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Abstract

Suppose that X is a subcritical superprocess. Under some asymptotic conditions on the mean
semigroup of X, we prove the Yaglom limit of X exists and identify all quasi-stationary distributions
of X.
© 2020 Elsevier B.V. Allrights reserved.
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1. Introduction

1.1. Background

Denote Z, = {1,2,...} and N = Z, U {0}. Suppose that Z = {(Z,)nen; (P;);en} 1S @
Galton—Watson process with offspring distribution (p,),cn. Let m = Zf;l np, be the mean
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of the offspring distribution. It is well known that when m < 1 and p; < 1, the process Z
becomes extinct in finite time almost surely, that is,

P,(Z,=0forsomeneN)=1, zeN.

Let ¢ := inf{n > 0 : Z, = 0} be the extinction time of Z. If v is a distribution on Z, such
that for any z € Z, and subset A of Z,
lim P, (Z, € A|¢ > n) = v(A),

n—00

then we say that v is the Yaglom limit of Z. Yaglom [34] showed that such limit exists when
m < 1 and the offspring distribution has finite second moment. This was generalized to the case
without the second moment assumption in [10,13]. See also [2, pp. 64—65] for an alternative
analytical approach; and [23] for a probabilistic proof. If v is a distribution on Z, such that
for any subset A of Z,

o0

Zv(z)PZ (Z,, € A|§ > n) =v(A), neN,

z=1
then we say v is a quasi-stationary distribution of Z. Hoppe and Seneta [12] studied the
quasi-stationary distributions of (Z,),cn. Recently, Maillard [24] characterized all A-invariant
measures of (Z,),en. If a A-invariant measure is a probability measure, then it is equivalent
to a quasi-stationary distribution. Multitype analogs for the Yaglom limit results can be found
in [11,12,14].

Now suppose that Z = {(Z;);>0; (Px)x>0} 1S a continuous-state branching process on [0, c0)

where 0 is an absorbing state. Let ¢ := inf{r > 0 : Z, = 0} be the extinction time of Z. If v is
a distribution on (0, co) such that for any x > 0 and Borel subset A of (0, c0),

lim Py (Z, € A|¢ > 1) = v(A),
t—00

then v is called the Yaglom limit of Z. If v is a distribution on (0, co) such that for any Borel
subset A of (0, 00),

/ v(dx)P.(Z, € Al > t) =v(A), t=>0,
(0,00)

then we say v is a quasi-stationary distribution for Z. The Yaglom limits of continuous-state
branching processes were studied in [20], where conditioning of the type {¢ > ¢ + r} for
any finite » > 0O instead of {¢ > t} was also considered. Lambert [19] also studied Yaglom
limits using a different method, and characterized all the quasi-stationary distributions for Z.
Seneta and Vere-Jones [32] studied some similar type of conditional limits for discrete-time
continuous-state branching processes. Recently [18] considered quasi-stationary distributions
for continuous-state branching processes conditioned on non-explosion.

Asmussen and Hering [1] studied limit behaviors of subcritical branching Markov processes.
They proved that the Yaglom limits for a class of subcritical branching Markov processes exist
under some conditions on the mean semigroup, and characterized all of their quasi-stationary
distributions, see [1, Chapter 5] and the references therein.

In this paper, we are interested in a class of subcritical (£, ¥)-superprocesses. We will prove
the existence of the Yaglom limit and identify all quasi-stationary distributions under some
asymptotic conditions on its mean semigroup. Our superprocesses are general in the sense that
the spatial motion § can be a general Borel right process taking values in a Polish space,
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and the branching mechanism 1 can be spatially inhomogeneous. Precise statements of the
assumptions and the results are presented in the next subsection.

As far as we know, there are no results on Yaglom limit and quasi-stationary distributions for
general superprocesses in the literature. Here we list some papers dealing with superprocesses
conditioning on various kinds of survivals under different settings: [3,6-8,22,26-28,33].

1.2. Main result

We first recall some basics about superprocesses. Let E be a Polish space. Let d be an
isolated point not contained in £ and E; := E U {d}. Denote by B(E, D) the collection
of Borel maps from E to some measurable space D. If D is a subset of R, we denote by
By (E, D) the bounded measurable functions from E to D. Assume that the underlying process
& = {(&)r>0; (ILy)xer} 1s an Ey-valued Borel right process with 9 as an absorbing state. Denote
by ¢ = inf{r > 0 : & = 9} the lifetime of &. Let the branching mechanism i be a function
on E x [0, c0) given by

V(x,2) = —B(X)z + o (x)*z? +/ (e — 14 zu)m(x,du), x e E,z>0,
(0,00)

where 8,0 € By(E,R) and (u A u?)m(x, du) is a bounded kernel from E to (0, 0o). Let
M (E) denote the space of all finite Borel measures on E equipped with the topology of
weak convergence. Denote by B(M ¢(E)) the Borel o-field generated by this topology. For
any u € My(E) and g € B(E, [0, 00)), we use u(g) to denote the integration of g with
respect to i whenever the integration is well defined. We will use ||| to denote w(1). For any
f € By(E, [0, 00)), there is a unique locally bounded non-negative map (¢, x) — V; f(x) on
[0, o0) x E such that

1A
Vif () + I [/0 v (&, Vies [ (&) dS} =1L [fE)i«]., t=0,x€E. (1.1)

Here, the local boundedness of the map (¢, x) > V; f(x) means that supy, .7 g Vi f(x) < 00
for T > 0. Moreover, there exists an M (E)-valued Borel right process X = {(X;);>0;
(Pu)uer(E)} such that

Py le XD = e VDt >0, ue M(E), f € By(E, [0, 00)).

We call X a (&, y)-superprocess. See [21] for more details.
The mean semigroup (P,ﬁ )i=0 of X is defined by

P f) = I [eB96 fe 1|, f € By(ER) 12 0,x € E,
It is well-known (see [21, Proposition 2.27]) that
P IX/(/)] =Pl f), e MpE),1>0,f eByE,R). (1.2)

In this paper, we will always assume that there exist a constant . < 0, a function
¢ € By(E,(0,00)) and a probability measure v with full support on E such that for each
t >0, PPy =ep, vPf = &My and v(¢) = 1. The assumption A < O says that the mean
of (X;(¢))>0 decays exponentially with rate A, and in this case the superprocess X is called
subcritical. Denote by LT(U) the collection of non-negative Borel functions on E which are
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integrable with respect to the measure v. We further assume that the following two conditions
hold:

Forallt >0,x € E, and f € LT(U), it holds that
PP f(x) = M pw(f)(1 + Hyx. p)

for some real H; , r with (HD)
sup |H, x| < oo and lim sup |H; x| =0.
xeE, feLtw) 7 ek, feLtm)
There exists 7 > 0 such that P,(|| X;|| =0) >0 forallr > T. (H2)

Note that L] (v) in (H1) can be replaced by the collection of all non-negative Borel functions f
with v(f) = 1. In fact, for any f € LT(U) and k € (0, 00), it is easy to see that H, y r = H; .

(H1) is mainly concerned with the spatial motion and (H2) is mainly about the branching
mechanism of the superprocess. In Section 1.3, we will give examples satisfying these two
assumptions.

We mention here that quantities like H; x ; in this paper might depend on the underlying
process & and the branching mechanism . Since £ and i are fixed, dependence on them will
not be explicitly specified.

Denote by 0 the null measure on E. Write M’}(E ) = M (E)\{0}. Any probability measure
P on ‘J’C(E ) will also be understood as its unique extension on M ((E) with P({0}) = 0. Since
¢ is strictly positive, we have

(1.2)

P.[X:(®)] =
Thus,
P.AXl>0>0, t>0,ue M‘}(E). (1.3)

WPl§) =M u(@) >0, 1=0, e MYE).

