr)K(dr)

=
∫

(k,T ]
K(dr)

∫
(0,r−k]×Mf

w(r−k)−s(fr )nT (ds, dw)

=
∫

(0,T −k]×Mf

nT (ds, dw)

∫
(k+s,T ]

wr−(k+s)(fr)K(dr)

=
∫

K
f

(k+s,T ](w)nT −k(ds, dw). (3.13)

Conditioned on ξ , it follows from Campbell’s formula and Lemma 3.1 that

− log Ṗ(g,T )
μ

[
e

−K
f
(k,T ](Y )

∣∣ξ] = − log Ṗ(g,T )
μ

[
e

− ∫
K

f
(k+s,T ](w)nT −k(ds,dw)

∣∣ξ]

=
∫ (

1 − e
−K

f
(k+s,T ](w)

)
mξ

T −k(ds, dw)

=
∫ T −k

0

(
2α(ξs)Nξs

[
1 − e

−K
f
(k+s,T ](w)

]

+
∫

(0,∞)

yPyδξs

[
1 − e

−K
f
(k+s,T ](X)

]
π(ξs, dy)

)
ds

=
∫ T −k

0

(
2α(ξs)uk+s(ξs) +

∫
(0,∞)

(
1 − e−yuk+s (ξs )

)
yπ(ξs, dy)

)
ds

=
∫ T −k

0
ψ ′

0

(
ξs, us+k(ξs)

)
ds =

∫ T

k

ψ ′
0

(
ξs−k, us(ξs−k)

)
ds,

as desired. �

Proof of Theorem 1.5 We only need to prove that

{
(Yt )0<t≤T ; Ṗ(g,T )

μ

} f.d.d.= {
(wt )0<t≤T ;NwT (g)

μ

}
,

since both {Y0; Ṗ(g,T )
μ } and {w0;NwT (g)

μ } are deterministic with common value 0. By
Lemma 3.2 and 3.3, we have

N
wT (g)
μ

[
e

−K
f
(0,T ](w)

] = Nμ

[
wT (g)

]−1
Nμ

[
wT (g)e

−K
f
(0,T ](w)

]

= μ(ST g)−1
Pμ

[
g(ξT )e− ∫ T

0 ψ ′(ξs ,us (ξs )) ds
]

= P
(g,T )
μ

[
e− ∫ T

0 ψ ′
0(ξs ,us (ξs )) ds

] = Ṗ(g,T )
μ

[
Ṗ(g,T )

μ

[
e

−K
f
(0,T ](Y )|ξ]]

= Ṗ(g,T )
μ

[
e

−K
f
(0,T ](Y )

]
.

The proof is complete. �
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3.2 Classical Spine Decomposition Theorem

Let X = {(Xt )t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which sat-

isfies Assumptions 1 and 2. In this subsection, we will recover the classical spine decompo-
sition theorem for X which is developed previously in [12, 13, 31].

It is clear that {(e−λtφ(ξt )e
∫ t

0 β(ξs ) ds1t<ζ )t≥0; (Px)x∈E} is a non-negative martingale. De-
note by {(ξt )t≥0; (Ṗx)x∈E} the martingale transform (also known as Doob’s h-transform) of
{(ξt )t≥0; (Px)x∈E} via this martingale in the sense that

dṖx |Fξ
t

dPx |Fξ
t

:= e−λt φ(ξt )

φ(x)
e

∫ t
0 β(ξs ) ds1t<ζ , x ∈ E, t ≥ 0,

where (F
ξ
t )t≥0 is the natural filtration of the spatial motion ξ . It can be shown that (see

[25] for example) {(ξt )t≥0; (Ṗx)x∈E} is a time homogeneous Markov process. Its semigroup
is Doob’s h-transform of (St )t≥0 with h = φ and its transition density with respect to the
measure m is

q̇(t, x, y) := e−λt φ(y)

φ(x)
q(t, x, y), x, y ∈ E, t > 0.

It can also be verified that φ(x)φ∗(x)m(dx) is an invariant measure for {(ξt )t≥0; (Ṗx)x∈E}.
Recall that, for each T > 0, P(φ,T )

μ is defined as the (e
∫ T

0 β(ξs ) dsφ(ξT )1ζ<T )-transform of
the measure μP(·) := ∫

E
Px(·)μ(dx).

Lemma 3.4 Let μ ∈ M
φ

f . Define a probability measure Ṗμ(·) := μ(φ)−1
∫

E
φ(x)Ṗx(·) ×

μ(dx). Then, for each T > 0, we have {(ξt )0≤t≤T ;P(φ,T )
μ } law= {(ξt )0≤t≤T ; Ṗμ}.

Proof Let A ∈ F
ξ

T . Then we have

P
(φ,T )
μ (A) = (μP)[1Ae

∫ T
0 β(ξs ) dsφ(ξT )1T <ζ ]

(μP)[e∫ T
0 β(ξs ) dsφ(ξT )1T <ζ ]

= μ(φ)−1(μP)
[
1Ae−λT e

∫ T
0 β(ξs ) dsφ(ξT )1T <ζ

]

= μ(φ)−1
∫

E

Px

[
1Ae−λT e

∫ T
0 β(ξs ) dsφ(ξT )1T <ζ

]
μ(dx)

= μ(φ)−1
∫

E

φ(x)Ṗx(A) μ(dx) = Ṗμ(A). �

Fix a measure μ ∈ M
φ

f . Define Mt := e−λtXt (φ) for each t ≥ 0. It is clear that
{(Mt)t≥0;Pμ} is a non-negative martingale. Let {(Xt)t≥0;PM

μ } be the martingale transform
of {(Xt )t≥0;Pμ} via this martingale in the sense that

dPM
μ |FX

t

dPμ|FX
t

:= Mt

μ(φ)
, t ≥ 0.

We now give the classical spine decomposition theorem:
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Theorem 3.5 (Spine decomposition, [12, 13, 31]) Suppose that Assumptions 1 and 2 hold.
Let μ ∈ M

φ

f . Let the spine immigration {(ξt )t≥0, (Yt )t≥0,n; Ṗμ} be defined as follows:

(1) The spine process {(ξt )t≥0; Ṗμ} is a copy of {(ξt )t≥0; Ṗμ}.
(2) The immigration process {(Yt )t≥0; Ṗμ} is an Mf -valued process given by

Yt :=
∫

(0,t]×W

wt−sn(ds, dw), t ≥ 0,

where, conditioned on ξ , n is a Poisson random measure on [0,∞) × W with mean
measure

mξ (ds, dw) := 2α(ξs)Nξs (dw) · ds +
∫

(0,∞)

yPyδξs
(X ∈ dw)π(ξs, dy) · ds.

Then, {(Xt )t≥0;PM
μ } f.d.d.= {(Xt + Yt )t≥0;Pμ ⊗ Ṗμ}.

Proof Fix T > 0. We only need to show that

{
(Xt )t≤T ;PM

μ

} f.d.d.= {
(Xt + Yt )t≤T ;Pμ ⊗ Ṗμ

}
.

From Lemma 3.4, we can verify that

{
(Yt )t≤T ; Ṗμ

} f.d.d.= {
(Yt )t≤T ; Ṗ(φ,T )

μ

}
. (3.14)

Also it follows easily from the definitions of PM
μ and PXT (φ)

μ that

{
(Xt )t≤T ;PM

μ

} f.d.d.= {
(Xt )t≤T ;PXT (φ)

μ

}
. (3.15)

The desired result then follows from Corollary 1.6. �

Remark 3.6 Lemma 3.4 indicates that {(ξt )0≤t≤T ;P(φ,T )
μ } are consistent. From (3.15) we

have that {(Xs)0≤s≤T ;PXT (φ)
μ } are consistent. From (3.14) we have that {(Yt )t≤T ; Ṗ(φ,T )

μ }
are consistent. According to Theorem 1.5, we have {(wt )t≤T ;NwT (φ)

μ } f.d.d= {(Yt )t≤T ; Ṗ(φ,T )
μ }

which implies that {(wt )t≤T ;NwT (φ)
μ } are also consistent.

4 2-Spine Decomposition of Critical Superprocesses

4.1 Second Moment Formula

Let X = {(Xt )t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which sat-

isfies Assumptions 1, 2 and 3. In this subsection, we give a second moment formula for
superprocesses.

