
Available online at www.sciencedirect.com

s
o
⃝

M

K

ScienceDirect

Stochastic Processes and their Applications 132 (2021) 108–134
www.elsevier.com/locate/spa

Quasi-stationary distributions for subcritical
superprocesses

Rongli Liua,1, Yan-Xia Renb,2, Renming Songc,3, Zhenyao Sund,∗

a School of Science, Beijing Jiaotong University, Beijing 100044, PR China
b LMAM School of Mathematical Sciences & Center for Statistical Science, Peking University, Beijing 100871, PR

China
c Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, IL 61801, USA

d Faculty of Industrial Engineering and Management Technion, Isreal Institute of Technology, Haifa 3200003, Isreal

Received 19 January 2020; received in revised form 5 September 2020; accepted 22 October 2020
Available online 1 November 2020

Abstract

Suppose that X is a subcritical superprocess. Under some asymptotic conditions on the mean
emigroup of X , we prove the Yaglom limit of X exists and identify all quasi-stationary distributions
f X .
c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background

Denote Z+ := {1, 2, . . .} and N = Z+ ∪ {0}. Suppose that Z = {(Zn)n∈N; (Pz)z∈N} is a
Galton–Watson process with offspring distribution (pn)n∈N. Let m :=

∑
∞

n=1 npn be the mean
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of the offspring distribution. It is well known that when m ≤ 1 and p1 < 1, the process Z
ecomes extinct in finite time almost surely, that is,

Pz(Zn = 0 for some n ∈ N) = 1, z ∈ N.

Let ζ := inf{n ≥ 0 : Zn = 0} be the extinction time of Z . If ν is a distribution on Z+ such
that for any z ∈ Z+ and subset A of Z+,

lim
n→∞

Pz
(
Zn ∈ A

⏐⏐ζ > n
)

= ν(A),

then we say that ν is the Yaglom limit of Z . Yaglom [34] showed that such limit exists when
m < 1 and the offspring distribution has finite second moment. This was generalized to the case
without the second moment assumption in [10,13]. See also [2, pp. 64–65] for an alternative
analytical approach; and [23] for a probabilistic proof. If ν is a distribution on Z+ such that
or any subset A of Z+,

∞∑
z=1

ν(z)Pz
(
Zn ∈ A

⏐⏐ζ > n
)

= ν(A), n ∈ N,

then we say ν is a quasi-stationary distribution of Z . Hoppe and Seneta [12] studied the
quasi-stationary distributions of (Zn)n∈N. Recently, Maillard [24] characterized all λ-invariant
measures of (Zn)n∈N. If a λ-invariant measure is a probability measure, then it is equivalent
to a quasi-stationary distribution. Multitype analogs for the Yaglom limit results can be found
in [11,12,14].

Now suppose that Z = {(Z t )t≥0; (Px )x≥0} is a continuous-state branching process on [0,∞)
where 0 is an absorbing state. Let ζ := inf{t ≥ 0 : Z t = 0} be the extinction time of Z . If ν is
a distribution on (0,∞) such that for any x > 0 and Borel subset A of (0,∞),

lim
t→∞

Px
(
Z t ∈ A

⏐⏐ζ > t
)

= ν(A),

then ν is called the Yaglom limit of Z . If ν is a distribution on (0,∞) such that for any Borel
subset A of (0,∞),∫

(0,∞)
ν(dx)Px (Z t ∈ A|ζ > t) = ν(A), t ≥ 0,

then we say ν is a quasi-stationary distribution for Z . The Yaglom limits of continuous-state
branching processes were studied in [20], where conditioning of the type {ζ > t + r} for
any finite r > 0 instead of {ζ > t} was also considered. Lambert [19] also studied Yaglom
limits using a different method, and characterized all the quasi-stationary distributions for Z .
Seneta and Vere-Jones [32] studied some similar type of conditional limits for discrete-time
continuous-state branching processes. Recently [18] considered quasi-stationary distributions
for continuous-state branching processes conditioned on non-explosion.

Asmussen and Hering [1] studied limit behaviors of subcritical branching Markov processes.
They proved that the Yaglom limits for a class of subcritical branching Markov processes exist
under some conditions on the mean semigroup, and characterized all of their quasi-stationary
distributions, see [1, Chapter 5] and the references therein.

In this paper, we are interested in a class of subcritical (ξ, ψ)-superprocesses. We will prove
the existence of the Yaglom limit and identify all quasi-stationary distributions under some
asymptotic conditions on its mean semigroup. Our superprocesses are general in the sense that

the spatial motion ξ can be a general Borel right process taking values in a Polish space,
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and the branching mechanism ψ can be spatially inhomogeneous. Precise statements of the
ssumptions and the results are presented in the next subsection.

As far as we know, there are no results on Yaglom limit and quasi-stationary distributions for
eneral superprocesses in the literature. Here we list some papers dealing with superprocesses
onditioning on various kinds of survivals under different settings: [3,6–8,22,26–28,33].

.2. Main result

We first recall some basics about superprocesses. Let E be a Polish space. Let ∂ be an
solated point not contained in E and E∂ := E ∪ {∂}. Denote by B(E, D) the collection
f Borel maps from E to some measurable space D. If D is a subset of R, we denote by
b(E, D) the bounded measurable functions from E to D. Assume that the underlying process
= {(ξt )t≥0; (Πx )x∈E } is an E∂ -valued Borel right process with ∂ as an absorbing state. Denote

by ζ := inf{t > 0 : ξt = ∂} the lifetime of ξ . Let the branching mechanism ψ be a function
on E × [0,∞) given by

ψ(x, z) = −β(x)z + σ (x)2z2
+

∫
(0,∞)