Hence we can condition the superprocess X on survival up to time ¢ if the distribution of Xy
is not concentrated on {0}. Our first main result is the following.

Theorem 1.1. If (H1) and (H2) hold, then there exists a probability measure Q; on M”f(E)
such that '
Py (Xr € [IXil = 0) —= Qu(). 1€ MH(E),

w
where — stands for weak convergence.

Now we introduce the concepts of quasi-limiting distribution (QLD) and quasi-stationary
distribution (QSD) for our superprocess X. For any probability measure P on M ;(E), define
PP)[-] = fo(E) P, [-]P(du). We say a probability measure Q on M;(E) is a QLD of X, if
there exists a probability measure P on M%(E) such that

(PP) (X, € B|IX,]l > 0) — Q(B), B € BM(E)).
We say a probability measure Q on M}(E) is a QSD of X, if
(QP) (X, € B||X,|| > 0) =Q(B), t>=0,B e BM}E)).

It follows from [25, Proposition 1] that, for any Markov process on [0, co0) with 0 as an
absorbing state, its QLDs and QSDs are equivalent. We claim that this is also the case for
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our M ¢(E)-valued Markov process X, for which the null measure 0 is an absorbing state. In
fact, since E is a Polish space, M ((E) is again Polish [16, Lemma 4.3]. So is M‘}(E) [15,
Theorem A1.2]. Thus /\/l_’;-(E) is Borel isomorphic to (0, co) [15, Theorem A.1.6]. That is,
there exists a bijection T : M‘}(E) — (0, 00) such that both 7 and its inverse t~! are Borel
measurable. Extend 7 uniquely so that it is a bijection between M ;(E) and [0, c0). Then, it is
easy to verify that 7 is a Borel isomorphism between M (E) and [0, co) which maps 0 to 0.
Now for any M s(E)-valued Markov process with 0 as an absorbing state, its image under ©
is a [0, oo)-valued Markov process with 0 as an absorbing state. Therefore we can apply [25,
Proposition 1] to (7(X;));>0 which gives that a probability Q on M’}(E) is a QLD for X if
and only if it is a QSD for X. Similarly, we can apply [25, Proposition 2] to X which says
that

if a probability measure Q on M‘}(E ) is a QSD of X, then there exists an
r € (—o0, 0) such that (QP)(|| X, > 0) = ¢"* for all ¢ > 0. In this case, we call (1.4)
r the mass decay rate of Q.

Theorem 1.2. Suppose that (H1) and (H2) hold. Then (1) for each r € [X, 0), there exists a
unique QSD for X with mass decay rate r; and (2) for each r € (—o0, ), there is no QSD for
X with mass decay rate r.

1.3. Examples

In this subsection, we will give some examples satisfying (H1) and (H2).
We first give an example satisfying (H2). Suppose that v is bounded from below by a
spatially independent branching mechanism, that is, there is a function v of the form

U(z) = Bz + 5222 +/ (e — 1+ zu)F(du), z>0
0

with B € R, & > 0 and 7 is a measure on (0, 00) satisfying fooo(u A u?)7(du) < oo such that
Y(x,2) > ¥(z), xekE,z>0.

If 1;(00) = oo and foo I/J(z)dz < 00, then by [28, Lemma 2.3], for any ¢ > 0,
inf Py, (|1, = 0) > 0.

Using this and (2.4) below one can easily get that P, (|| X;|| = 0) > 0 for all # > 0. Thus (H2)
is satisfied with 7 = 0.

Now we give conditions that imply (H1). We assume that £ is a Hunt process and there
exist an o-finite measure m with full support on E and a family of strictly positive, bounded
continuous functions {p,(-,-) : ¢ > 0} on E x E such that

ILLFEN,- ] = / e N FOImy), 1> 0,x € E, f € By(E, R);
E
/ pix,yym(dx) <1, t>0,y€E;
E

/ / p:(x, y)zm(dx)m(dy) <00, t>0;
EJE
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and the functions x +— [, p,(x, y)*’m(dy) and y — [, p/(x, y)*m(dx) are both continuous.
Choose an arbitrary b € B,(E, R). Denote by (Ptb),zo a semigroup of operators on B,(E, R)
given by

PP f(x) = I [ef "X £g)1, ], f € By(E.R),t>0,x € E.

Let us write (f, g}, = fE f(x)g(x)m(dx) for the inner product of the Hilbert space L*(E, m).
Then it is proved in [28,29] that there exists a family of strictly positive, bounded continuous
functions {p,[’ :t >0} on E x E such that

10l py (e, y), 1> 0,x,y € E (1.5)

o~ Blloot

pix,y) < plx,y) <e
and that

PP f(x)= prf’(x, Nfmdy), t>0,x€ckE.

Define the dual semigroup (73,\[’)20 by

o~

Py =1 ;Ff(x) = / Pl ) f(mdy), t>0,x€E,feBy(ER).
E

It is proved in [28,29] that both (P,"),Zo ang\ (P,"),Zo are strongly continuous semigroups of
compact operators on L?(E, m). Let L° and L® be the generators of the semigroups of compact
operators on (P,%);~o and (P}, respectively. Denote by o(L") and o'(L®) the spectra of L®
and LP®, respectively. According to Theorem 29 of [31], Ab = sup R(o(LY) = supR(o (L)) is
a common eigenvalue of multiplicity 1 for both L® and LP. By the argument in [28] and [29],
the eigenfunctions 4, of L® and hb of L® associated with the eigenvalue Ap can be chosen to
be strictly positive and continuous everywhere on E. Setting (he, hp)m = (ho, hb)m =1so0
that iy and Tty are uniquely determined pointwisely.

We assume further that Ao := hy|p=o is bounded, and the semigroup (P;);>o is intrinsically
ultracontractive in the following sense: for all 7 > 0 and x, y € E, it holds that p,(x, y) =
Cr.x, yho(x)ho(y) for some positive ¢; ,,, with sup, yeE Crx,y < 00. Here, ho = hb|b —o. Then, it
is proved in [28,29] that, for arbitrary b € B,(E, R), hy is also bounded; and (P )0 1s also
intrinsically ultracontractive, in the sense that for any # > 0 and x, y € E we have

PP, y) = Ch, . ho(0)he(y) (1.6)

for some positive C| b.rx.y With sup, e C|
Theorem 2.7], when (1.6) holds, C!

brxy < OO It follows from [17, Proposition 2.5 and

b.r.x,y Can be chosen so that

sup (Cy,,,) " <00, >0, (1.7)
x,yeE Y

and that for any t > 0,x,y € E,
Cory =€+ Cg ) (1.8)

for some real C2,  with lim,_,  sup, yeE c? = 0. Therefore,

b,t,x,y b,t,x,y

m@ﬂQ/ﬁv»muﬂw@wﬂmwxer
E

< hy(x)™! (sup(Cé,,,x,z)">/ pr(x, y)m(dy)
E

zeE
< oo by (1.5) and (1.7) and the strict positivity of Ay.
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This allows us to define a probability measure vy (dx) = m(ﬁb)’lﬁb(x)m(dx), x € E, and an
eigenfunction ¢p(x) = m(ﬁb)hb(x), x € E.

Finally we write A := Ag and assume that A < 0. We now show that X satisfies (H1) with
¢ = ¢p and v := vg. From their definitions, we see that the function ¢ € B,(E, (0, 00)), and
that the probability measure v has full support on E. Further, it is easy to see that for each
t>0, Pf(ﬁ = eM¢ and v(¢) = 1. We also have that for any ¢t > 0,

wP ) dy) = /

xe

plx, yym(dy)v(dx)
E

= / pl e, yym(dy)ym(hig) " hg(x)ym(dx)
xeE

m(hg)~" ( / ) plx, y)%(x)m(dx)) m(dy)
= m(hp) "' hp(y)m(dy) = "' v(dy).