Lemma 4.1 Suppose that Assumptions 1, 2 and 3 hold. Let g,f ∈ bpB
φ

E,μ ∈ M
φ

f and

t ≥ 0. Suppose that {(ξs)0≤s≤t , (Ys)0≤s≤t ,nt ; Ṗ(g,t)
μ } is the spine representation of N

wt (g)
μ .

Then,

Ṗ(g,t)
μ

[
Yt (f )|ξ] =

∫ t

0
A(ξs) · (St−sf )(ξs) ds ≤ t‖Aφ‖∞‖φ−1f ‖∞, Ṗ(g,t)

μ -a.s.
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Proof Define G(s,w) := 1s≤twt−s(f ) for all s ≥ 0 and w ∈ W . Under Assumption 3, it is
clear from (1.8) that

mξ
t (G) =

∫ t

0
2α(ξs)Nξs

[
wt−s(f )

]
ds +

∫ t

0
ds

∫
(0,∞)

yPyδξs

[
Xt−s(f )

]
π(ξs, dy)

=
∫ t

0
2α(ξs) · (St−sf )(ξs) ds +

∫ t

0
ds

∫
(0,∞)

y2 · (St−sf )(ξs)π(ξs, dy)

=
∫ t

0
A(ξs) · (St−sf )(ξs) ds.

Since, conditioned on ξ , {nt ; Ṗ(g,t)
μ } is a Poisson random measure on [0, t] × W with mean

measure mξ
t , we conclude from Campbell’s theorem that

Ṗ(g,t)
μ

[
Yt (f )|ξ] = Ṗ(g,t)

μ

[
nt (G)|ξ] = mξ

t (G) =
∫ t

0
A(ξs) · (St−sf )(ξs) ds, Ṗ(g,t)

μ -a.s.

Noticing that

∫ t

0
A(ξs) · (St−sf )(ξs) ds =

∫ t

0

[
(Aφ)φ−1St−s

(
φ · φ−1f

)]
(ξs) ds ≤ t‖Aφ‖∞‖φ−1f ‖∞,

we have our result as desired. �

Proposition 4.2 Under Assumptions 1, 2 and 3, for all g,f ∈ bB
φ

E , μ ∈ M
φ

f and t ≥ 0, we
have that Xt(g)Xt(f ) is integrable with respect to Pμ and

Pμ

[
Xt(g)Xt(f )

] = 〈μ,Stg〉〈μ,Stf 〉 + 〈μ,φ〉Ṗμ

[(
φ−1g

)
(ξt )

∫ t

0
A(ξs) · (St−sf )(ξs) ds

]
.

(4.1)

Proof We first consider the case when g,f ∈ bpB
φ

E . In this case, the right hand of (4.1) is
finite. Actually, by Lemma 4.1, the right side of (4.1) is less than or equal to

〈μ,Stg〉〈μ,Stf 〉 + 〈μ,φ〉Ṗμ

[(
φ−1g

)
(ξt )

]
t
∥∥Aφ‖∞‖φ−1f

∥∥∞

≤ 〈μ,φ〉2 + 〈μ,φ〉t‖Aφ‖∞
∥∥φ−1g

∥∥
∞

∥∥φ−1f
∥∥

∞ < ∞.

We can also assume that m(g) > 0. Since if g ∈ bpBE with m(g) = 0, then according to
(1.12), (1.6) and Lemma 3.4, we have

Stg(x) =
∫

E

q(t, x, y)g(y)m(dy) = 0, t > 0, x ∈ E,

Pμ

[
Xt(g)

] = μ(Stg) = 0, μ ∈ Mf , t > 0,

Ṗμ

[
φ−1g(ξt )

] = P
(φ,t)
μ

[
φ−1g(ξt )

] = μ(Stg)

μ(φ)
= 0, μ ∈ Mf , t > 0.

These imply that the both sides of (4.1) are 0.
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Now in the case when g,f ∈ bpB
φ

E and m(g) > 0, from Theorem 1.5 and Lemma 4.1
we know that, for each x ∈ E,

N
wt (g)
x

[
wt(f )

] = Ṗ(g,t)

δx

[
Yt (f )

] = Ṗ(g,t)

δx

[
Ṗ(g,t)

δx

[
Yt (f )

∣∣ξ]]

= Ṗ(g,t)

δx

[∫ t

0
A(ξs) · (St−sf )(ξs) ds

]
= P

(g,t)
x

[∫ t

0
A(ξs) · (St−sf )(ξs) ds

]

= Stg(x)−1
Px

[
g(ξt )e

∫ t
0 β(ξs ) ds

∫ t

0
A(ξs) · (St−sf )(ξs) ds

]
.

Therefore,

Nx

[
wt(g)wt (f )

] = Nx

[
wt(g)

]
N

wt (g)
x

[
wt(f )

]

= Px

[
g(ξt )e

∫ t
0 β(ξs ) ds

∫ t

0
A(ξs) · (St−sf )(ξs) ds

]

= φ(x)Ṗx

[(
φ−1g

)
(ξt )

∫ t

0
A(ξs) · (St−sf )(ξs) ds

]
.

Integrating with μ ∈ M
φ

f , we have

Nμ

[
wt(g)wt (f )

] = 〈μ,φ〉Ṗμ

[(
φ−1g

)
(ξt )

∫ t

0
A(ξs) · (St−sf )(ξs) ds

]
. (4.2)

It then follows from Lemmas 1.1 and 2.2 that

Pμ

[
Xt(g)Xt (f )

] =Nμ

[
wt(g)

]
Nμ

[
wt(f )

] +Nμ

[
wt(g)wt (f )

]

= 〈μ,Stg〉〈μ,Stf 〉 + 〈μ,φ〉Ṗμ

[(
φ−1g

)
(ξt )

∫ t

0
(ASt−sf )(ξs) ds

]

as desired. For the more general case when g,f ∈ bB
φ

E , we only need to consider their
positive and negative parts. �

4.2 2-Spine Decomposition Theorem

Let X = {(Xt )t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which sat-

isfies Assumptions 1, 2 and 3. In this subsection, we will prove the 2-spine decomposition
theorem for superprocesses, i.e., Theorem 1.9.

First, we give a lemma which says that N
wT (φ)2

μ —the wT (φ)2-transform of Nμ, and

P̈
(T )
μ —the (

∫ T

0 (Aφ)(ξs) ds)-transform of Ṗμ, are both well defined probability measures.

Lemma 4.3 Nμ[wT (φ)2] = μ(φ)Ṗμ[∫ T

0 (Aφ)(ξs) ds] ∈ (0,∞) for all μ ∈ M
φ

f and T > 0.

Proof According to (4.2), we have

Nμ

[
wT (φ)2

] = μ(φ)Ṗμ

[∫ T

0
(Aφ)(ξs) ds

]
≤ μ(φ)T ‖Aφ‖∞ < ∞.

According to Nμ[wT (φ)] = μ(φ) > 0, we must have Nμ[wT (φ)2] > 0. �
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Remark 4.4 Note that NwT (φ)2

μ is also the wT (φ)-transform of NwT (φ)
μ . In fact, the size-biased

transforms satisfy the following chain rule: If g,f are non-negative measurable functions
on some measure space (D,FD,D) with D(g) ∈ (0,∞) and D(gf ) ∈ (0,∞). Denoted by
Dg the g-transform of D, then (Dg)f = Dgf , i.e., the f -transform of Dg is the gf -transform
of D. This is true because it is easy to see that

Dgf (ds) := g(s)f (s)D(ds)

D[gf ] = f (s)Dg(ds)

Dg[f ] = (
Dg

)f
(ds), s ∈ S.

For each μ ∈ M
φ

f , let the spine immigration {(ξt )t≥0, (Yt )t≥0,n; Ṗμ} be given by Theo-

rem 3.5. We first state a property of {Y ; Ṗμ}, which is needed later.

Lemma 4.5 Ṗμ(Yt = 0) = 0 for all μ ∈ M
φ

f and t > 0.

Proof According to Theorem 1.5, we have

Ṗμ(Yt = 0) =N
wt (φ)
μ

(
wt(φ) = 0

) = 〈μ,φ〉−1
Nμ

[
wt(φ)1wt (φ)=0

] = 0. �

The proof of Theorem 1.9 relies on the following lemma:

Lemma 4.6 For any μ ∈ M
φ

f , T > 0 and (K,f ) ∈ KT , we have

Ṗμ

[
YT (φ)e

−K
f
(0,T ](Y )|ξ] = Ṗμ

[
e

−K
f
(0,T ](Y )|ξ] ∫ T

0
(Aφ)(ξs)Ṗδξs

[
e

−K
f
(s,T ](Y )

]̃
Pξs

[
e

−K
f
(s,T ](X)

]
ds,

where P̃x is defined by (1.14) for each x ∈ E.