(e−zu
− 1 + zu)π (x, du), x ∈ E, z ≥ 0,

where β, σ ∈ Bb(E,R) and (u ∧ u2)π (x, du) is a bounded kernel from E to (0,∞). Let
M f (E) denote the space of all finite Borel measures on E equipped with the topology of
weak convergence. Denote by B(M f (E)) the Borel σ -field generated by this topology. For
any µ ∈ M f (E) and g ∈ B(E, [0,∞)), we use µ(g) to denote the integration of g with
respect to µ whenever the integration is well defined. We will use ∥µ∥ to denote µ(1). For any
f ∈ Bb(E, [0,∞)), there is a unique locally bounded non-negative map (t, x) ↦→ Vt f (x) on
[0,∞) × E such that

Vt f (x) + Πx

[∫ t∧ζ

0
ψ (ξs, Vt−s f (ξs)) ds

]
= Πx

[
f (ξt )1t<ζ

]
, t ≥ 0, x ∈ E . (1.1)

Here, the local boundedness of the map (t, x) ↦→ Vt f (x) means that sup0≤t≤T,x∈E Vt f (x) < ∞

for T > 0. Moreover, there exists an M f (E)-valued Borel right process X = {(X t )t≥0;

(Pµ)µ∈M f (E)} such that

Pµ[e−X t ( f )] = e−µ(Vt f ), t ≥ 0, µ ∈ M f (E), f ∈ Bb(E, [0,∞)).

We call X a (ξ, ψ)-superprocess. See [21] for more details.
The mean semigroup (Pβ

t )t≥0 of X is defined by

Pβ
t f (x) := Πx

[
e
∫ t

0 β(ξr )dr f (ξt )1t<ζ

]
, f ∈ Bb(E,R), t ≥ 0, x ∈ E .

It is well-known (see [21, Proposition 2.27]) that

Pµ[X t ( f )] = µ(Pβ
t f ), µ ∈ M f (E), t ≥ 0, f ∈ Bb(E,R). (1.2)

In this paper, we will always assume that there exist a constant λ < 0, a function
φ ∈ Bb(E, (0,∞)) and a probability measure ν with full support on E such that for each
t ≥ 0, Pβ

t φ = eλtφ, νPβ
t = eλtν and ν(φ) = 1. The assumption λ < 0 says that the mean

of (X t (φ))t≥0 decays exponentially with rate λ, and in this case the superprocess X is called
subcritical. Denote by L+(ν) the collection of non-negative Borel functions on E which are
1
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integrable with respect to the measure ν. We further assume that the following two conditions
old:

For all t > 0, x ∈ E , and f ∈ L+

1 (ν), it holds that

Pβ
t f (x) = eλtφ(x)ν( f )(1 + Ht,x, f )

for some real Ht,x, f with

sup
x∈E, f ∈L+

1 (ν)
|Ht,x, f | < ∞ and lim

t→∞
sup

x∈E, f ∈L+

1 (ν)
|Ht,x, f | = 0.

(H1)

There exists T ≥ 0 such that Pν(∥X t∥ = 0) > 0 for all t > T . (H2)

ote that L+

1 (ν) in (H1) can be replaced by the collection of all non-negative Borel functions f
ith ν( f ) = 1. In fact, for any f ∈ L+

1 (ν) and k ∈ (0,∞), it is easy to see that Ht,x, f = Ht,x,k f .
(H1) is mainly concerned with the spatial motion and (H2) is mainly about the branching

echanism of the superprocess. In Section 1.3, we will give examples satisfying these two
ssumptions.

We mention here that quantities like Ht,x, f in this paper might depend on the underlying
rocess ξ and the branching mechanism ψ . Since ξ and ψ are fixed, dependence on them will
ot be explicitly specified.

Denote by 0 the null measure on E . Write Mo
f (E) := M f (E)\{0}. Any probability measure

on Mo
f (E) will also be understood as its unique extension on M f (E) with P({0}) = 0. Since

is strictly positive, we have

Pµ[X t (φ)]
(1.2)
= µ(Pβ

t φ) = eλtµ(φ) > 0, t ≥ 0, µ ∈ Mo
f (E).

hus,

Pµ(∥X t∥ > 0) > 0, t ≥ 0, µ ∈ Mo
f (E). (1.3)

ence we can condition the superprocess X on survival up to time t if the distribution of X0
s not concentrated on {0}. Our first main result is the following.

heorem 1.1. If (H1) and (H2) hold, then there exists a probability measure Qλ on Mo
f (E)

uch that

Pµ
(
X t ∈ ·

⏐⏐∥X t∥ > 0
) w

−−−→
t→∞

Qλ(·), µ ∈ Mo
f (E),

here
w
−→ stands for weak convergence.

Now we introduce the concepts of quasi-limiting distribution (QLD) and quasi-stationary
istribution (QSD) for our superprocess X . For any probability measure P on M f (E), define
PP)[·] :=

∫
M f (E) Pµ[·]P(dµ). We say a probability measure Q on Mo

f (E) is a QLD of X , if
here exists a probability measure P on Mo

f (E) such that

(PP)
(
X t ∈ B

⏐⏐∥X t∥ > 0
)

−−−→
t→∞

Q(B), B ∈ B(Mo
f (E)).

e say a probability measure Q on Mo
f (E) is a QSD of X , if

(QP)
(
X t ∈ B

⏐⏐∥X t∥ > 0
)

= Q(B), t ≥ 0, B ∈ B(Mo
f (E)).