Therefore thﬂ =¢eMv,t > 0. Now for each t > 0, x € E and fe LT(v), we have
(1.6) ~
Pl = f Pl fImdy) '= / h(Ohg(NCp vy f(IM(Y)
E E

= /E SIC), ., FOIY) = SV + Hyx. p).

Finally, from (1.6) and (1.8), it is elementary to verify that H, , s satisfies the required condition
(HD).

In three paragraphs above, we give some conditions that imply (H1). See [28, Section 1.4]
for more than 10 concrete examples of processes satisfying these conditions.

Organization of the rest of the paper.

In Section 2.1 we will give the proof of Theorem 1.1 using Propositions 2.1-2.4. In
Section 2.2 we will give the proof of Theorem 1.2 using Propositions 2.5-2.7. The proofs
of Propositions 2.1-2.4 are given in Section 3. The proof of Propositions 2.5-2.7 are given in
Section 4. Some technical lemmas are in the Appendix, and will be referred to as needed in
the proofs.

2. Proofs of Theorems 1.1 and 1.2
2.1. Proof of Theorem 1.1
It is easy to see that the operators (V;);>0 given by (1.1) can be extended uniquely to a

family of operators (V,)tzo_ on B(E , [0, 00]) such that for all > 0, fu © f pointwisely in
B(E, [0, oo]) implies that V, f, 1 V, f pointwisely. Moreover, (V,),;>o satisfies that

V.f<V,gfort>0and f < g in B(E, [0, 00]); 2.1)
V,ﬂ =V,V, fort,s > 0; and 2.2)
Pule X D] = ¢ *ViD for t = 0, u € M/(E), and f € B(E, [0, oc]). (2.3)

With some abuse of notation, we still write V, = V, for r > 0, and call (Vi)i>0 the extended
cumulant semigroup of the superprocess X. Define v, = V;(colg) for ¢ > 0, then it holds that

Pu(IX,l = 0)=e ™) ne Ms(E),t>0. (24)
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From this, we can verify that
u(vy) > 0 for all u € M%(E) and 1 > 0. (2.5)

In fact, if u(v,) = 0, then by (2.4) we have P, (|| X;|| = 0) = 1, which contradicts (1.3).
In the proof of Theorem 1.1, we will use the following four propositions whose proofs are
postponed to Sections 3.1-3.4 respectively.

Proposition 2.1. Forany f € B(E,[0,00]), t > T and x € E, we have V, f(x) = x 1 P(x)
for some non-negative C3 x,f With imy o0 SUP, e & £ e (£, [0,007) C, oy =0.In parncular we have
lim; o w(V; f) = 0 for all w e Mp(E)and [ € B(E, [0, oo]).

Proposition 2.2. For any f € B(E,[0,00]), t > T and x € E, we have V,f(x) =
¢V, Hl + C A f) for some real Ct of with lim;_, o SUp, g FeB(E,[0,00]) |Ct . f| =0.

For a probability measure P on M ¢(E), the log-Laplace functional of P is defined by
Lo f = —log / e MIPdp), f e B(E, [0, 00]).
M (E)

For a finite random measure {Y; P}, the log-Laplace functional of its distribution is denoted as
Zy.p. To simplify our notation, for each ¢ > 0, we write I’} == Zx,.p,(|x,[>0)-

We say a [0, co]-valued functional A defined on B(E, [0, co]) is monotone concave if (1)
A is a monotone functional, i.e., f < g in B(E, [0, co]) implies Af < Ag; and (2) for any
f € B(E, [0, oo]) with Af < oo, the function u — A(uf) is concave on [0, 1].

Proposition 2.3. The limit Gf = lim,_, o, I} f exists in [0, oco] for each f € B(E, [0, 00]).
Moreover, G is the unique [0, oo]-valued monotone concave functional on B(E, [0, co]) such
that G(oolg) = oo and that

1 —e OY%f = e — ein), s >0, f e B(E, [0, o0]). (2.6)

Proposition 2.4. For any g € B,(E, [0, 00)) and sequence (g,)en in By(E, [0, 00)) such that
&n | g pointwisely, we have Gg, | Gg.

Proof of Theorem 1.1. It follows from Lemma A.4, Propositions 2.3 and 2.4 that there exists
a unique probability measure Q, on M s(E) such that

Py(X; € [ X] > 0) — Qu() @7
and that
Zg, =G on By(E, [0, 00)). 2.8)

We claim that (2.8) can be strengthened as
Zg, =G on B(E, [0, oo]); 2.9

and as a consequence of this, %y, (0olg) = G(oolg) = oo, which says that Q, is actually a
probability measure on ‘ji(E ). To see the claim is true, we first note from Proposition 2.1
that

there exists 77 > 0 such that, for all t > T} and f € B(E, [0, o)),

(2.10)
Vi f € By(E, [0, 00)).
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We then notice that from (2.8) and the bounded convergence theorem,
if {g, :n € N}U{g} C By(E, [0, 00)) and g, 1 g pointwisely, then Gg, + Gg. (2.11)

Now let {g, : n € N} U {g} C B(FE,[0,00]) and g, 1 g pointwisely. Taking and fixing an
s > T1, we have by (2.10) and (2.11) that

(1 — e~ C8n)y 22 g=sh(] — ¢=CVssny 4 g=sh(] — ¢=GVs8) (20 (| _ =Cs),

In other words, we showed that Gg, 1 Gg. The desired claim follows from this and (2.8).
Let us now prove that the probability Q; on M%(E) satisfies the requirement for the desired

result. It follows from Proposition 2.2 that there exists 7, > 0 such that sup,cr repe (0,00

|C;"X7f| < oo for t > T5. Thus for f € B(E, [0, c¢]), t > T, and u € M, (E) we have

Proposition 2.2 4
w(Vi f) = PV, Hl + C/ . puldx)
E
=v(V, @)1+ C;,, ;) (2.12)
for some real C; rp With imy o0 SUP re g o, oo])|wa| = 0. Also note that for f €
B(E, [0, o0]), t > Tz and u € M¢ (E)
—_ o (Vi f)
S 7)) @3 cHl—e™
P [1 = e XX, || > 0] —
V
_ M ’f)(1+cﬁ,f) (2.13)
w(v,)
for some real C6 f with lim,_, o |C;u f| = 0. Here in the last equality we used (2.5),

Proposition 2.1 and the fact that (1 — e™)/x —0> 1. Thus, for each u € M¢ (E) and
f € Cy(E, [0, 00)), we have

12, 213 (Vi f) 14+C
v(v) 14C3

P,u, [1 _ e*Xl(f)’“Xt“ > ] w.it, f (1 + C6 . f)

o t,00lg

1+ Cu tf 6
—C5 1+ Cu,t,f)

o t,00lg

(2.13 —
=P, [1— e X)X, > 0] (1 +C5, )"
— (1 — e NQu(dw),

where in the last line above, we used (2.7). Therefore, according to [21, Theorem 1.18],

Py (X, € [I1X]] > 0) — Qu(). O

2.2. Proof of Theorem 1.2

In this subsection, we give the proof of Theorem 1.2 using the following three Proposi-
tions 2.5-2.7 whose proofs are postponed to Sections 4.1-4.3, respectively.