Proof Define G(s,w) := 1s≤T wT −s(φ) for all s ≥ 0 and w ∈ W . Notice that from (3.13),
under the probability Ṗμ, we have YT (φ) = n(G) and K

f

(0,T ](Y ) = n(K
f

(s,T ](w)). From Lem-
mas 4.1 and 4.5 we know that

0 < Ṗμ

[
YT (φ)|ξ]

< ∞, Ṗμ-a.s.

Therefore, we can apply Lemma 2.1 to the conditioned Poisson random measure n, and get

Ṗμ

[
n(G)e

−n(K
f
(s,T ](w))

∣∣ξ] = Ṗμ

[
e

−n(K
f
(s,T ](w))|ξ]

mξ
[
Ge

−K
f
(s,T ](w)

]
. (4.3)

It is clear from the definitions of mξ , Nwt (φ) and PM that

mξ
[
Ge

−K
f
(s,T ](w)

] =
∫ T

0

(
2α(ξs)Nξs

[
wT −s(φ)e

−K
f
(s,T ](w)

]

+
∫

(0,∞)

yPyδξs

[
XT −s(φ)e

−K
f
(s,T ](X)

]
π(ξs, dy)

)
ds

=
∫ T

0

(
2(αφ)(ξs)N

wT −s (φ)

ξs

[
e

−K
f
(s,T ](w)

]

+
∫

(0,∞)

y2φ(ξs)PM
yδξs

[
e

−K
f
(s,T ](X)

]
π(ξs, dy)

)
ds. (4.4)
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According to Theorem 1.5, we have

N
wT −s (φ)
x

[
e

−K
f
(s,T ](w)

] = Ṗδx

[
e

−K
f
(s,T ](Y )

] = Ṗδx

[
e

−K
f
(s,T ](Y )

]
P0

[
e

−K
f
(s,T ](X)

]
, (4.5)

where we used the fact that P0(Xt = 0, for any t ≥ 0) = 1. It follows from Theorem 3.5 that
for any s ∈ [0, T ], x ∈ E and y ∈ (0,∞),

PM
yδx

[
e

−K
f
(s,T ](X)

] = Ṗyδx

[
e

−K
f
(s,T ](X+Y)

] = Ṗδx

[
e

−K
f
(s,T ](Y )

]
Pyδx

[
e

−K
f
(s,T ](X)

]
. (4.6)

Plugging (4.5) and (4.6) back into (4.4) and rearranging terms, we have that

mξ
[
Ge

−K
f
(s,T ](w)

] =
∫ T

0

(
2(αφ)(ξs)Ṗδξs

[
e

−K
f
(s,T ](Y )

]
P0

[
e

−K
f
(s,T ](X)

]

+
∫

(0,∞)

y2φ(ξs)Ṗδξs

[
e−K

f
s (Y )

]
Pyδξs

[
e

−K
f
(s,T ](X)

]
π(ξs, dy)

)
ds.

=
∫ T

0
φ(ξs)Ṗδξs

[
e

−K
f
(s,T ](Y )

]

×
(

2α(ξs)P0
[
e

−K
f
(s,T ](X)

] +
∫

(0,∞)

y2Pyδξs

[
e

−K
f
(s,T ](X)

]
π(ξs, dy)

)
ds

=
∫ T

0
(Aφ)(ξs)Ṗδξs

[
e

−K
f
(s,T ](Y )

]̃
Pξs

[
e

−K
f
(s,T ](X)

]
ds. (4.7)

Plugging (4.7) back into (4.3), we get the desired result. �

Proof of Theorem 1.9 Note that {Z0; P̈(T )
μ } and {w0;NwT (φ)2

μ } are both deterministic with

common value 0. So we only have to proof {(Zt )0<t≤T ; P̈(T )
μ } f.d.d.= {(wt )0<t≤T ;NwT (φ)2

μ }. In
order to show this, according to Theorem 1.5 and Remark 4.4, we only need to show that
{(Zt )0<t≤T ; P̈(T )

μ } is the YT (φ)-transform of process {(Yt )0<t≤T ; Ṗμ}.
Let (K,f ) ∈ KT . Similar to (3.13), we have K

f

(r,T ](Y ) = nT [Kf

(r+·,T ]] and K
f

(r,T ](Y
′) =

n′
T [Kf

(r+·,T ]] for each r ≤ T . Therefore, using Campbell’s theorem and an argument similar
to that used in the proof of Lemma 3.3, one can verify that

− log P̈μ

[
e

−K
f
(0,T ](Y )

∣∣G ] =
∫ T

0
ψ ′

0

(
ξs, us(ξs)

)
ds (4.8)

and

− log P̈μ

[
e

−K
f
(0,T ](Y ′)∣∣G ] =

∫ T

κ

ψ ′
0

(
ξ ′
s , us

(
ξ ′
s

))
ds, (4.9)

where u : (s, x) �→ us(x) is the function on [0, T ]×E defined in Lemma 3.1. It is then clear
from (4.9), (1.13) and Lemma 3.3 that

P̈μ

[
e

−K
f
(0,T ](Y ′)∣∣ξ, κ

] = P̈μ

[
e− ∫ T

κ ψ ′
0(ξ ′

s ,us (ξ
′
s )) ds

∣∣ξ, κ
]

= Ṗξr

[
e− ∫ T

r ψ ′
0(ξs−r ,us (ξs−r )) ds

]∣∣
r=κ

= Ṗδξr

[
e

−K
f
(r,T ](Y )

]∣∣
r=κ

. (4.10)
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By the construction of the splitting immigration X′ at time κ , we also have

P̈μ

[
e

−K
f
(0,T ](X′)∣∣G ] = P̃ξr

[
e

−K
f
(r,T ](X)

]∣∣
r=κ

. (4.11)

Using (4.8), (4.10), (4.11) and the construction of the 2-spine immigration, we deduce that

P̈μ

[
e

−K
f
(0,T ](Z)

∣∣ξ, κ
] = P̈μ

[
P̈μ

[
e

−K
f
(0,T ](Z)

∣∣G ]∣∣ξ, κ
]

= P̈μ

[
P̈μ

[
e

−K
f
(0,T ](Y )

∣∣G ]
P̈μ

[
e

−K
f
(0,T ](Y ′)∣∣G ]

P̈μ

[
e

−K
f
(0,T ](X′)∣∣G ]∣∣ξ, κ

]

= e− ∫ T
0 ψ ′

0(ξs ,us (ξs )) ds Ṗδξr

[
e

−K
f
(r,T ](Y )

]̃
Pξr

[
e

−K
f
(r,T ](X)

]∣∣
r=κ

.

Therefore, from the conditioned law of κ given ξ , we have

P̈μ

[
e

−K
f
(0,T ](Z)|ξ] = e− ∫ T

0 ψ ′
0(ξs ,us (ξs )) ds∫ T

0 (Aφ)(ξr ) dr

∫ T

0
(Aφ)(ξr )Ṗδξr

[
e

−K
f
(r,T ](Y )

]̃
Pξr

[
e

−K
f
(r,T ](X)

]
dr.