It follows from [25, Proposition 1] that, for any Markov process on [0,∞) with 0 as an
bsorbing state, its QLDs and QSDs are equivalent. We claim that this is also the case for
111
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our M f (E)-valued Markov process X , for which the null measure 0 is an absorbing state. In
act, since E is a Polish space, M f (E) is again Polish [16, Lemma 4.3]. So is Mo

f (E) [15,
heorem A1.2]. Thus Mo

f (E) is Borel isomorphic to (0,∞) [15, Theorem A.1.6]. That is,
there exists a bijection τ : Mo

f (E) → (0,∞) such that both τ and its inverse τ−1 are Borel
easurable. Extend τ uniquely so that it is a bijection between M f (E) and [0,∞). Then, it is

asy to verify that τ is a Borel isomorphism between M f (E) and [0,∞) which maps 0 to 0.
ow for any M f (E)-valued Markov process with 0 as an absorbing state, its image under τ

s a [0,∞)-valued Markov process with 0 as an absorbing state. Therefore we can apply [25,
roposition 1] to (τ (X t ))t≥0 which gives that a probability Q on Mo

f (E) is a QLD for X if
nd only if it is a QSD for X . Similarly, we can apply [25, Proposition 2] to X which says
hat

if a probability measure Q on Mo
f (E) is a QSD of X , then there exists an

r ∈ (−∞, 0) such that (QP)(∥X t∥ > 0) = er t for all t ≥ 0. In this case, we call
r the mass decay rate of Q.

(1.4)

heorem 1.2. Suppose that (H1) and (H2) hold. Then (1) for each r ∈ [λ, 0), there exists a
nique QSD for X with mass decay rate r; and (2) for each r ∈ (−∞, λ), there is no QSD for

X with mass decay rate r .

.3. Examples

In this subsection, we will give some examples satisfying (H1) and (H2).
We first give an example satisfying (H2). Suppose that ψ is bounded from below by a

patially independent branching mechanism, that is, there is a function ψ̃ of the form

ψ̃(z) = β̃z + σ̃ 2z2
+

∫
∞

0
(e−zu

− 1 + zu)π̃ (du), z ≥ 0

ith β̃ ∈ R, σ̃ ≥ 0 and π̃ is a measure on (0,∞) satisfying
∫

∞

0 (u ∧ u2)π̃ (du) < ∞ such that

ψ(x, z) ≥ ψ̃(z), x ∈ E, z ≥ 0.

f ψ̃(∞) = ∞ and
∫

∞ 1/ψ̃(z)dz < ∞, then by [28, Lemma 2.3], for any t > 0,

inf
x∈E

Pδx (∥X t∥ = 0) > 0.

sing this and (2.4) below one can easily get that Pν(∥X t∥ = 0) > 0 for all t > 0. Thus (H2)
s satisfied with T = 0.

Now we give conditions that imply (H1). We assume that ξ is a Hunt process and there
xist an σ -finite measure m with full support on E and a family of strictly positive, bounded
ontinuous functions {pt (·, ·) : t > 0} on E × E such that

Πx [ f (ξt )1t<ζ ] =

∫
E

pt (x, y) f (y)m(dy), t > 0, x ∈ E, f ∈ Bb(E,R);∫
E

pt (x, y)m(dx) ≤ 1, t > 0, y ∈ E;∫
E

∫
E

pt (x, y)2m(dx)m(dy) < ∞, t > 0;
112
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and the functions x ↦→
∫

E pt (x, y)2m(dy) and y ↦→
∫

E pt (x, y)2m(dx) are both continuous.
hoose an arbitrary b ∈ Bb(E,R). Denote by (Pb

t )t≥0 a semigroup of operators on Bb(E,R)
iven by

Pb
t f (x) := Πx [e

∫ t
0 b(ξs )ds f (ξt )1t<ζ ], f ∈ Bb(E,R), t ≥ 0, x ∈ E .

et us write ⟨ f, g⟩m :=
∫

E f (x)g(x)m(dx) for the inner product of the Hilbert space L2(E,m).
hen it is proved in [28,29] that there exists a family of strictly positive, bounded continuous

unctions {pb
t : t > 0} on E × E such that

e−∥b∥∞t pt (x, y) ≤ pb
t (x, y) ≤ e∥b∥∞t pt (x, y), t > 0, x, y ∈ E (1.5)

nd that

Pb
t f (x) =

∫
E

pb
t (x, y) f (y)m(dy), t > 0, x ∈ E .

efine the dual semigroup (P̂b
t )t≥0 by

P̂b
0 = I ; P̂b

t f (x) :=

∫
E

pb
t (y, x) f (y)m(dy), t > 0, x ∈ E, f ∈ Bb(E,R).

t is proved in [28,29] that both (Pb
t )t≥0 and (P̂b

t )t≥0 are strongly continuous semigroups of
ompact operators on L2(E,m). Let Lb and L̂b be the generators of the semigroups of compact
perators on (Pb

t )t≥0 and (P̂b
t )t≥0, respectively. Denote by σ (Lb) and σ (L̂b) the spectra of Lb

nd L̂b, respectively. According to Theorem 29 of [31], λb := sup ℜ(σ (Lb)) = sup ℜ(σ (L̂b)) is
common eigenvalue of multiplicity 1 for both Lb and L̂b. By the argument in [28] and [29],

he eigenfunctions hb of Lb and ĥb of L̂b associated with the eigenvalue λb can be chosen to
e strictly positive and continuous everywhere on E . Setting ⟨hb, hb⟩m = ⟨hb, ĥb⟩m = 1 so
hat hb and ĥb are uniquely determined pointwisely.

We assume further that h0 := hb|b≡0 is bounded, and the semigroup (Pt )t≥0 is intrinsically
ltracontractive in the following sense: for all t > 0 and x, y ∈ E , it holds that pt (x, y) =

t,x,yh0(x )̂h0(y) for some positive ct,x,y with supx,y∈E ct,x,y < ∞. Here, ĥ0 := ĥb|b≡0. Then, it
s proved in [28,29] that, for arbitrary b ∈ Bb(E,R), hb is also bounded; and (Pb

t )t≥0 is also
ntrinsically ultracontractive, in the sense that for any t > 0 and x, y ∈ E we have

pb
t (x, y) = C1

b,t,x,yhb(x )̂hb(y) (1.6)

or some positive C1
b,t,x,y with supx,y∈E C1

b,t,x,y < ∞. It follows from [17, Proposition 2.5 and
heorem 2.7], when (1.6) holds, C1

b,t,x,y can be chosen so that

sup
x,y∈E

(C1
b,t,x,y)−1 < ∞, t > 0, (1.7)

nd that for any t > 0, x, y ∈ E ,

C1
b,t,x,y = etλb (1 + C2

b,t,x,y) (1.8)

or some real C2
b,t,x,y with limt→∞ supx,y∈E C2

b,t,x,y = 0. Therefore,

m (̂hb)
(1.6)
=

∫
E

pb
t (x, y)hb(x)−1(C1

b,t,x,y)−1m(dy), x ∈ E,

≤ hb(x)−1
(

sup
z∈E

(C1
b,t,x,z)

−1
) ∫

E
pb

t (x, y)m(dy)
< ∞ by (1.5) and (1.7) and the strict positivity of hb.
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This allows us to define a probability measure νb(dx) := m (̂hb)−1ĥb(x)m(dx), x ∈ E , and an
igenfunction φb(x) := m (̂hb)hb(x), x ∈ E .