Proposition 2.5. (1) The Yaglom limit Q; given by Theorem 1.1 is a QSD of X with mass
decay rate A; and (2) for any r € (A, 0), there exists a probability measure Q, on M?-(E ) such
that Q, is a QSD of X with mass decay rate r.
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Proposition 2.6. Suppose that r € (—o0, 0) and that Q} is a QSD for X with mass decay rate
r. Then we have that (1) r > X; and (2) L is a monotone concave functional on B(E, [0, co])
with Lgx(0olg) = oo and that

1—e % —pr(1 — %y, 5> 0, f e B(E, [0, 00)).
Proposition 2.7. Let G be the unique functional on B(E, [0, co]) given by Proposition 2.3.

Let r € [X,0). If G, is a monotone concave functional on B(E, [0, co]) with G,(colg) = co
and that

L—e 0" =e"(1—e™%T), 520, f € B(E, [0, o)),
then 1 —e % f = (1 — e Y/ for any f € B(E, [0, 0o]).
Proof of Theorem 1.2. The non-existence of QSD for X with mass decay rate r < X is due
to Proposition 2.6(1). The existence of QSD for X with mass decay rate r € [A,0) is due
to Proposition 2.5. The uniqueness of QSD for X with mass decay rate » € [A, 0) is due to
Propositions 2.6, 2.7 and [21, Theorem 1.17]. O
3. Proofs of Propositions 2.1-2.4
3.1. Proof of Proposition 2.1

Define a function ¥y by
Yo(x,z) = ¥(x,2) + B(x)z, x € E,z€]0,00),
and an operator ¥, : B(E, [0, o0]) — B(E, [0, co]) by
Yo f(x) = lim Yo(x, f(x)Am),  f€B(E,[0,00]), x € E.

Then it follows from [21, Theorem 2.23] and monotonicity that
Vi f + / Pl WV, f du=PPf, feB(E,[0,oc]),s > 0. (3.1
0

The following fact will be used repeatedly:
{(Vif :t>T, feB(E,0,00)} C Lf(v). (3.2)

To see this, note from (2.1), (2.4) and (H2) that, for all + > T and f € B(E, [0, o)),
v(V; f) < v(v) = —logP, (| X;|| = 0) < oo.

Proof of Proposition 2.1. Note that for all s > 0 and € > 0,

Vererr S = ViV f(x) < PPV, f(x) by (B.1),

P2 2 W (Ve /Y + Hyxvpo. p) (3.3)

<eMpwuri )1+ sup  |Hy D),
xeE,geLf(v)

where in the last inequality we used the fact that v(V, f) < v(v;) = —logP,(|| X,|| = 0) < c0
for all f € B(E,[0,00]) and ¢ > T. From this and the fact that . < 0, we immediately get
the desired result. [J
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3.2. Proof of Proposition 2.2

Another fact that will be used repeatedly is the following:

For any f € B(E, [0, oo]), v(f) = 0 implies v(V;f) = 0 for all ¢t > 0;
and v(f) > 0 implies v(V; f) > O for all r > 0.

(3.4)

To see this, note by (1.2) that P,[X,(f)] = v(P,ﬂf) = Mvu(f). If v(f) = 0, then X,(f) =
0, P,-a.s., therefore v(V; f) = —logP,[e '] = 0. If v(f) > 0, then under P,, X,(f) is a
random variable with positive mean. Therefore, v(V; f) = —logP, [e=X((N] > 0.

Combining (3.4) with (3.3) we get that

forallt > T, x € E and f € B(E, [0, oo]) with v(f) =0, we have V; f(x) = 0. (3.5)
Note from (HI) and (3.2) that for all s > 0,7 > T,x € E and f € B(E, [0, c0]), we have
PPV, f(x) = e p)(V; )1 + H v, ) < 0. (3.6)

In the proof of Proposition 2.2 we will use the following three lemmas whose proofs are
postponed later.

Lemma 3.1. Foralls >0, t > T, x € E and f € B(E, [0, >]), we have Pthf(x) =
WV ) + C7,x f)for some real C”X Y with

lim lim sup |C? | =0.
§001=00 e p feB(E,[0,00]) s:t.x.f

For f € B(E,[0,00]) and 0 < € < s < 00, we define

Lf = / P’ WV, f du, Js,ef=/ Pl WV, f du.

Lemma 3.2. Forallt >T, 0 <e <s <oo, x € Eand f € B(E, [0, o0]) with v(f) > O,
we have IV, f(x) = ¢(x)v(Vg+,f)C§€’S‘x’f for some non-negative wa’x’f with

lim sup c =0.

t,€,8,X,
1= xecE, feB(E,[0,00]) !

Lemma 3.3. Forallt >T, 0 <e <s <oo, x € Eand f € B(E, [0, c0]) with v(f) > O,
we have J; V; f(x) = ¢(x)U(VS+,f)C2€$s’xyf for some non-negative Ct9,e,s,x,f with

lim lim sup c) =0.

€=>01+5—>00 e E reB(E,[0,00]) Besf T
Proof of Proposition 2.2. Thanks to (3.4) and (3.5), we only need to consider the case that

v(f) > 0. In this case, by Lemmas 3.1-3.3. we have for any s > 0 and € € (0, s),

Vies £ (2) 22 VoV, f(x )<3,1>,:(3.<)> Psﬁvtf(x) _/ Psﬁ_u WoV, V, f(x)du
0

=PIV, f(x) - I, ev,f(x> — T Vi f(x)
—(P(X)V(V,_Hf)( vtxf Ctewcf Ctevxf) G.7
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On the other hand, we have
Vif(x) = gV, /)14 C/9 ) for some real C,S ;. (3.8)
Combining (3.7) and (3.8), we have for all s > 0 and € € (0, s),

Cms,\f_csle C C

t,€,5,x,f t,e,8,x,f°

Using this and the fact that

lim lim lim sup |C”xf C,fo Cﬁe’s,x,ﬂ:o,

e—0s5s—>00 =0 cF. , feB(E,[0,00])

it is easy to check that lim,_,  lim,_, o, SUp, E. feB(E 10,000 |C = 0. This implies

t+sxf|

lim sup |C sl=00
1200 yeE, feB(E,[0,00])

Now we prove the three lemmas above.

Proof of Lemma 3.1. Integrating both sides of (3.1) with respect to v and replacing f by
V. f, we get that for all £, s > 0 and f € B(E, [0, o0]),

e MV, f) +/ e MW Vg fdu = eV, ). (3.9
0

As a consequence of (3.9), we can get that for all t > T, s > 0 and f € B(E, [0, co]) with
v(f) > 0,
\Y < t+s v, Vu
W’—m:exp{xs_/ V(o—f)du}. (3.10)
v(V: f) ‘ v(V,, f)
In fact, first observe from (3.2) and (3.4) that both sides of (3.9) are finite and positive if t > T

and v(f) > 0. Therefore the function H : u > e **v(V, f) is absolutely continuous on (7', c0)
and

dHu) = —e v(%V, fdu, u e (T,o0),

which implies that
UV,
dlog H(u) = RIC f)du, u € (T, 00).
v(Vi f)
Now an elementary integration argument gives (3.10).
Define an operator % on B(E, [0, co]) by

V3 f(x) = lim aa—‘i"(x, nA f(x), xekE,feBE,I0,ool.