(4.12)
Taking expectation, we get that

P̈μ

[
e

−K
f
(0,T ](Z)

] (4.12)= P̈
(T )
μ

{
e− ∫ T

0 ψ ′
0(ξs ,us (ξs )) ds∫ T

0 (Aφ)(ξr ) dr

∫ T

0
(Aφ)(ξr )Ṗδξr

[
e

−K
f
(r,T ](Y )

]̃
Pξr

[
e

−K
f
(r,T ](X)

]
dr

}

= Ṗμ

{
e− ∫ T

0 ψ ′
0(ξs ,us (ξs )) ds

Ṗμ[∫ T

0 (Aφ)(ξr ) dr]
∫ T

0
(Aφ)(ξr )Ṗδξr

[
e

K
f
(r,T ](Y )

]̃
Pξr

[
e

−K
f
(r,T ](X)

]
dr

}

(3.12)= Ṗμ

{
Ṗμ[e−K

f
(0,T ](Y )|ξ ]

Ṗμ[∫ T

0 (Aφ)(ξr ) dr]
∫ T

0
(Aφ)(ξr )Ṗδξr

[
e

−K
f
(r,T ](Y )

]̃
Pξr

[
e

−K
f
(r,T ](X)

]
dr

}

Lemma 4.6= Ṗμ

{
Ṗμ[YT (φ)e

−K
f
(0,T ](Y )|ξ ]

Ṗμ[YT (φ)]
}

= Ṗμ[YT (φ)e
−K

f
(0,T ](Y )]

Ṗμ[YT (φ)] ,

where in the second equality we used the definition of P̈
(T )
μ . The display above says that

(Zt )0<t≤T is the YT (φ)-transform of the process {(Yt )0<t≤T ; Ṗμ}, as desired. �

5 The Asymptotic Behavior of Critical Superprocesses

5.1 Intrinsic Ultracontractivity

Let {(Xt)t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which satisfies

Assumptions 1 and 2′. In this subsection, we give some more results related to intrinsic
ultracontractivity.

Lemma 5.1 Suppose that F(x,u, t) is a bounded Borel function on E × [0,1] × [0,∞)

such that F(x,u) := limt→∞ F(x,u, t) exists for all x ∈ E and u ∈ [0,1]. Then we have,

∫ 1

0
F(ξut , u, t) du

L2(Ṗx )−−−→
t→∞

∫ 1

0

〈
F(·, u),φφ∗〉

m
du, x ∈ E.
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Proof We first show that

Ṗx

[
F(ξut , u, t)

] −−−→
t→∞

〈
F(·, u),φφ∗〉

m
, x ∈ E, u ∈ (0,1). (5.1)

In fact,

Ṗx

[
F(ξut , u, t)

] =
∫

E

q̇(ut, x, y)

(φφ∗)(y)
F (y,u, t)

(
φφ∗)(y)m(dy).

Note that
∫

·(φφ∗)(y)m(dy) is a finite measure, (y, t) �→ q̇(ut,x,y)

(φφ∗)(y)
F (y,u, t) is bounded by

(1 + ce−γ ut )‖F‖∞ for t > u−1, and q̇(ut,x,y)

(φφ∗)(y)
F (y,u, t) −−−→

t→∞ F(y,u). Using the bounded

convergence theorem, we get (5.1). By Fubini’s theorem,

Ṗx

[∫ 1

0
F(ξut , u, t) du

]
=

∫ 1

0
Ṗx

[
F(ξut , u, t)

]
du, x ∈ E.

Since Ṗx[F(ξut , u, t)] is bounded by ‖F‖∞ and Ṗx[F(ξut , u, t)] −−−→
t→∞ 〈F(·, u),φφ∗〉m, by

the bounded convergence theorem, we get

Ṗx

[∫ 1

0
F(ξut , u, t) du

]
−−−→
t→∞ cF :=

∫ 1

0

〈
F(·, u),φφ∗〉

m
du.

Using (1.20) and a similar argument, one can verify that for any 0 < u < v ≤ 1,

Ṗx

[
F(ξut , u, t)F (ξvt , v, t)

]

=
∫

E

∫
E

q̇(ut, x, y)q̇
(
(v − u)t, y, z

)
F(y,u, t)F (z, v, t)m(dy)m(dz)

−−−→
t→∞

〈
F(·, u),φφ∗〉

m

〈
F(·, v),φφ∗〉

m
.

The above convergence is also true for 0 < v < u ≤ 1 since the limit is symmetric in u and
v. We have again, by Fubini’s theorem and the bounded convergence theorem,

Ṗx

[(∫ 1

0
F(ξut , u, t) du

)2]
=

∫ 1

0
du

∫ 1

0
Ṗx

[
F(ξut , u, t)F (ξvt , v, t)

]
dv −−−→

t→∞ c2
F .

Finally, we have

Ṗx

[(∫ 1

0
F(ξut , u, t) du − cF

)2]

= Ṗx

[(∫ 1

0
F(ξut , u, t) du

)2]
− 2cF Ṗx

[∫ 1

0
F(ξut , u, t) du

]
+ c2

F

−−−→
t→∞ 0,

as desired. �

As mentioned earlier in Sect. 1.2, in order to study the asymptotic behavior of (vt )t≥0

and take advantage of (1.19), we need Stvs(x) to be finite at least for some large s, t > 0 and
for some x ∈ E. The following lemma addresses this need.
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Lemma 5.2 Under Assumption 1 and 2′, the following statements are equivalent:

(1) Stvs(x) < ∞ for some s > 0, t > 0 and x ∈ E.
(1′) There is an s0 > 0 such that for any s ≥ s0, t > 0 and x ∈ E, we have Stvs(x) < ∞.
(2) 〈vs,φ

∗〉m < ∞ for some s > 0.
(2′) There is an s0 > 0 such that for any s ≥ s0, we have 〈vs,φ

∗〉m < ∞.
(3) There is an s0 > 0 such that for any s ≥ s0, we have vs ∈ bpB

φ

E .
(4) Pν(Xt = 0) > 0 for some t > 0.
(5) φ−1vt converges to 0 uniformly when t → ∞.
(6) For any μ ∈ M

φ

f , Pμ(∃t > 0, s.t. Xt = 0) = 1.

Proof We first give some estimates. In this proof, we allow the extended value +∞. Ac-
cording to (1.16) and the fact that 0 is an absorption state of the superprocess X, we have

〈
vs0 , φ

∗〉
m

= − log Pν(Xs0 = 0)

≥ − log Pν(Xs = 0) = 〈
vs,φ

∗〉
m
, 0 < s0 ≤ s.

(5.2)

According to Assumption 2′, we have for each t ≥ 0, there is a ct > 0 such that q(t, x, y) ≤
ctφ(x)φ∗(y). Using an argument similar to that of [25, Proposition 2.5], we have for each
t ≥ 0, there is a c′

t < 0 such that q(t, x, y) ≥ c′
t φ(x)φ∗(y). Therefore, we have

φ(x)
〈
vs,φ

∗〉
m
c′
t ≤ Stvs(x) ≤ φ(x)

〈
vs,φ

∗〉
m
ct , s > 0, t > 0, x ∈ E. (5.3)

Let c, γ > 0 be the constants in (1.20). Notice that φ is strictly positive, using (1.17), one
can verify that

Vtf (x)

φ(x)
≤ Stf (x)

φ(x)
≤ (

1 + ce−γ t
)〈
f,φ∗〉, f ∈ bpBE, x ∈ E, t > 1. (5.4)

Taking f = Vs(θ1E) in (5.4) and letting θ → ∞, by (1.15) and (1.18), we have that,

vt+s(x)

φ(x)
≤ (

1 + ce−γ t
)〈
vs,φ

∗〉
m
, x ∈ E, s > 0, t > 1. (5.5)

We can also verify that

Stvs(x) ≤ ‖φ−1vs‖∞Stφ(x) = ‖φ−1vs‖∞φ(x) s, t > 0, x ∈ E. (5.6)

Now, we are ready to give the proof of this lemma using the following steps: (1′) ⇒
(1) ⇒ (2) ⇒ (2′) ⇒ (3) ⇒ (1′) and (2) ⇒ (5) ⇒ (6) ⇒ (4) ⇒ (2). In fact, it is obvious
that (1′) ⇒ (1). For (1) ⇒ (2) we use (5.3). For (2) ⇒ (2′) we use (5.2). For (2′) ⇒ (3) we
use (5.5). For (3) ⇒ (1′) we use (5.6).

For (2) ⇒ (5), we follow the argument in [38, Lemma 3.3]. Note that, from what we
have proved, (2) is equivalent to (1), (1′), (2′) and (3). Integrating (1.17) with respect to
the measure ν, by Fubini’s theorem and monotonicity, we have that, for any f ∈ pBE and
t ≥ 0, 〈

f,φ∗〉
m

= 〈
f,S∗

t φ
∗〉

m
= 〈

Stf,φ∗〉
m

= 〈
Vtf,φ∗〉

m
+

∫ t

0

〈
St−rΨ0Vrf,φ∗〉

m
dr

= 〈
Vtf,φ∗〉

m
+

∫ t

0

〈
Ψ0Vrf,φ∗〉

m
dr. (5.7)
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Define

v(x) := lim
t→∞vt (x) = lim

t→∞
(− log Pδx (Xt = 0)

) = − log Pδx (∃t > 0, s.t. Xt = 0).