Finally we write λ := λβ and assume that λ < 0. We now show that X satisfies (H1) with
:= φβ and ν := νβ . From their definitions, we see that the function φ ∈ Bb(E, (0,∞)), and

that the probability measure ν has full support on E . Further, it is easy to see that for each
t ≥ 0, Pβ

t φ = eλtφ and ν(φ) = 1. We also have that for any t > 0,

(νPβ
t )(dy) =

∫
x∈E

pβt (x, y)m(dy)ν(dx)

=

∫
x∈E

pβt (x, y)m(dy)m (̂hβ)−1ĥβ(x)m(dx)

= m (̂hβ)−1
(∫

x∈E
pβt (x, y )̂hβ(x)m(dx)

)
m(dy)

= m (̂hβ)−1eλt ĥβ(y)m(dy) = eλtν(dy).

herefore νPβ
t = eλtν, t ≥ 0. Now for each t > 0, x ∈ E and f ∈ L+

1 (ν), we have

Pβ
t f (x) =

∫
E

pβt (x, y) f (y)m(dy)
(1.6)
=

∫
E

hβ(x )̂hβ(y)C1
β,t,x,y f (y)m(dy)

=

∫
E
φ(x)C1

β,t,x,y f (y)ν(dy) =: eλtφ(x)ν( f )(1 + Ht,x, f ).

inally, from (1.6) and (1.8), it is elementary to verify that Ht,x, f satisfies the required condition
H1).

In three paragraphs above, we give some conditions that imply (H1). See [28, Section 1.4]
or more than 10 concrete examples of processes satisfying these conditions.

rganization of the rest of the paper.

In Section 2.1 we will give the proof of Theorem 1.1 using Propositions 2.1–2.4. In
ection 2.2 we will give the proof of Theorem 1.2 using Propositions 2.5–2.7. The proofs
f Propositions 2.1–2.4 are given in Section 3. The proof of Propositions 2.5–2.7 are given in
ection 4. Some technical lemmas are in the Appendix, and will be referred to as needed in

he proofs.

. Proofs of Theorems 1.1 and 1.2

.1. Proof of Theorem 1.1

It is easy to see that the operators (Vt )t≥0 given by (1.1) can be extended uniquely to a
amily of operators (V t )t≥0 on B(E, [0,∞]) such that for all t ≥ 0, fn ↑ f pointwisely in
(E, [0,∞]) implies that V t fn ↑ V t f pointwisely. Moreover, (V t )t≥0 satisfies that

V t f ≤ V t g for t ≥ 0 and f ≤ g in B(E, [0,∞]); (2.1)

V t+s = V t V s for t, s ≥ 0; and (2.2)

Pµ[e−X t ( f )] = e−µ(V t f ) for t ≥ 0, µ ∈ M f (E), and f ∈ B(E, [0,∞]). (2.3)

With some abuse of notation, we still write Vt = V t for t ≥ 0, and call (Vt )t≥0 the extended
umulant semigroup of the superprocess X . Define vt = Vt (∞1E ) for t ≥ 0, then it holds that

P (∥X ∥ = 0) = e−µ(vt ), µ ∈ M (E), t ≥ 0. (2.4)
µ t f
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From this, we can verify that

µ(vt ) > 0 for all µ ∈ Mo
f (E) and t ≥ 0. (2.5)

In fact, if µ(vt ) = 0, then by (2.4) we have Pµ(∥X t∥ = 0) = 1, which contradicts (1.3).
In the proof of Theorem 1.1, we will use the following four propositions whose proofs are

postponed to Sections 3.1–3.4 respectively.

Proposition 2.1. For any f ∈ B(E, [0,∞]), t > T and x ∈ E, we have Vt f (x) = C3
t,x, f φ(x)

or some non-negative C3
t,x, f with limt→∞ supx∈E, f ∈B(E,[0,∞]) C3

t,x, f = 0. In particular, we have
imt→∞ µ(Vt f ) = 0 for all µ ∈ M f (E) and f ∈ B(E, [0,∞]).

Proposition 2.2. For any f ∈ B(E, [0,∞]), t > T and x ∈ E, we have Vt f (x) =

φ(x)ν(Vt f )(1 + C4
t,x, f ) for some real C4

t,x, f with limt→∞ supx∈E, f ∈B(E,[0,∞]) |C
4
t,x, f | = 0.

For a probability measure P on M f (E), the log-Laplace functional of P is defined by

LP f := − log
∫
M f (E)

e−µ( f )P(dµ), f ∈ B(E, [0,∞]).

For a finite random measure {Y ; P}, the log-Laplace functional of its distribution is denoted as
LY ;P. To simplify our notation, for each t ≥ 0, we write Γt := LX t ;Pν (·|∥X t ∥>0).

We say a [0,∞]-valued functional A defined on B(E, [0,∞]) is monotone concave if (1)
A is a monotone functional, i.e., f ≤ g in B(E, [0,∞]) implies A f ≤ Ag; and (2) for any
f ∈ B(E, [0,∞]) with A f < ∞, the function u ↦→ A(u f ) is concave on [0, 1].