We first claim that for all t > T, x € E and f € B(E, [0, o<]),

im  sup BV, () < o G.11)
[=00 s eE, feB(E,[0,00])

In fact, since

ﬂ(x 7) =20 (x)’z 4+ /00(1 —e yrm(x,dr), xe€eE,z>0, (3.12)
0
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we have,

1 fo'e]
WV, f(x) < 20(x)*V, f(x) + V,f(x)/ P2 (x,dr) + / ra(x, dr)
0 1

Proposition 2.1

1 00
= Cl. 1) <20(x)2 +/ r%r(x,dr)) +/ ra(x, dr).
A ; 1

Since ¢, o are bounded, and (r A r?)m(x, du) is a bounded kernel, (3.11) follows easily.
We next claim that for all # > T and f € B(E, [0, o0]),

lim sup (¥ V. f)=0. (3.13)
1799 feB(E,[0,00])

In fact, it follows from (3.12) that, for any fixed x € E, z — %(x, Z) is a non-negative,
non-decreasing and continuous function on [0, co) with %(~, 0) = 0. Therefore for any x € E,
we have

Proposition 2.1

9
lim 7o) = Tim 2, vy(x) 0.
t—00 t—o0 07

Using this, (3.11) and the bounded convergence theorem, we easily get lim,_, o, v(¥jv;) = 0.
The claim follows immediately from the monotonicity of ¥V, f in f € B(E, [0, co]).
Here is another claim that will be used below:
Forallt > T,x € E and f € B(E, [0, 00]), it holds that

Vif(x) = ¢V, ))C)L (3.14)

for some non-negative Ctli ¢ with lim sup Ctli < oo.
=00 xeE, feB(E,[0,00])

To see this, first note that (3.14) is trivial when v(f) = 0 thanks to (3.4) and (3.5). Therefore,
we only need to consider the case that v(f) > 0. In this case, it follows from the elementary
fact

0
Yo(x, z) < zaizo(x,z), xeE, z>0, (3.15)

that

V(T Vi f) = v((Vi f) - (B Vi )) < v(Vi f)sup TV, £ ().

yeE

From (3.2) we get that v(V; f) < co. Thus from (3.11) for t > T and f € B(E, [0, c0]),
V(% Vi f) = vV )C5 (3.16)
for some non-negative Cl'ff with En,ﬁoo SUP /e B(E, [0,00]) Cl'ff < 00. Therefore, for any s > 0,

v(Viis ) o) { /”LS v(% V. f) }
——— "= expiis — ————du
I)(Vrf) t V(Vuf)

(316) t+s 1
="expAs — Cu’f duy . (3.17)
t

120



R. Liu, Y.-X. Ren, R. Song et al. Stochastic Processes and their Applications 132 (2021) 108-134

Now note that for any € € (0,7 — T),

Vif(x) Z VoV f < PPV f(x) by (.1,

2 SV (1 + Henop)

(3.17)

t

= ¢(x)v(V,f)exp{/ C.y du}(l + Hexv, o f) (3.18)
t—e

According to (3.2) and (H1) we have

lim sup |He vy, | <00, €>0.
[=00 yeE, feB(E,[0,00])
From this, (3.18) and the fact that Timy . o SUP r 5 (0,00 Ca’p < 00, (3.14) follows immedi-
ately.
We now use (3.11), (3.13) and (3.14) to give the asymptotic ratio of v(¥,V, f) and v(V, f).
Note that we already obtained some result for this ratio in (3.16). We claim that the following
stronger assertion is valid:

lim sup  C/% =0, feB(E,[0, o). (3.19)
=30 reB(E,[0,00])

To see this, we observe that

V(B Vi f) < v(Vef) - (BVif). by (3.15),
< TV, f)sup Vi f(x) "= 0(BgV, £) - vV, f) sup(@(0)CLL ).
P |

xeE Xe

Since ¢ is bounded, (3.19) follows from (3.13) and (3.14).
Using (3.19), we can get the following asymptotic ratio of v(V,4, f) and v(V; f):

Forallt > T, s >0 and f € B(E, [0, o0]), we have
v(Vigs f) = vV, explis(l+C5 )
for some real C/; ; with lim sup IC3 ;1 = 0. In particular, for (3.20)

1700520, feB(E,[0,00])
Vigs
all f € B(E, [0, oco]) with v(f) > 0 and s > 0, we have lim v(Vigs ) — o
i—oo v(V; f)

To see this, thanks to (3.4), we only need to consider the case v(f) > 0. In this case, it holds
that

v(Vigs ) can { /tﬂ 12 } 13
———— = exXpiArs — C, s dus = exp{as(1 +C,; »)}.
vV, f) p t o p s, f

Noticing that CB,=-L[™ck du 1a:nd by (3.19) that limy 0 SUP 3.z 10,001y Cuy = 0
so we have lim,_, o SUP-0, reB(E,[0,00]) |Cl;&f| =0.

We are now ready to prove the conclusion of Lemma 3.1. Again we only need to consider
the case v(f) > O thanks to (3.4) and (3.5). In this case, by (3.2) and (3.4), we have

0 < v(V; f) < oo. Therefore, we have

PPV, f(x) ‘= e ¢p)(V, £) + Hq 1 v, 1)

(3.20
=" (Vs ) exp{—AsC3 11+ Hy vy, p).
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From (H1) and (3.2), we know that lim,_, super =T, feB(E,[0,00)) | Hs,x, v, r| = 0. From (3.20),
we know that sup,. o lim;— oo SUP rc (£ [0.00)) |sC, 5,71 = 0. Therefore, we have

lim lim sup | exp{— )LsCH A+ Hy v, p) =11 =0.

§00I=0 e, feB(E,[0,000)
Combining the two displays above we get the conclusion of Lemma 3.1. [
Proof of Lemma 3.2. For all u > 0, we have
v(Pf BV, f) = eMv(FV, f) < o0, (3.21)

where the inequality follows from (3.16) and (3.2). Therefore, we have

s—€

s—€
Is,e th(x) = / S u !pOVtJruf(x)du = / Pﬂ( —e—u WOVf+“f)(x)du
0 0
oy [T
= /0 < PW(PE W Visu f) <1+H x Pl %Vr+u.f) du
(3é1> e(t+s)x/ (f)(x)e*mﬂ‘)v( ¢0Vt+uf)<1 + He .. pb
0

du
S—e—u WOVt+uf)

<00 (14 sup (o)™ [ e i by (321)
0

geLTw)

L) [ 14 sup [Heygl | ™ (efmv(Vrf) — e MV f))

geLlfm)
sh
(3.2), (3.4 e v(V, f)
@14 s Heel )V NS L) 1)
g€L+(v) V( t+sf)
(3.20
= ge)(1+ sup | Hewol )0 (Vis SEXP(=25C12 1) = D).
geLim)
It is easy to check that
lim sup ‘ 1+ sup |H€,x,gI)(exp{—)\sct"i’f} —D|=0.

=0 xeE, feB(E,[0,00]) geLf )

The desired result then follows. [

Proof of Lemma 3.3. It follows from (3.15) that for all t > T, x € E and f € B(E, [0, o)),
W Vi f(x) < Vi f(x)- BVi f(x).

Now by (3.11) we have
WV, f(x) = V. f(x)C}% (3.22)

for some non-negative C14 v with lim, o0 SUP, e, feB(E,[0,00]) c4 vf < 00.
Recall the quantity C, f given in (3.20). Now we claim that foralu >0,t>T,x € E
and f € B(E, [0, o0)),
Pl WV, f(x) = ¢ (Vigu f)exp{—auC 1C5 (3.23)
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for some non-negative C; ux, f With lim, SUP,,>0,xeE, FeB(E,[0,00]) c? v f < 00

PPV, f(x) = f oV, FO)PP(x, dy) 2 /E Vo FICH  PPr. dy)

@10 / POV ICL, ,CH  PEx dy)

a2 / SOW Vi frexpl—iu(l + C13 HICI M PP(x, dy)

S v(Vigu ) exp{—ru(1 + C[ u f)}(sup Ct,]z tz f / o(y) fg(x’d)’)

= 0(Viyu f) exp{—u(l +c,uf)}(supc ,zf) ().