Since vt (x) = − log Pδx (Xt = 0) is non-increasing in t , and by (3), we know that vt ∈ bpB
φ

E

for t large enough. Therefore, we have v ∈ bpB
φ

E ⊂ L2(E,m). Taking f = Vs(θ1E) in (5.7)
and letting θ → ∞, by monotonicity and (2′), we have that, there is an s0 > 0 such that

∫ t

0

〈
Ψ0vr+s , φ

∗〉
m

dr = 〈
vs,φ

∗〉
m

− 〈
vt+s , φ

∗〉
m
, s ≥ s0, t ≥ 0. (5.8)

Letting s → ∞, by monotonicity, we have

∫ t

0

〈
Ψ0v,φ∗〉

m
dr = t

〈
Ψ0v,φ∗〉

m
= 〈

v,φ∗〉
m

− 〈
v,φ∗〉

m
= 0.

Since φ∗ is strictly positive on E, we must have Ψ0(v) = 0,m-a.e.. This, with (1.9), implies
that StΨ0(v) ≡ 0 for any t > 0. By (1′), we know that Stvs(x) take finite value for s large
enough. Letting s → ∞ in the (1.19), by monotonicity, we have

v(x) = Stv(x) −
∫ t

0
St−rΨ0(v)(x) dr = Stv(x), x ∈ E, t ≥ 0,

which says that the non-negative function v, if not identically 0, is an eigenfunction of
L corresponding to λ = 0, where L is the generator of the semigroups (St )t≥0. Since v ∈
L2(E,m), by the uniqueness of the eigenfunction in L2(E,m) corresponding to λ = 0,
there is a constant c ∈ R, such that v(x) = cφ(x) for all x ∈ E. So with Ψ0(v) ≡ 0,m-a.e.,
we must have v ≡ 0. Using the fact that vt (x) converges to 0 pointwise, by monotonicity
and (5.5), we can verify the desired result (5).

For (5) ⇒ (6), note that, by the definition of vt , for any μ ∈ M
φ

f , we have

− log Pμ{∃t > 0, s.t. Xt = 0} = lim
t→∞

(− log Pμ(Xt = 0)
) = lim

t→∞〈μ,vt 〉 = 0.

Finally, note that (6) ⇒ (4) and (4) ⇒ (2) are obvious. �

5.2 Kolmogorov Type Result

Let {(Xt)t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which satisfies

Assumptions 1′ and 2′ and 3. In this subsection, we will give a proof of Theorem 1.10.
Thanks to Lemma 5.2, we know that each of the statements in 5.2 is true. In particular,
vt (x)/φ(x) converges to 0 uniformly in x ∈ E.

Lemma 5.3 Under Assumptions 1′, 2′ and 3, we have

sup
x∈E

∣∣∣∣ vt (x)

〈vt , φ∗〉mφ(x)
− 1

∣∣∣∣ −−−→
t→∞ 0.

Proof We use an argument similar to that used in [34] for critical branching diffusions. Fix
a non-trivial μ ∈ M

φ

f , and let the spine immigration {(ξt )t≥0, (Yt )t≥0,n; Ṗμ} be given by
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Theorem 3.5. For any t > 0, we have

〈μ,φ〉Ṗμ

[(
Yt (φ)

)−1]
(3.14)= 〈μ,φ〉P(φ,T )

μ

[(
Yt (φ)

)−1]
Theorem 1.5= 〈μ,φ〉Nwt (φ)

μ

[(
wt(φ)

)−1] =Nμ

{
wt(φ) > 0

} = lim
λ→∞Nμ

[
1 − e−λwt (φ)

]
Campbell’s formula= lim

λ→∞
(− log Pμ

[
e−λXt (φ)

]) = − log Pμ{Xt = 0}
(1.16)= 〈μ,vt 〉. (5.9)

Taking μ = δx in (5.9), we get vt (x)/φ(x) = Ṗδx [(Yt (φ))−1]. Taking μ = ν, we get
〈vt , φ

∗〉m = Ṗν[(Yt (φ))−1]. Therefore, to complete the proof, we only need to show that

sup
x∈E

∣∣∣∣ Ṗδx [(Yt (φ))−1]
Ṗν[(Yt (φ))−1] − 1

∣∣∣∣ −−−→
t→∞ 0.

For any Borel subset G ⊂ (0, t], define

Y G
t :=

∫
G×W

wt−sn(ds, dw).

Then we have the following decomposition of Y :

Yt = Y
(0,t0]
t + Y

(t0,t]
t , 0 < t0 < t < ∞. (5.10)

It is easy to see, from the construction and the Markov property of the spine immigration
{Y, ξ ; Ṗ}, that for any 0 < t0 < t < ∞,

Ṗ
[(

Y
(t0,t]
t (φ)

)−1∣∣F ξ
t0

] = Ṗδξt0

[(
Yt−t0(φ)

)−1] = (
φ−1vt−t0

)
(ξt0).

Therefore, we have

Ṗν

[(
Y

(t0,t]
t (φ)

)−1] = Ṗν

[(
φ−1vt−t0

)
(ξt0)

] = 〈
vt−t0 , φ

∗〉
m

and

Ṗδx

[(
Y

(t0,t]
t (φ)

)−1] = Ṗx

[(
φ−1vt−t0

)
(ξt0)

] =
∫

E

q̇(t0, x, y)
(
φ−1vt−t0

)
(y)m(dy). (5.11)

By the decomposition (5.10), we have

φ−1vt (x) = Ṗδx

[(
Yt (φ)

)−1]
= Ṗν

[(
Y

(t0,t]
t (φ)

)−1] + (
Ṗδx

[(
Y

(t0,t]
t (φ)

)−1] − Ṗν

[(
Y

(t0,t]
t (φ)

)−1])
+ (

Ṗδx

[(
Yt (φ)

)−1 − (
Y

(t0,t]
t (φ)

)−1])
=: 〈vt−t0 , φ

∗〉
m

+ ε1
x(t0, t) + ε2

x (t0, t). (5.12)
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Suppose that t0 > 1, and let c, γ > 0 be the constants in (1.20), we have

∣∣ε1
x (t0, t)

∣∣ = ∣∣Ṗδx

[(
Y

(t0,t]
t (φ)

)−1] − Ṗν

[(
Y

(t0,t]
t (φ)

)−1]∣∣
=

∣∣∣∣
∫

E

q̇(t0, x, y)
(
φ−1vt−t0

)
(y)m(dy) − 〈

vt−t0 , φ
∗〉

m

∣∣∣∣
≤

∫
y∈E

∣∣q̇(t0, x, y) − (
φφ∗)(y)

∣∣(φ−1vt−t0

)
(y)m(dy)

≤ ce−γ t0
〈
vt−t0 , φ

∗〉
m
. (5.13)

We also have
∣∣ε2

x(t0, t)
∣∣ = ∣∣Ṗδx

[(
Yt (φ)

)−1 − (
Y

(t0,t]
t (φ)

)−1]∣∣
= Ṗδx

[
Y

(0,t0]
t (φ) · (Yt (φ)

)−1 · (Y (t0,t]
t (φ)

)−1]
≤ Ṗδx

[
1

Y
(0,t0]
t (φ)>0

· (Y (t0,t]
t (φ)

)−1]

= Ṗδx

[
Ṗδx

[
1

Y
(0,t0]
t (φ)>0

|F ξ
t0

] · Ṗδx

[(
Y

(t0,t]
t (φ)

)−1∣∣F ξ
t0

]]
. (5.14)

Notice that, by Campbell’s formula, one can verify that

Ṗδx

[
e−〈Y (0,t0]

t ,θ1E 〉|F ξ
t0

] = e− ∫ t0
0 ψ ′

0(ξs ,Vt−s (θ1E)(ξs )) ds .

Letting θ → ∞ we have

Ṗδx

[
1

Y
(0,t0]
t =0

|F ξ
t0

] = e− ∫ t0
0 ψ ′

0(ξs ,vt−s (ξs )) ds .

We also have

ψ ′
0

(
x, vt−s(x)

) = 2α(x)vt−s(x) +
∫

(0,∞)

(
1 − e−yvt−s (x)

)
yπ(x, dy)

≤
(

2α(x) +
∫

(0,∞)

y2π(x, dy)

)
vt−s(x)

= A(x)vt−s(x) ≤ ‖Aφ‖∞
∥∥φ−1vt−s

∥∥∞.