Proposition 2.3. The limit G f := limt→∞ Γt f exists in [0,∞] for each f ∈ B(E, [0,∞]).
Moreover, G is the unique [0,∞]-valued monotone concave functional on B(E, [0,∞]) such
that G(∞1E ) = ∞ and that

1 − e−GVs f
= esλ(1 − e−G f ), s ≥ 0, f ∈ B(E, [0,∞]). (2.6)

Proposition 2.4. For any g ∈ Bb(E, [0,∞)) and sequence (gn)n∈N in Bb(E, [0,∞)) such that
gn ↓ g pointwisely, we have Ggn ↓ Gg.

Proof of Theorem 1.1. It follows from Lemma A.4, Propositions 2.3 and 2.4 that there exists
a unique probability measure Qλ on M f (E) such that

Pν(X t ∈ ·|∥X t∥ > 0)
w

−−−→
t→∞

Qλ(·) (2.7)

and that

LQλ = G on Bb(E, [0,∞)). (2.8)

We claim that (2.8) can be strengthened as

LQλ = G on B(E, [0,∞]); (2.9)

and as a consequence of this, LQλ (∞1E ) = G(∞1E ) = ∞, which says that Qλ is actually a
probability measure on Mo

f (E). To see the claim is true, we first note from Proposition 2.1
that

there exists T1 > 0 such that, for all t > T1 and f ∈ B(E, [0,∞]),
(2.10)
Vt f ∈ Bb(E, [0,∞)).
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We then notice that from (2.8) and the bounded convergence theorem,

if {gn : n ∈ N} ∪ {g} ⊂ Bb(E, [0,∞)) and gn ↑ g pointwisely, then Ggn ↑ Gg. (2.11)

ow let {gn : n ∈ N} ∪ {g} ⊂ B(E, [0,∞]) and gn ↑ g pointwisely. Taking and fixing an
> T1, we have by (2.10) and (2.11) that

(1 − e−Ggn )
(2.6)
= e−sλ(1 − e−GVs gn ) ↑ e−sλ(1 − e−GVs g)

(2.6)
= (1 − e−Gg).

n other words, we showed that Ggn ↑ Gg. The desired claim follows from this and (2.8).
Let us now prove that the probability Qλ on Mo

f (E) satisfies the requirement for the desired
esult. It follows from Proposition 2.2 that there exists T2 > 0 such that supx∈E, f ∈B(E,[0,∞])
C4

t,x, f | < ∞ for t > T2. Thus for f ∈ B(E, [0,∞]), t > T2 and µ ∈ Mo
f (E), we have

µ(Vt f )
Proposition 2.2

=

∫
E
φ(x)ν(Vt f )(1 + C4

t,x, f )µ(dx)

= ν(Vt f )µ(φ)(1 + C5
µ,t, f ) (2.12)

or some real C5
µ,t, f with limt→∞ sup f ∈B(E,[0,∞]) |C

5
µ,t, f | = 0. Also note that for f ∈

(E, [0,∞]), t > T2 and µ ∈ Mo
f (E),

Pµ
[
1 − e−X t ( f )

⏐⏐∥X t∥ > 0
] (2.3), (2.4)

=
1 − e−µ(Vt f )

1 − e−µ(vt )

=
µ(Vt f )
µ(vt )

(1 + C6
µ,t, f ) (2.13)

or some real C6
µ,t, f with limt→∞ |C6

µ,t, f | = 0. Here in the last equality we used (2.5),
Proposition 2.1 and the fact that (1 − e−x )/x −−→

x→0
1. Thus, for each µ ∈ Mo

f (E) and
f ∈ Cb(E, [0,∞)), we have

Pµ
[
1 − e−X t ( f )

⏐⏐∥X t∥ > 0
] (2.12), (2.13)

=
ν(Vt f )
ν(vt )

1 + C5
µ,t, f

1 + C5
µ,t,∞1E

(1 + C6
µ,t, f )

(2.13)
= Pν

[
1 − e−X t ( f )

⏐⏐∥X t∥ > 0
]

(1 + C6
ν,t, f )−1

1 + C5
µ,t, f

1 + C5
µ,t,∞1E

(1 + C6
µ,t, f )

−−−→
t→∞

∫
M f (E)

(1 − e−w( f ))Qλ(dw),

where in the last line above, we used (2.7). Therefore, according to [21, Theorem 1.18],

Pµ
(
X t ∈ ·

⏐⏐∥X t∥ > 0
) w

−−−→
t→∞

Qλ(·). □

2.2. Proof of Theorem 1.2

In this subsection, we give the proof of Theorem 1.2 using the following three Proposi-
tions 2.5–2.7 whose proofs are postponed to Sections 4.1–4.3, respectively.

Proposition 2.5. (1) The Yaglom limit Qλ given by Theorem 1.1 is a QSD of X with mass
decay rate λ; and (2) for any r ∈ (λ, 0), there exists a probability measure Qr on Mo

f (E) such
that Qr is a QSD of X with mass decay rate r .
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Proposition 2.6. Suppose that r ∈ (−∞, 0) and that Q∗

r is a QSD for X with mass decay rate
. Then we have that (1) r ≥ λ; and (2) LQ∗

r is a monotone concave functional on B(E, [0,∞])
with LQ∗

r (∞1E ) = ∞ and that

1 − e−LQ∗
r

Vs f
= esr (1 − e−LQ∗

r
f ), s ≥ 0, f ∈ B(E, [0,∞]).

Proposition 2.7. Let G be the unique functional on B(E, [0,∞]) given by Proposition 2.3.
Let r ∈ [λ, 0). If Gr is a monotone concave functional on B(E, [0,∞]) with Gr (∞1E ) = ∞

and that

1 − e−Gr Vs f
= esr (1 − e−Gr f ), s ≥ 0, f ∈ B(E, [0,∞]),

then 1 − e−Gr f
= (1 − e−G f )r/λ for any f ∈ B(E, [0,∞]).