Now (3.23) follows from the fact that mf—mo(SupzeE,feB(E,[o,oo]) Ctlé fCtlt f) < o0.

Note that (3.23) gives the asymptotic behavior of P,f Yy V; f(x). We want to reformulate it
into the asymptotic behavior of Pf Yo Vi_y f(x). To do this, we use the following elementary
facts: for any real function 4 on [0, oo)2,

lim sup |h(t, u)] < 00 = sup lim sup |h(t —u, u)| < oo; (3.24)
=0 >0 >0 17 4e(0,6)

hm sup |h(t,u)l =0 = sup lim sup u-|h(t —u,u)| =0.

>0 >0 7 ue(0,¢)
Observe that for all u > 0, > T + u and f € B(E, [0, c0]),

PPV f() "= gV, fexpl—auC, , 1CS,

From (3.24), we know that

sup m sup Ctlfu u,x, f <X
€>0 17 ue(0,6).x€E, feB(E,[0,00]) o
and that
sup lim sup uc;?, , r=0
€>0 17 ye(0,¢), feB(E,[0,00]) o
Thus,
PP W Vi f(x) = g (V, ))C)S | (329

for some non-negative Ct u, fix with sup,_ lim,_>Oo SUP,c(0,6),xeE, feB(E,[0,00]) Ctlfd’f’x < 00.
Finally, we note that

€

LoV f(x) = / PP WV f ()t = / PP Vi f(¥)du
s—€ 0

€
3.25
(:>/ PEW(Vias £ICLS, 1 dt < €IV ) sup ClS e
0 ue(0,e

It is elementary to see that

lim lim sup (6 sup C/S ):0.
+
€=>01+5>00 e F reB(E,[0,00])  ue(0,€) Fh fx

Combining the two displays above, we get the conclusion of Lemma 3.3. [
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3.3. Proof of Proposition 2.3

Recall that for each t > 0, I} := Zx,.p,(|ix,>0) is the log-Laplace functional for X, under
probability P, (-||| X;|| > 0). For any unbounded increasing positive sequence t = (f,),cn, define
th = li—mn—>oo I f-

To prove Proposition 2.3, we first prove two lemmas.

Lemma 3.4. For any unbounded increasing positive sequence t = (t,)pen, G' is a
[0, oo]-valued monotone concave functional on B(E, [0, 0o]) such that G'(oolg) = oo and
that

1—e VS = (1 —e '), 520, f e B(E, [0, 00]).

Proof. Since (I});>o are [0, co]-valued functionals, so is G*. Also, from I}(colg) = oo for
all + > 0 we have that G'(oolg) = oo. We claim that G' is monotone concave. In fact, for
each f < g in B(E, [0, 0o]), we have

G'f = lim I, f < lim Iy,¢ = G's.

On the other hand, using Lemma A.2, we have for all t > 0, f € B(E, [0, 00]), u, v € [0, 00),
r € [0, 1], it holds that

Fi(ru+ A =r)f) = rli(uf) + 1A =) (vf).
Therefore, for all f € B(E, [0, 00]), u, v € [0, 00), r € [0, 1], we have

G'((ru+ (1 =ryv) f) = lim L) ((ru+ 1 =rv)f)

> lim (r L, (uf) + (1 = r) I, f)
> r(im I, (uf) + (1 —r)(lim I, (vf))

=rG'(uf)+ (1 — rG'(vf).

Note that for any ¢+ > 0 and f € B(E, [0, 0c0]), it holds that

_ iy Bl = e M) 1- e—v(Vrf).
P, (| X; [l > 0) 1 — e
Fix a function f € B(E, [0, co]). Thanks to (3.4) and (3.26), we only need to consider the

case v(f) > 0. In this case, by (3.4), we have v(V; f) > 0 for each r > 0. Therefore, for any
s, t >0,

(3.26)

rvr 620 1 — e WVits ) 1 — e vWis /) 1 — gmvVif)

—p Vs = _
i I —emvn 1 — e i) 1 — =)
326 1 — e VWi f)

- (=i
(e, (3.27)
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Thus, for any s > 0,

-G* ; - 327) .. 1 — e VVin+s /)
1—e 9% = lim(l —e F('")V“f)(z)h_m<

— (1 —e Tl
n—00 n—00 1-— eiv(v('")f)

1 — e VWitsh) ‘ o
= (ﬁm —) Cim (1 — ey = (1 — e,

i—»oo 1 — e V(i) oo

where the last equality follows from Proposition 2.1, (3.20), and the fact that (1 — e™¥)/

x— 1. O
x—0

Lemma 3.5. Suppose that r € [A,0). If G, is a [0, co]-valued monotone concave functional
on B(E, [0, 00]) such that G,(colg) = 0o and that

L—e 0% =e"(1 —e™%7), 5 >0, f € B(E, [0, o0)),
then for any unbounded increasing positive sequence t = (t,),en,

1—e G/ =(1—e Sy feB(E, 0, ).

Proof. Let (Q/);>0 be the family of [0, co)-valued functionals on B(E, [0, oc]) given by
0,8 :=e (1 — e Grlew),

Note that, by (2.5), v,(x) > 0 for all x € E. It follows from Proposition 2.1 that v,(x) < oo
for all x € E and all t > T. Thus v,(-) is a (0, co)-valued function for all t > T.

We claim that for any u € [0, 1], Q,(u1g) is non-increasing in ¢ € (0, co). In particular,
we can define the [0, oco]-valued function g(u) := lim;_ o, Q;(ulg),u € [0, 1]. In fact, note
that Ps [e™Xs@v)] = ¢=Vs@v) x € E 5, > 0,u > 0. Lemma A.2 says that, for all s,z > 0
and x € E, u — Vg(uv,)(x) is a [0, oo]-valued concave function on [0, co). Therefore, for
u € [0, 1], we have

Vi(uvy) > uVi(v)) + (1 — )V (0 - v) = uvsyy, s,¢ > 0.
Using this, we get
O 4s(ulp) = e—r(r+x)(1 _ e—Gr(MUH»s)) < e—r(z+s)(] _ e—Gr[Vs(UUt)])
=e (1 —e )y = 9 (ulg), s,t>0,ucl0,1].
We want to show that g(u) = u’/*, u € [0, 1]. In order to do this, we first show that

the function ¢ is non-decreasing and concave on [0, 1] with g(1) = 1. (3.28)

In particular, thanks to Lemma A.l, ¢ is a continuous function on (0, 1].
In fact, from G,(colg) = oo and V,(colg) = v,, we get
0:(1p)=e (1 —e FU)y=¢ (1 —e Gy =1, >0.

Therefore g(1) = 1. The above argument also says that G,v, < oo for each r > 0. Now from

the condition that G, is monotone concave, we have that for all ¢ > 0, the map u — G,(uv,)

is a non-decreasing and concave [0, co)-valued function on [0, 1]. From Lemma A.3 we get

that, for each t > 0, u — Q,(ulg) is a [0, co)-valued, non-decreasing and concave function

on [0, 1]. Since the limit of concave functions is concave, we get (3.28) by letting t — oo.
We now show that

qw)=u"", uelo,1]. (3.29)
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To see this, note that for all s > 0, f > T and x € E, we have that

e (¢ v)(x) vl +C} )
3.20)
= V(v exp{—AsCS 1 3+ Cl L g,
Plopoxmon 2.2 1
(o~ Ut+s)(x)(1 + Ct+s x oolb) exp{— A,SC[ 5,001 Y1+ Ct x oolE)
= (@ v )1+ C[] ),

17
for some real C|] . with lim,_, o sup, ., |C

€ > 0 there exists 7,', > 0 such that

Pmposltlon 22 M

S,x| = 0. Thus, we know that for all s > 0 and

As
lme< VO e v eEt=T! (3.30)
Ut+s(x) e
From this we get that for all s > 0,¢ > 0, t > Tslé, and u > 0,
Qrial(l — ulg] = 7 OI(1 — g Orltemmessl) UL gortgrs(y g Grtue )

— e, (e ) 2 e TIHI(] — g CrlHuyly

= Qups[(1 + €)ulg].