Therefore

Ṗδx

[
1

Y
(0,t0]
t 
=0

∣∣F ξ
t0

] = 1 − e− ∫ t0
0 ψ ′

0(ξs ,vt−s (ξs )) ds ≤ t0‖Aφ‖∞
∥∥φ−1vt−t0

∥∥
∞. (5.15)

Plugging (5.15) into (5.14), using (5.11) and letting c, γ > 0 be the constants in (1.20), we
have that

∣∣ε2
x(t0, t)

∣∣ ≤ t0‖Aφ‖∞
∥∥(

φ−1vt−t0

)∥∥∞Ṗδx

[(
Y

(t0,t]
t (φ)

)−1∣∣F ξ
t0

]

≤ t0‖Aφ‖∞
∥∥(

φ−1vt−t0

)∥∥∞

∫
E

q̇(t0, x, y)
(
φ−1vt−t0

)
(y)m(dy)

≤ t0‖Aφ‖∞
∥∥φ−1vt−t0

∥∥∞
(
1 + ce−γ t0

)〈
vt−t0 , φ

∗〉
m
. (5.16)
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Combining (5.12), (5.13) and (5.16), we have that

∣∣∣∣ φ−1vt (x)

〈vt−t0 , φ
∗〉m − 1

∣∣∣∣ ≤ |ε1
x(t0, t)|

〈vt−t0 , φ
∗〉m + |ε2

x (t0, t)|
〈vt−t0 , φ

∗〉m
≤ ce−γ t0 + t0‖Aφ‖∞

∥∥φ−1vt−t0

∥∥∞
(
1 + ce−γ t0

)
. (5.17)

Since we know from Lemma 5.2(5) that ‖φ−1vt‖∞ → 0 when t → ∞, there exists a map
t �→ t0(t) such that,

t0(t) −−−→
t→∞ ∞; t0(t)

∥∥φ−1vt−t0(t)

∥∥∞ −−−→
t→∞ 0.

Plugging this choice of t0(t) back into (5.17), we have that

sup
x∈E

∣∣∣∣ φ−1vt (x)

〈vt−t0(t), φ∗〉m − 1

∣∣∣∣ −−−→
t→∞ 0. (5.18)

Now notice that
∣∣∣∣ 〈vt , φ

∗〉m
〈vt−t0(t), φ∗〉m − 1

∣∣∣∣ ≤
∫ ∣∣∣∣ φ−1vt (x)

〈vt−t0(t), φ∗〉 − 1

∣∣∣∣φφ∗(x)m(dx)

≤ sup
x∈E

∣∣∣∣ φ−1vt (x)

〈vt−t0(t), φ∗〉m − 1

∣∣∣∣ −−−→
t→∞ 0. (5.19)

Finally, by (5.18), (5.19) and the property of uniform convergence,

sup
x∈E

∣∣∣∣φ
−1vt (x)

〈vt , φ∗〉m − 1

∣∣∣∣ −−−→
t→∞ 0,

as desired. �

Lemma 5.4 Under Assumptions 1′, 2′ and 3, we have

1

t〈vt , φ∗〉m −−−→
t→∞

1

2

〈
Aφ,φφ∗〉

m
.

Proof We use an argument similar to that used in [34] for critical branching diffusions.
According to [38], we have that, for any x ∈ E and z ≥ 0,

R(x, z) := ψ0(x, z) − 1

2
A(x)z2 ≤ e(x, z)z2,

where

e(x, z) :=
∫

(0,∞)

y2

(
1 ∧ 1

6
yz

)
π(x, dy) ≤ A(x).

By monotonicity, we have that

e(x, z) −−→
z→0

0, x ∈ E. (5.20)
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Taking b(t) := 〈vt , φ
∗〉m and writing lt (x) := vt (x) − b(t)φ(x), Lemma 5.3 says that,

sup
x∈E

∣∣∣∣ lt (x)

b(t)φ(x)

∣∣∣∣ −−−→
t→∞ 0. (5.21)

Now, taking s0 > 0 as in (5.8), we have that t �→ b(t) is differentiable on the set

C = {
t > s0 : the function t �→ 〈

Ψ0(vt ), φ
∗〉

m
is continuous at t

}

and that

d

dt
b(t) = −〈

Ψ0(vt ), φ
∗〉

m
= −

〈
1

2
A · v2

t + R
(·, vt (·)

)
, φ∗

〉
m

= −
〈

1

2
A · (b(t)φ + lt

)2 + R
(·, vt (·)

)
, φ∗

〉
m

= −b(t)2

[
1

2

〈
Aφ,φφ∗〉

m
+ g(t)

]
, t ∈ C, (5.22)

where

g(t) =
〈

lt

b(t)φ
,Aφ2φ∗

〉
m

+ 1

2

〈(
lt

b(t)φ

)2

,Aφ2φ∗
〉
m

+
〈
R(·, vt (·))
b(t)2φ2

, φ2φ∗
〉
m

=: g1(t) + g2(t) + g3(t).

From (5.21), we have g1(t) → 0 and g2(t) → 0 as t → ∞. From

R(x, vt (x))

b(t)2φ(x)2
≤ e(x, vt (x)) · vt (x)2

b(t)2φ(x)2
= e

(
x, vt (x)

)(
1 + lt (x)

b(t)φ(x)

)2

,

using (5.21), (5.20), Lemma 5.2 (5) and the dominated convergence theorem (e(x, vt (x)) is
dominated by A(x)), we conclude that g3(t) → 0 as t → ∞.

Finally, from (5.22) we can write

d

dt

(
1

b(t)

)
= − db(t)

b(t)2dt
= 1

2

〈
Aφ,φφ∗〉

m
+ g(t), t ∈ C. (5.23)

Notice that, since the function t �→ 〈Ψ0(vt ), φ
∗〉m is non-increasing in t , the complement of

C has at most countably many elements. Therefore, using (5.8) and (5.23), one can verify
that t �→ 1

b(t)
is absolutely continuous on the interval [s0, t0] as long as s0 and t0 are large

enough. This allows us to integrate (5.23) on the interval [s0, t0] with respect to the Lebesgue
measure, and get that

1

b(t0)
= 1

b(s0)
+ 1

2

〈
Aφ,φφ∗〉

m
(t0 − s0) +

∫ t0

s0

g(s) ds, for 0 ≤ s0 ≤ t0 large enough.

Dividing by t0 and letting t0 → ∞ in the above equation, we have

1

b(t)t
−−−→
t→∞

1

2

〈
Aφ,φφ∗〉

m

as desired. �
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Proof of Theorem 1.10 For μ ∈ M
φ

f , from Lemma 5.2.(5) we know that

〈μ,vt 〉 =
∫

E

vt (x)μ(dx) =
∫

E

vt (x)

φ(x)
φ(x)μ(dx) −−−→

t→∞ 0. (5.24)

From Lemma 5.3 we know that

〈μ,vt 〉
〈vt , φ∗〉m =

∫
E

vt (x)

〈vt , φ∗〉mφ(x)
φ(x)μ(dx) −−−→

t→∞ 〈μ,φ〉. (5.25)

It then follows from (5.24), (5.25) and Lemma 5.4 that

tPμ(Xt 
= 0) = t
(
1 − e−〈μ,vt 〉) = t

〈
vt , φ

∗〉 〈μ,vt 〉
〈vt , φ∗〉m

1 − e−〈μ,vt 〉

〈μ,vt 〉
−−−→
t→∞

〈μ,φ〉
1
2 〈Aφ,φφ∗〉m

, x ∈ E. �

5.3 Yaglom Type Result

Let {(Xt)t≥0; (Pμ)μ∈Mf
} be the (ξ,ψ)-superprocess introduced in Sect. 1.2 which satisfies

Assumptions 1′ and 2′ and 3. In this subsection, we will give a proof of Theorem 1.11.
Slutsky’s theorem is used quite often to prove convergence in law of two components, in

which one contributes to the limit, and the other one is negligible. The following proposition
says that under Ṗμ, the weighted mass Yt (φ) coming off spine, normalized by t , converges
to a Gamma distribution as t → ∞.

Proposition 5.5 Suppose that Assumptions 1′, 2′ and 3 hold. Suppose that μ ∈ M
φ

f . Let

{(ξt )t≥0, (Yt )t≥0,n; Ṗμ} be the spine immigration given by Theorem 3.5. Then Wt := Yt (φ)

t

converges weakly to a Gamma distribution Γ (2, c−1
0 ) with c0 := 1

2 〈φA,φφ∗〉m.