Proof of Theorem 1.2. The non-existence of QSD for X with mass decay rate r < λ is due
to Proposition 2.6(1). The existence of QSD for X with mass decay rate r ∈ [λ, 0) is due
to Proposition 2.5. The uniqueness of QSD for X with mass decay rate r ∈ [λ, 0) is due to
Propositions 2.6, 2.7 and [21, Theorem 1.17]. □

3. Proofs of Propositions 2.1–2.4

3.1. Proof of Proposition 2.1

Define a function ψ0 by

ψ0(x, z) = ψ(x, z) + β(x)z, x ∈ E, z ∈ [0,∞),

and an operator Ψ0 : B(E, [0,∞]) → B(E, [0,∞]) by

Ψ0 f (x) = lim
n→∞

ψ0(x, f (x) ∧ n), f ∈ B(E, [0,∞]), x ∈ E .

Then it follows from [21, Theorem 2.23] and monotonicity that

Vs f +

∫ s

0
Pβ

s−uΨ0Vu f du = Pβ
s f, f ∈ B(E, [0,∞]), s ≥ 0. (3.1)

The following fact will be used repeatedly:

{Vt f : t > T, f ∈ B(E, [0,∞])} ⊂ L+

1 (ν). (3.2)

To see this, note from (2.1), (2.4) and (H2) that, for all t > T and f ∈ B(E, [0,∞]),
ν(Vt f ) ≤ ν(vt ) = − logPν(∥X t∥ = 0) < ∞.

Proof of Proposition 2.1. Note that for all s > 0 and ϵ > 0,

Vs+ϵ+T f (x)
(2.2)
= Vs VT +ϵ f (x) ≤ Pβ

s VT +ϵ f (x) by (3.1),
(H1), (3.2)

= eλsφ(x)ν(VT +ϵ f )(1 + Hs,x,VT +ϵ f ) (3.3)

≤ eλsφ(x)ν(vT +ϵ)(1 + sup
x∈E,g∈L+

1 (ν)
|Hs,x,g|),

where in the last inequality we used the fact that ν(Vt f ) ≤ ν(vt ) = − logPν(∥X t∥ = 0) < ∞

for all f ∈ B(E, [0,∞]) and t > T . From this and the fact that λ < 0, we immediately get
the desired result. □
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3.2. Proof of Proposition 2.2

Another fact that will be used repeatedly is the following:

For any f ∈ B(E, [0,∞]), ν( f ) = 0 implies ν(Vt f ) = 0 for all t ≥ 0;
and ν( f ) > 0 implies ν(Vt f ) > 0 for all t ≥ 0.

(3.4)

o see this, note by (1.2) that Pν[X t ( f )] = ν(Pβ
t f ) = eλtν( f ). If ν( f ) = 0, then X t ( f ) =

,Pν-a.s., therefore ν(Vt f ) = − logPν[e−X t ( f )] = 0. If ν( f ) > 0, then under Pν , X t ( f ) is a
andom variable with positive mean. Therefore, ν(Vt f ) = − logPν[e−X t ( f )] > 0.

Combining (3.4) with (3.3) we get that

for all t > T, x ∈ E and f ∈ B(E, [0,∞]) with ν( f ) = 0, we have Vt f (x) = 0. (3.5)

ote from (H1) and (3.2) that for all s > 0, t > T, x ∈ E and f ∈ B(E, [0,∞]), we have

Pβ
s Vt f (x) = eλsφ(x)ν(Vt f )(1 + Hs,x,Vt f ) < ∞. (3.6)

In the proof of Proposition 2.2 we will use the following three lemmas whose proofs are
ostponed later.

emma 3.1. For all s > 0, t > T, x ∈ E and f ∈ B(E, [0,∞]), we have Pβ
s Vt f (x) =

(x)ν(Vt+s f )(1 + C7
s,t,x, f ) for some real C7

s,t,x, f with

lim
s→∞

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

|C7
s,t,x, f | = 0.

For f ∈ B(E, [0,∞]) and 0 < ϵ < s < ∞, we define

Is,ϵ f =

∫ s−ϵ

0
Pβ

s−uΨ0Vu f du, Js,ϵ f =

∫ s

s−ϵ
Pβ

s−uΨ0Vu f du.

emma 3.2. For all t > T, 0 < ϵ < s < ∞, x ∈ E and f ∈ B(E, [0,∞]) with ν( f ) > 0,
e have Is,ϵVt f (x) = φ(x)ν(Vs+t f )C8

t,ϵ,s,x, f for some non-negative C8
t,ϵ,s,x, f with

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

C8
t,ϵ,s,x, f = 0.

emma 3.3. For all t > T, 0 < ϵ < s < ∞, x ∈ E and f ∈ B(E, [0,∞]) with ν( f ) > 0,
e have Js,ϵVt f (x) = φ(x)ν(Vs+t f )C9

t,ϵ,s,x, f for some non-negative C9
t,ϵ,s,x, f with

lim
ϵ→0

lim
t+s→∞

sup
x∈E, f ∈B(E,[0,∞])

C9
t,ϵ,s,x, f = 0.

Proof of Proposition 2.2. Thanks to (3.4) and (3.5), we only need to consider the case that
ν( f ) > 0. In this case, by Lemmas 3.1–3.3. we have for any s > 0 and ϵ ∈ (0, s),

Vt+s f (x)
(2.2)
= Vs Vt f (x)

(3.1), (3.6)
= Pβ

s Vt f (x) −

∫ s

0
Pβ

s−uΨ0Vu Vt f (x)du

= Pβ
s Vt f (x) − Is,ϵVt f (x) − Js,ϵVt f (x)

= φ(x)ν(Vt+s f )
(
1 + C7

s,t,x, f − C8
t,ϵ,s,x, f − C9

t,ϵ,s,x, f

)
. (3.7)
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On the other hand, we have

Vt f (x) = φ(x)ν(Vt f )(1 + C10
t,x, f ) for some real C10

t,x, f . (3.8)

ombining (3.7) and (3.8), we have for all s > 0 and ϵ ∈ (0, s),

C10
t+s,x, f = C7

s,t,x, f − C8
t,ϵ,s,x, f − C9

t,ϵ,s,x, f .