Letting + — oo in the display above, we get that for all s > 0, € > 0 and u satisfying
0<(—¢eu < (1+e¢e)u <1, it holds that

q((1 —eu) < e que™) < q((1 + eu). (3.3D)
Using (3.28), letting € — 0 and then u 1 1 in (3.31), we get that
q)y=1=e"¢q("), s=0.

In other words, g(u) = u'/* for u € (0, 1]. Finally noticing that ¢ is non-negative and
non-decreasing on [0, 1], we also have ¢g(0) = 0.

We are now ready to finish the proof of Lemma 3.5. Fix an unbounded increasing positive
sequence t = (#,),en and a function f € B(E, [0, 0o]), we only need to prove that 1 — G, f =
(1—G'fy/™

From the definition of G'f, we can choose a subsequence t' = () )nen of t such that for
each n € N, we have 7, > T and

G'f=I,f+C? (3.32)

for some real C!3 (depending on both f and t') such that lim,_, », |C!8] = 0.
Therefore, we have for any n € N,

=G 2y _ Ty =G0 (1 —e ") " 4 (1 —e )
vV ) )
G26) 1 —e ) —c18 _cls
= e
vV )

(1+C) + (1 —e
V(v(y))
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for some real Cig with lim,,_, |Ci°| = 0, by Proposition 2.1 and the fact that (1—e™)/x —>

—0
1. Thus !
- Proposition 2.2 Vi X 1+ C4/ X
=6ty Provogton 22 Vi) /(9 e (40 4 (1= e ). (3.33)
V(e y(X) + Ct,’,,x,f
It is elementary to see that
1+ C4
lim sup | ——22®E (] %) — 1| = 0.
n—>00 xecE 1 +Ct,’,,x,f
Therefore, for any € > 0, there exists N, > 0 such that for any n > N,
1+C* -1
)(M(l n C,i")) _ 1) <e and |1 —e S| <. (3.34)

4
1+ C[},ﬁx’f
Note from (2.1), 0 < V, f < v, for each t > 0. It is elementary to verify from (3.33) and (3.34)

that, for any € > 0, n > N, and x € E,
Vi) f (x)
Vel (X)

Since G, is a monotone functional, we know that for each ¢+ > 0, Q, is also a monotone
functional. This implies that for any € > 0 and n > N,

Qu [(1 —€) ((1 —e 9 eV o) 15] < Qu) <V”'”f) (3.35)

V)

(1—e) ((1 — G —6)\/0) < <(+e(l—-e%  +e)nl.

<o [(a+a0 - v ant)1].

Note from the definition of (Q,);>9 and G,, we always have for r > T that

\%
Qt < tf) — efrt(l _efGrV[f) =1 _e*Grf_

Ut

Therefore, taking n — oo in (3.35), and using (3.29) we get that

((1 —€) ((1 —e G —¢) VO))”A <l1-e¢9%/ < ((1 11 —e 0 Leyn 1)’”

Taking € — 0, we get the desired result. [

Proof of Proposition 2.3. Combining Lemmas 3.4 and 3.5 (taking r = X) with a sub-sub-
sequence type argument, we can easily get the conclusion of Proposition 2.3. [

3.4. Proof of Proposition 2.4

Proof of Proposition 2.4. We first consider the case that g = 0 v-almost surely. From (3.1)
and (H1), we have
Vign(@) < P gu(x) < C¢(x)v(g,), neN,x ek, (3.36)
where C% == sup, .. FeLl ) e*(1 4 |Hj x ¢]). By the bounded convergence theorem, we have
lim v(g,) =v(g) =0. (3.37)
n—0oQ
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On the other hand, from (3.9), we know that ¢ — e *v(v,) is a non-increasing (0, oo)-valued
continuous function on (7', 00). Since A < 0, we have

t — v(v,) is a strictly decreasing (0, co)-valued continuous function on (7', 00). (3.38)
By Proposition 2.1, we have

lim v(v;) = 0. (3.39)

—00

Using (3.37), (3.38) and (3.39) we can see that there exist nyp > 0 and a sequence {t, : n > ng}
of positive numbers such that

lim ¢, = oo (3.40)

n—o00

and that, for any n > ny,
2C%v(g,) < v(vy,). (3.41)
It follows from Proposition 2.2 that there exists n; > ng such that for all n > n; and x € E,
v(v,) < 2¢(x) vy, (x). (3.42)

Now, for any n > n| and x € E, we have

(336 o (34D 1
Viga(x) = CTp(x)v(gs) = §¢(X)V(vt,,)
(3.42)
< v, x). (3.43)
Therefore, for any n > ny,

_ 2.6) _ _ _ _ _
1—e Ggn = e )\(1 —e leg”)fe A(l —e Gv,n):e AeAt,,’

where in the inequality above we used (3.43) and the monotonicity of G (Proposition 2.3), and
in the last equality, we used Proposition 2.3 with f = oolg. Letting n — oo in the display
above, noticing (3.40) and the fact that 1 < 0, we get the desired result in this case.

We now consider the case that g, | g pointwisely where v(g) > 0. The monotonicity of G
(Proposition 2.3) implies that lim,_, ., Gg, exists and is greater than Gg. So we only need to
show that lim,,_, o, Gg, < Gg. From Proposition 2.2, for any € > 0 there exists Tf > 0 such
that for any t > T?,x € E and f € B(E, [0, 00)),

(I = e)pxwV, ) = Vi f(x) <+ e)p(x)v(V, f). (3.44)
Therefore, we have for any € > 0, t > Tez, x € E and f,h € B(E, [0, oc]) with v(h) > O that

(3.44)

Vifx) = (I —e)px)v(V,f)
34 v(Vif) G4 1—ev(Vi f)
= (1-— Vih) > ——=Vih

( €)¢(X)V(V,h)v( th) = e (x)
o (L=evVif)
~\1+ev(Vh)
Since G is a monotone concave functional (Proposition 2.3), we know that for any f €
B(E, [0, 0]), u — 1 — 9@ ig a concave function on [0, 1] (Lemma A.3); and therefore,

1—e W) >yl —e )+ (1 —u)1l —e %Oy = y(1 —e %), uel0,1]. (3.46)
128
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Now we have for any € > 0, t > Tf, x € E and f,h € B(E, [0, oo]) with v(h) > O that

ropositi 3.45) _ 1—e v(V¢ )
| GF PP 23 g =GV UL o (1 _ ol v(Wz)“)V‘h))

649 1—ev(V,f) AT) (1 = e=6Vin)
1+ € v(V;h)

Prop()sgon 23 1 —e¢ V(V'tf) Al (1 o eth).
1+¢€v(V;h)

Replacing f by g, h by g,, and then taking n — oo, noticing that by monotone convergence
theorem v(V,g,) —— v(V;g), we get
n—00

1_
1 —e 08> ——€ fim(1 — e G8n),
14+ € n>oo

as desired (noticing € > 0 is arbitrary). [

4. Proofs of Propositions 2.5-2.7

4.1. Proof of Proposition 2.5

Proof of Proposition 2.5(1). Denote by G the functional given by Proposition 2.3; and by Q;,
the Yaglom limit given by Theorem 1.1. By (2.9), we know that G is the log-Laplace functional
of Q,. Now note that for ¢t > 0,

QP)IX,]| > 0) =’ / (1 — e N)Q(dp) = 1 — e~
My (E)

Proposition 2.3
= e .