Proof We only have to prove that

Ṗμ

[
e−θWt

] −−−→
t→∞

1

(1 + c0θ)2
, θ ≥ 0, μ ∈ M

φ

f .

First we consider the case when μ = δx for an arbitrary x ∈ E. To simplify notation, for all
x ∈ E,θ ≥ 0 and t ≥ 0, we write

J (x, θ, t) := (φA)(x)Ṗδx

[
e−θWt

]̃
Px

[
e−Xt (

θφ
t )

]
,

J0(x, θ, t) := (φA)(x)Ṗδx

[
e−θWt

]

and

M(x, θ, t) :=
∣∣∣∣ 1

(1 + c0θ)2
− Ṗδx

[
e−θWt

]∣∣∣∣.
Step 1. We will show that

Ṗδx

[
e−θWt

] = Ṗδx

[
e− ∫ 1

0 du
∫ θ

0 dρ·J (ξut ,ρ(1−u),t (1−u))
]
. (5.26)
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In fact, we have

∂

∂θ
Ṗδx

[
e−θWt

∣∣ξ] = −Ṗδx

[
Wte

−θWt
∣∣ξ]

, t ≥ 0, θ ≥ 0.

Applying Lemma 4.6 with K(dr) = δt (dr) and ft = θφ

t
, for each θ ≥ 0, we have

− ∂

∂θ
log Ṗδx

[
e−θWt

∣∣ξ] = Ṗδx [Wte
−θWt |ξ ]

Ṗδx [e−θWt

∣∣ξ ]

= 1

t

∫ t

0
(Aφ)(ξs)Ṗδξs

[
e−(θ t−s

t )Wt−s
]̃
Pξs

[
e−Xt−s (

θφ
t )

]
ds

=
∫ 1

0
J
(
ξut , θ(1 − u), t (1 − u)

)
du.

Integrating both sides of the above equation yields that

− log Ṗδx

[
e−θWt

∣∣ξ] =
∫ 1

0
du

∫ θ

0
J
(
ξut , ρ(1 − u), t (1 − u)

)
dρ,

which implies (5.26).
Step 2. We will show that

∫ 1

0
du

∫ θ

0
(J0 − J )

(
ξut , ρ(1 − u), t (1 − u)

)
dρ

L2(Ṗδx )−−−−→
t→∞ 0, θ ≥ 0. (5.27)

To get this result, we will apply Lemma 5.1 with

F(x,u, t) :=
∫ θ

0
dρ · (J0 − J )

(
x,ρ(1 − u), t (1 − u)

)

=
∫ θ

0
dρ · (Aφ)(x)Ṗδx

[
e−ρ(1−u)Wt(1−u)

]̃
Px

[
1 − e−Xt(1−u)(

ρφ
t )

]
. (5.28)

Firstly note that F(x,u, t) is bounded by θ‖φA‖∞ on E × [0,1] × [0,∞). Secondly note
that F(x,u, t) −−−→

t→∞ 0 for each x ∈ E and u ∈ [0,1], since |J0 − J | is bounded by ‖φA‖∞
and

∣∣(J0 − J )(x, θ, t)
∣∣ = (Aφ)(x)Ṗδx

[
e−θWt

]̃
Px

[
1 − e−Xt (

θφ
t )

]
≤ (Aφ)(x)̃Px(Xt 
= 0)

= (Aφ)(x)
2α(x)P0(Xt 
= 0) + ∫

(0,∞)
y2Pyδx (Xt 
= 0)π(x, dy)

2α(x) + ∫
(0,∞)

y2π(x, dy)

−−−→
t→∞ 0, x ∈ E,θ ≥ 0.

Therefore, we can apply Lemma 5.1 with F(x,u, t) given by (5.28), and get (5.27).
Step 3. We will show that

1

(1 + c0θ)2
= lim

t→∞ Ṗδx

[
e

− ∫ 1
0 du

∫ θ
0 dρ

(Aφ)(ξut )

(1+c0ρ(1−u))2
]
, θ ≥ 0. (5.29)
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By elementary calculus, the following map

(x,u) �→
∫ θ

0

(Aφ)(x)

(1 + c0ρ(1 − u))2
dρ = (Aφ)(x)θ

1 + c0θ(1 − u)

is bounded by θ‖Aφ‖∞ on E × [0,1]. According to Lemma 5.1, we have that
∫ 1

0
du

∫ θ

0

(Aφ)(ξut )

(1 + c0ρ(1 − u))2
dρ

L2(Ṗδx )−−−−→
t→∞

∫ 1

0

〈
θAφ

1 + c0θ(1 − u)
,φφ∗

〉
m

du

= 〈
Aφ,φφ∗〉

m

∫ 1

0

θ

1 + c0θ(1 − u)
du

= 2 log(1 + c0θ).

Therefore, by the bounded convergence theorem, we get (5.29).
Step 4. We will show that

M(x, θ) := lim sup
t→∞

M(x, θ, t) = 0, x ∈ E,θ ≥ 0. (5.30)

In fact,

M(x, θ, t) ≤ I1 + I2 + I3, (5.31)

where

I1 :=
∣∣∣∣ 1

(1 + c0θ)2
− Ṗδx

[
e

− ∫ 1
0 du

∫ θ
0

(Aφ)(ξut )

[1+c0ρ(1−u)]2 dρ]∣∣∣∣ by (5.29)−−−−→
t→∞ 0,

I2 :=
∣∣∣∣Ṗδx

[
e

− ∫ 1
0 du

∫ θ
0

(Aφ)(ξut )

(1+c0ρ(1−u))2
dρ] − Ṗδx

[
e− ∫ 1

0 du
∫ θ

0 J0(ξut ,ρ(1−u),t (1−u)) dρ
]∣∣∣∣

≤ Ṗδx

[∫ 1

0
du

∫ θ

0
(Aφ)(ξut )M

(
ξut , ρ(1 − u), t (1 − u)

)
dρ

]

=
∫ 1

0
du

∫ θ

0
dρ

∫
E

q̇(ut, x, y)(Aφ)(y)M
(
y,ρ(1 − u), t (1 − u)

)
m(dy),

and by (5.26) and (5.27),

I3 := ∣∣Ṗδx

[
e− ∫ 1

0 du
∫ θ

0 J0(ξut ,ρ(1−u),t (1−u)) dρ
] − Ṗδx

[
e−θWt

]∣∣
= ∣∣Ṗδx

[
e− ∫ 1

0 du
∫ θ

0 J0(ξut ,ρ(1−u),t (1−u)) dρ
] − Ṗδx

[
e− ∫ 1

0 du
∫ θ

0 J (ξut ,ρ(1−u),t (1−u)) dρ
]∣∣

≤ Ṗδx

[∣∣∣∣
∫ 1

0
du

∫ θ

0
(J0 − J )

(
ξut , ρ(1 − u), t (1 − u)

)
dρ

∣∣∣∣
]

−−−→
t→∞ 0.

Therefore, taking lim supt→∞ in (5.31), by the reverse Fatou’s lemma, we get

M(x, θ) ≤
∫ 1

0
du

∫ θ

0

〈
AφM

(·, ρ(1 − u)
)
, φφ∗〉

m
dρ, x ∈ E,θ ≥ 0. (5.32)

Integrating with respect to the finite measure (Aφφφ∗)(x)m(dx) yields that

〈
AφM(·, θ),φφ∗〉

m
≤ 〈

Aφ,φφ∗〉
m

∫ 1

0
du

∫ θ

0

〈
AφM

(·, ρ(1 − u)
)
, φφ∗〉

m
dρ, θ ≥ 0.
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According to [35, Lemma 3.1], this inequality implies that 〈AφM(·, θ), φφ∗〉m = 0 for each
θ ≥ 0. This and (5.32) imply (5.30), which completes the proof when μ = δx .