Using this and the fact that

lim
ϵ→0

lim
s→∞

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

|C7
s,t,x, f − C8

t,ϵ,s,x, f − C9
t,ϵ,s,x, f | = 0,

it is easy to check that lims→∞ limt→∞ supx∈E, f ∈B(E,[0,∞]) |C
10
t+s,x, f | = 0. This implies

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

|C10
t,x, f | = 0. □

Now we prove the three lemmas above.

roof of Lemma 3.1. Integrating both sides of (3.1) with respect to ν and replacing f by
Vt f , we get that for all t, s ≥ 0 and f ∈ B(E, [0,∞]),

e−λ(t+s)ν(Vt+s f ) +

∫ s

0
e−λ(t+u)ν(Ψ0Vt+u f )du = e−λtν(Vt f ). (3.9)

s a consequence of (3.9), we can get that for all t > T , s ≥ 0 and f ∈ B(E, [0,∞]) with
( f ) > 0,

ν(Vt+s f )
ν(Vt f )

= exp
{
λs −

∫ t+s

t

ν(Ψ0Vu f )
ν(Vu f )

du
}
. (3.10)

n fact, first observe from (3.2) and (3.4) that both sides of (3.9) are finite and positive if t > T
nd ν( f ) > 0. Therefore the function H : u ↦→ e−λuν(Vu f ) is absolutely continuous on (T,∞)
nd

d H (u) = −e−λuν(Ψ0Vu f )du, u ∈ (T,∞),

hich implies that

d log H (u) = −
ν(Ψ0Vu f )
ν(Vu f )

du, u ∈ (T,∞).

ow an elementary integration argument gives (3.10).
Define an operator Ψ ′

0 on B(E, [0,∞]) by

Ψ ′

0 f (x) = lim
n→∞

∂ψ0

∂z
(x, n ∧ f (x)), x ∈ E, f ∈ B(E, [0,∞]).

We first claim that for all t > T, x ∈ E and f ∈ B(E, [0,∞]),

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

Ψ ′

0Vt f (x) < ∞. (3.11)

n fact, since

∂ψ0 (x, z) = 2σ (x)2z +

∫
∞

(1 − e−r z)rπ (x, dr ), x ∈ E, z ≥ 0, (3.12)

∂z 0
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we have,

Ψ ′

0Vt f (x) ≤ 2σ (x)2Vt f (x) + Vt f (x)
∫ 1

0
r2π (x, dr ) +

∫
∞

1
rπ (x, dr )

Proposition 2.1
= C3

t,x, f φ(x)
(

2σ (x)2
+

∫ 1

0
r2π (x, dr )

)
+

∫
∞

1
rπ (x, dr ).

ince φ, σ are bounded, and (r ∧ r2)π (x, du) is a bounded kernel, (3.11) follows easily.
We next claim that for all t > T and f ∈ B(E, [0,∞]),

lim
t→∞

sup
f ∈B(E,[0,∞])

ν(Ψ ′

0Vt f ) = 0. (3.13)

n fact, it follows from (3.12) that, for any fixed x ∈ E , z ↦→
∂ψ0
∂z (x, z) is a non-negative,

non-decreasing and continuous function on [0,∞) with ∂ψ0
∂z (·, 0) ≡ 0. Therefore for any x ∈ E ,

we have

lim
t→∞

Ψ ′

0vt (x) = lim
t→∞

∂ψ0

∂z
(x, vt (x))

Proposition 2.1
= 0.

sing this, (3.11) and the bounded convergence theorem, we easily get limt→∞ ν(Ψ ′

0vt ) = 0.
he claim follows immediately from the monotonicity of Ψ ′

0Vt f in f ∈ B(E, [0,∞]).
Here is another claim that will be used below:

For all t > T, x ∈ E and f ∈ B(E, [0,∞]), it holds that
Vt f (x) = φ(x)ν(Vt f )C11

t,x, f

for some non-negative C11
t,x, f with lim

t→∞
sup

x∈E, f ∈B(E,[0,∞])
C11

t,x, f < ∞.
(3.14)

o see this, first note that (3.14) is trivial when ν( f ) = 0 thanks to (3.4) and (3.5). Therefore,
e only need to consider the case that ν( f ) > 0. In this case, it follows from the elementary

act

ψ0(x, z) ≤ z
∂ψ0

∂z
(x, z), x ∈ E, z ≥ 0, (3.15)

hat

ν(Ψ0Vt f ) ≤ ν((Vt f ) · (Ψ ′

0Vt f )) ≤ ν(Vt f ) sup
y∈E

Ψ ′

0Vt f (y).

rom (3.2) we get that ν(Vt f ) < ∞. Thus from (3.11) for t > T and f ∈ B(E, [0,∞]),

ν(Ψ0Vt f ) = ν(Vt f )C12
t, f (3.16)

or some non-negative C12
t, f with limt→∞ sup f ∈B(E,[0,∞]) C12

t, f < ∞. Therefore, for any s ≥ 0,

ν(Vt+s f )
ν(Vt f )

(3.10)
= exp

{
λs −

∫ t+s

t

ν(Ψ0Vu f )
ν(Vu f )

du
}

(3.16)
= exp

{
λs −

∫ t+s

C12
u, f du

}
. (3.17)
t

120



R. Liu, Y.-X. Ren, R. Song et al. Stochastic Processes and their Applications 132 (2021) 108–134

A

F
a

T
t

s

t
0

Now note that for any ϵ ∈ (0, t − T ),

Vt f (x)
(2.1)
= VϵVt−ϵ f ≤ Pβ

ϵ Vt−ϵ f (x) by (3.1),
(H1)
= φ(x)ν(Vt−ϵ f )eλϵ(1 + Hϵ,x,Vt−ϵ f )

(3.17)
= φ(x)ν(Vt f ) exp

{∫ t

t−ϵ
C12

u, f du
}

(1 + Hϵ,x,Vt−ϵ f ). (3.18)

ccording to (3.2) and (H1) we have

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

|Hϵ,x,Vt−ϵ f | < ∞, ϵ > 0.

rom this, (3.18) and the fact that limu→∞ sup f ∈B(E,[0,∞]) C12
u, f < ∞, (3.14) follows immedi-

tely.
We now use (3.11), (3.13) and (3.14) to give the asymptotic ratio of ν(Ψ0Vt f ) and ν(Vt f ).