“.1)
Therefore, we have that for all f € B(E, [0, oo]) and ¢ > O,

QP)[1 — e X DX, || > 0] = e QP — e D)

S / (1 — e ViMNQudp) = (1 — Vi)
My (E)

Proposition 2.3 1

_Gr (29) _
S DR )
M (E)
According to [21, Theorem 1.17], this says that

QD)X N > 0)=Qu(), 7=0.
Therefore Q;, is a QSD of X. From (4.1) and (1.4), its mass decay rate is A. [

Proof of Proposition 2.5(2). Denote y = r/A € (0,1). We first claim that there exists a
7., -valued random variable {Z; P} with probability generating function P[s?] = 1 — (1 —
s)”,s € [0, 1]. To see this, we set

yd—y)--(n—=1-vy)
n! ’

P(Z=n)=

n€Z+.
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Using Newton’s binomial theorem (see [30, Exercise 8.22]), we get

11— - s, s €[0,1],

Zy(l—)/) n-1-y),

thus, such a random variable exists.
Now let {(Y,)nen: P} be an M” (E)-valued i.i.d. sequence with law of the Yaglom limit Q;,.
Let Z and (Y},),en be 1ndependent of each other. Define the probability Q, on MY (E ) as the

law of the finite random measure anl
In the rest of this proof, we will argue that Q, is a QSD of X with mass decay rate r. To
do this, we calculate that

z
e~ 2o — Ple” P Yn(_f)] —p |:P |:l_[ e—Yn(.f~)|o(Z):|:| —_p [e—z-;quf]

n=1

=1-(1—-e2uly, feBE,]|0, o). 4.2)
Therefore, for each t > 0 and f € B(E, [0, oo]), we have

QP)[1—e M DIX,]| > 0] = QP)IIX;]| > )" - (Q,P)[1 — e ¥
(2.3)»2(244) (1 _ 8720’v1)71(1 _ €7$Q7 V[f) (422) (1 _ e—fQAvt)fy(l _ e_“ng th)y

2 ?) 2.4) (Q)\]P))[ 7X,(f)| ||Xt|| . O]y Pmposili;n 2.5 (1) (1 _ e_‘ZQ)Lf)V (-';2) 1— gngrf.

This proves that Q, is a QSD. To see its mass decay rate is r, we calculate that for each ¢ > 0,

QP)(|X,]| > 0) = 1 — ¢Zarv

=1 - ey <2=‘4> @P)(IX, > oy "TE T Ve O
4.2. Proof of Proposition 2.6
Proof of Proposition 2.6(1). First observe that for any ¢ > 0,
= @P)IX, ] > 0) =1 - e, 4.3)

According to Lemma A.2, for any t > 0, we know that u +— Zgr(uv,) is a [0, co]-
valued concave function on [0, 0c0). According to Lemma A.3, for any r > 0, we know that
w1 — e 2@ jg 5 [0, 1]-valued concave function on [0, co). In particular, we have for
any t > 0 and u € [0, 1] that

1— efn"fQ;F(uv,) 7$Q;<(1-v,)

>u(l —e )+ (1 — u)(1 — e @Oy — (1 — @) (4.4)

Recall that TS1 . is the constant given in (3.30). Now for any s > 0,¢ > 0 and t > T,!, we have

s,

eks
LUt 330) | — o 2T (ua)  ohs
>

43 l—e
AR > > .
1 — o Zar™ 1 — e Zor) 1+e

Letting € — 0, we get the desired result. [

Proof of Proposition 2.6(2). From the definition of QSD, we know that Q) has no
concentration on {0}. Therefore Z4:(colg) = oo. According to Lemma A.2, we know that
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Zq: is a monotone concave functional. Knowing that Q} is a QSD for X with mass decay rate
r, it can be verified that for each f € B(E, [0, co]) and ¢ > 0,

1—e @ = ( QP [1 —e X D||X,]| > 0]

— e—rt(Q;kP)[l _ e—xt(f)] <2$) e_rt/ (] - e—,u.(th))Qj(d,u)
My(E)

=e(1—e . O
4.3. Proof of Proposition 2.7

Proof of Proposition 2.7. This is now obvious from Lemma 3.5 and the fact that Gf =
lim,, I} f for f € B(E, [0, oo]) (Proposition 2.3). O
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Appendix

A.l. Extended values

In this paper, we often work with the extended non-negative real number system [0, oo]
which consists of the non-negative real line [0, co) and an extra point co. We consider [0, oo]
as the one point compactification of [0, c0); and therefore, it is a compact Hausdorff space.
We also make the following conventions that

e x + 00 = oo for each x € [0, oo];
e x - 00 = oo for each x € (0, o0];
° ézo,%zoo,efoozo,—log0=oo

Note that oo -0 has no meaning, but we use the convention that co-0 = 0 when we are dealing
with indicator functions. For example, we may write expression like

h(x) = g(x) - 14(x) + 00 - 1p\a(x), x € E,
as a shorthand of

gx) ifx €A,
X =
00 if x e E\ A.
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A.2. Concave functionals

We say an R-valued (or [0, co]-valued) function f on a convex subset D of R is concave
iff

foex+A=nry)=zrf(x)+A=r)f(y), x,yeD,rel01].

The following lemmas about concave functions are elementary, we refer our readers to
[5, Chapter 6] for more details.

Lemma A.1. If f is a non-decreasing R-valued concave function on (a, b] where a < b in
R, then f is continuous on (a, b].

Lemma A.2. Suppose that {Z; P} is a [0, ool-valued random variable. Define L(u) =
—log Ple %] with u € [0, 00), then L is a [0, col-valued concave function on [0, 00).

Lemma A.3. Suppose that g is a concave function on some convex subset D of R, then so
isqg=1—e75.

A.3. Continuity theorem for the Laplace functional of random measures

In this subsection, we discuss the continuity theorem for finite random measures on Polish
space. The following result is not new. We included it here for the sake of completeness. Let
E be a Polish space. Denote by M ¢(E) the collection of all the finite Borel measures on E
equipped with the topology of weak convergence. According to [16, Lemma 4.5], M ((E) is
a Polish space.

Lemma A4. Let (P,),en be a sequence of probabilities on M ¢(E). Suppose that (1) for each
f € By(E, [0, 00)), the limit Lf :=lim,_, o Zp, [ exists; and (2) for each f, | f pointwisely
in By(E,[0,00)), Lf, | Lf. Then there exists a unique probability Q on M ¢(E) such that
(P,)nen converges weakly to Q and Lo = L on By(E, [0, 00)).

Proof. We say a [0, co)-valued functional I" on B,(E, [0, 00)) is positive definite if

> aa;T(fi+ f) =0

ij=1
for any R-valued list (ax);_, and B,(E, [0, 0o))-valued list (fi);_,. It is proved in [4, Theorem
3.3.3] that for any n € N, f — e P/ is positive definite on By(E, [0, 00)). Therefore,
f— et s positive definite. Now from [9, Corollary (A.6)] and the condition (2), we know
that there exists a sub-probability Q on M ¢(E) such that

/ e MDQUu) =e Y,  feBy(E, |0, 00)). (A.D
My (E)

Taking f = 0-1f in condition (1) we get that L(0-1g) = 0. This says that Q is a probability on
M (E). Now condition (1) and [21, Theorem 1.8] imply that (P,),en converges to Q weakly.
Finally, (A.1) implies that %y = L on B,(E, [0, 00)). O
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