Finally, for any μ ∈ M
φ

f , since

〈μ,φ〉Ṗμ

[
e−θWt

] = 〈μ,φ〉Nwt (φ)
μ

[
e−θ

wt (φ)
t

] = Nμ

[
wt(φ)e−θ

wt (φ)
t

]

=
∫

E

μ(dx)Nx

[
wt(φ)e−θ

wt (φ)
t

] =
∫

E

μ(dx)φ(x)Ṗδx

[
e−θWt

]
,

we have that, by the bounded convergence theorem,
∣∣∣∣Ṗμ

[
e−θWt

] − 1

(1 + c0θ)2

∣∣∣∣ ≤
∫

E

∣∣∣∣Ṗδx

[
e−θWt

] − 1

(1 + c0θ)2

∣∣∣∣φ(x)μ(dx)

〈μ,φ〉 −−−→
t→∞ 0,

as desired. �

The following lemma says that, conditional on survival up to time t , the weighted and
normalized mass t−1Xt(φ) (weighted by φ, and normalized by t ) has a limit distribution
which is exponential with explicit parameter. Later we will consider limit of t−1Xt(f ) with
a general f ∈ bpB

φ

E .

Lemma 5.6 Suppose that Assumptions 1′, 2′ and 3 hold. Let μ ∈ M
φ

f . Then it holds that

{t−1Xt(φ);Pμ(·|Xt 
= 0)} converges weakly to an exponential distribution Exp(c−1
0 ) with

c0 := 1
2 〈φA,φφ∗〉m.

Proof We only have to show that

Pμ

[
e−θt−1Xt (φ)

∣∣Xt 
= 0
] −−−→

t→∞
1

1 + c0θ
, θ ≥ 0, μ ∈ M

φ

f .

Notice that, by Lemma 5.2(6), we have

{
t−1Xt(φ);Pμ

} law−−−→
t→∞ 0.

Therefore, by Theorem 3.5 and Proposition 5.5, we have

PM
μ

[
e−θt−1Xt (φ)

] = (Pμ ⊗ Ṗμ)
[
e−θt−1(Xt +Yt )(φ)

] −−−→
t→∞

1

(1 + c0θ)2
.

Also notice that, by elementary calculus

1 − e−θu

u
=

∫ θ

0
e−ρu dρ, u > 0.

From Theorem 3.5 and Lemma 4.5 we know that PM
μ (Xt = 0) = 0. Therefore by the

bounded convergence theorem, we have

PM
μ

[
1 − e−θt−1Xt (φ)

t−1Xt(φ)

]
= PM

μ

[∫ θ

0
e−ρt−1Xt (φ) dρ

]
=

∫ θ

0
PM

μ

[
e−ρt−1Xt (φ)

]
dρ

−−−→
t→∞

∫ θ

0

1

(1 + c0ρ)2
dρ = c−1

0

(
1 − 1

1 + c0θ

)
.
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Hence, by Theorem 1.10 we have

Pμ

[
1 − e−θt−1Xt (φ)

∣∣Xt 
= 0
] = Pμ(Xt 
= 0)−1Pμ

[(
1 − e−θt−1Xt (φ)

)
1X 
=0

]

= Pμ(Xt 
= 0)−1Pμ

[(
1 − e−θt−1Xt (φ)

)Xt(φ)

Xt(φ)

]

= (
tPμ(Xt 
= 0)

)−1〈μ,φ〉PM
μ

[
1 − e−θt−1Xt (φ)

t−1Xt(φ)

]

−−−→
t→∞ 1 − 1

1 + c0θ
,

which completes the proof. �

Now we consider limit of t−1Xt(f ) with general weight f ∈ bpB
φ

E . The main idea is to
use the following decomposition for f : f (x) = 〈φ∗, f 〉mφ(x)+ f̃ (x), x ∈ E. The following
lemma says that f̃ has no contribution to the limit, and then we can easily get that the
conditional limit of t−1Xt(f ) as t → ∞ is the contribution of 〈φ∗, f 〉mt−1Xt(φ), which is
known from Lemma 5.6.

Lemma 5.7 Suppose that Assumptions 1′, 2′ and 3 hold. If f̃ ∈ bB
φ

E satisfies 〈f̃ , φ∗〉 = 0,
then we have, for any μ ∈ M

φ

f ,

{
t−1Xt(f̃ );Pμ(·|Xt 
= 0)

} −−−→
t→∞ 0, in probability.

Proof If we can show that Pμ[(t−1Xt(f̃ ))2|Xt 
= 0] −−−→
t→∞ 0, then the desired result follows

by the Chebyshev’s inequality

Pμ

(|t−1Xt(f̃ )| ≥ ε|Xt 
= 0
) ≤ ε−2Pμ

[(
t−1Xt(f̃ )

)2|Xt 
= 0
]
.

By Proposition 4.2 we have that

Pμ

[(
t−1Xt(f̃ )

)2∣∣Xt 
= 0
]

= t−2Pμ(Xt 
= 0)−1Pμ

[
Xt(f̃ )21Xt 
=0

]

= t−1Pμ(Xt 
= 0)−1

( 〈μ,St f̃ 〉2

t
+ 〈μ,φ〉Ṗμ

[(
φ−1f̃

)
(ξt )

1

t

∫ t

0
A(ξs) · (St−s f̃ )(ξs) ds

])
.

(5.33)

Letting c, γ > 0 be the constants in (1.20), we know that

∣∣St f̃ (x) − 〈
φ∗, f̃

〉
m
φ(x)

∣∣ =
∣∣∣∣
∫

E

(
q(t, x, y) − φ(x)φ∗(y)

)
f̃ (y)m(dy)

∣∣∣∣
≤

∫
E

∣∣∣∣ q(t, x, y)

φ(x)φ∗(y)
− 1

∣∣∣∣ · ∣∣φ(x)φ∗(y)f̃ (y)
∣∣m(dy)

≤ ce−γ tφ(x)
∥∥φ−1f̃

∥∥∞

∫
E

(
φφ∗)(y)m(dy)

−−−→
t→∞ 0, x ∈ E. (5.34)
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Therefore, by the dominated convergence theorem,

〈μ,St f̃ 〉 −−−→
t→∞

〈
φ∗, f̃

〉
m
〈μ,φ〉 = 0.

Hence,

〈μ,St f̃ 〉
t

−−−→
t→∞ 0, x ∈ E. (5.35)

By (5.34) and Lemma 5.1, we know that

1

t

∫ t

0
A(ξs) · (St−s f̃ )(ξs) ds =

∫ 1

0
A(ξut ) · (St−ut f̃ )(ξut ) du

L2(Ṗx )−−−→
t→∞

∫ 1

0

〈
Aφ,φφ∗〉

m

〈
φ∗, f̃

〉
m

du = 0.

Hence, by Lemma 4.1 and the bounded convergence theorem we have that
∣∣∣∣〈μ,φ〉Ṗμ

[(
φ−1f̃

)
(ξt )

1

t

∫ t

0
A(ξs) · (St−s f̃ )(ξs) ds

]∣∣∣∣
≤

∫
μ(dx)φ(x)

∣∣∣∣Ṗx

[(
φ−1f̃

)
(ξt )

1

t

∫ t

0
A(ξs) · (St−s f̃ )(ξs) ds

]∣∣∣∣

≤ ∥∥φ−1f̃
∥∥

∞ ·
∫

μ(dx)φ(x)Ṗx

[∣∣∣∣1

t

∫ t

0
A(ξs) · (St−s f̃ )(ξs) ds

∣∣∣∣
2] 1

2

−−−→
t→∞ 0. (5.36)

Finally, using Theorem 1.10 and combining (5.33), (5.35) and (5.36), we have that

Pμ

[(
t−1Xt(f̃ )

)2∣∣Xt 
= 0
] −−−→

t→∞ 0

as required. �

Proof of Theorem 1.11 Define a function f̃ by

f̃ (x) := f (x) − 〈
φ∗, f

〉
m
φ(x), x ∈ E. (5.37)

It is easy to see that f̃ ∈ bB
φ

E and 〈f̃ , φ∗〉m = 0. It then follows from Lemma 5.6 that

{
t−1Xt

(〈
φ∗, f

〉
m
φ
);Pμ(·|Xt 
= 0)

} law−−−→
t→∞

1

2

〈
φ∗, f

〉
m

〈
φA,φφ∗〉

m
e, (5.38)

and from Lemma 5.7 that

{
t−1Xt(f̃ );Pμ(·|Xt 
= 0)

} in probability−−−−−−→
t→∞ 0. (5.39)

The desired result then follows from (5.37), (5.38), (5.39) and Slutsky’s theorem. �

Remark 5.8 In the symmetric case, i.e. when (St ) are self-adjoint operators, (5.37) is exactly
an L2-orthogonal decomposition.
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