Note that we already obtained some result for this ratio in (3.16). We claim that the following
stronger assertion is valid:

lim
t→∞

sup
f ∈B(E,[0,∞])

C12
t, f = 0, f ∈ B(E, [0,∞]). (3.19)

To see this, we observe that

ν(Ψ0Vt f ) ≤ ν((Vt f ) · (Ψ ′

0Vt f )), by (3.15),

≤ ν(Ψ ′

0Vt f ) sup
x∈E

Vt f (x)
(3.14)
= ν(Ψ ′

0Vt f ) · ν(Vt f ) sup
x∈E

(φ(x)C11
t,x, f ).

Since φ is bounded, (3.19) follows from (3.13) and (3.14).
Using (3.19), we can get the following asymptotic ratio of ν(Vt+s f ) and ν(Vt f ):

For all t > T, s ≥ 0 and f ∈ B(E, [0,∞]), we have
ν(Vt+s f ) = ν(Vt f ) exp{λs(1 + C13

t,s, f )}

for some real C13
t,s, f with lim

t→∞
sup

s≥0, f ∈B(E,[0,∞])
|C13

t,s, f | = 0. In particular, for

all f ∈ B(E, [0,∞]) with ν( f ) > 0 and s ≥ 0, we have lim
t→∞

ν(Vt+s f )
ν(Vt f )

= eλs .

(3.20)

o see this, thanks to (3.4), we only need to consider the case ν( f ) > 0. In this case, it holds
hat

ν(Vt+s f )
ν(Vt f )

(3.17)
= exp

{
λs −

∫ t+s

t
C12

u, f du
}

=: exp{λs(1 + C13
t,s, f )}.

Noticing that C13
t,s, f = −

1
λs

∫ t+s
t C12

u, f du and by (3.19) that limu→∞ sup f ∈B(E,[0,∞]) C12
u, f = 0,

o we have limt→∞ sups>0, f ∈B(E,[0,∞]) |C
13
t,s, f | = 0.

We are now ready to prove the conclusion of Lemma 3.1. Again we only need to consider
he case ν( f ) > 0 thanks to (3.4) and (3.5). In this case, by (3.2) and (3.4), we have
< ν(Vt f ) < ∞. Therefore, we have

Pβ
s Vt f (x)

(H1)
= eλsφ(x)ν(Vt f )(1 + Hs,x,Vt f )

(3.20)
= φ(x)ν(Vt+s f ) exp{−λsC13

t,s, f }(1 + Hs,x,Vt f ).
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From (H1) and (3.2), we know that lims→∞ supx∈E,t>T, f ∈B(E,[0,∞]) |Hs,x,Vt f | = 0. From (3.20),
we know that sups≥0 limt→∞ sup f ∈B(E,[0,∞]) |sC13

t,s, f | = 0. Therefore, we have

lim
s→∞

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

| exp{−λsC13
t,s, f }(1 + Hs,x,Vt f ) − 1| = 0.

Combining the two displays above we get the conclusion of Lemma 3.1. □

Proof of Lemma 3.2. For all u ≥ 0, we have

ν(Pβ
u Ψ0Vt f ) = eλuν(Ψ0Vt f ) < ∞, (3.21)

where the inequality follows from (3.16) and (3.2). Therefore, we have

Is,ϵVt f (x) =

∫ s−ϵ

0
Pβ

s−uΨ0Vt+u f (x)du =

∫ s−ϵ

0
Pβ
ϵ (Pβ

s−ϵ−uΨ0Vt+u f )(x)du

(H1)
=

∫ s−ϵ

0
eλϵφ(x)ν(Pβ

s−ϵ−uΨ0Vt+u f )
(

1 + H
ϵ,x,Pβs−ϵ−uΨ0Vt+u f

)
du

(3.21)
= e(t+s)λ

∫ s−ϵ

0
φ(x)e−λ(t+u)ν(Ψ0Vt+u f )

(
1 + H

ϵ,x,Pβs−ϵ−uΨ0Vt+u f

)
du

≤ φ(x)
(

1 + sup
g∈L+

1 (ν)
|Hϵ,x,g|

)
e(t+s)λ

∫ s

0
e−λ(t+u)ν(Ψ0Vt+u f )du by (3.21)

(3.9)
= φ(x)

⎛⎝1 + sup
g∈L+

1 (ν)
|Hϵ,x,g|

⎞⎠ e(t+s)λ
(

e−λtν(Vt f ) − e−λ(t+s)ν(Vt+s f )
)

(3.2), (3.4)
= φ(x)

(
1 + sup

g∈L+

1 (ν)
|Hϵ,x,g|

)
ν(Vt+s f )

(esλν(Vt f )
ν(Vt+s f )

− 1
)

(3.20)
= φ(x)

(
1 + sup

g∈L+

1 (ν)
|Hϵ,x,g|

)
ν(Vt+s f )(exp{−λsC13

t,s, f } − 1).

It is easy to check that

lim
t→∞

sup
x∈E, f ∈B(E,[0,∞])

⏐⏐⏐(1 + sup
g∈L+

1 (ν)
|Hϵ,x,g|

)
(exp{−λsC13

t,s, f } − 1)
⏐⏐⏐ = 0.

The desired result then follows. □

Proof of Lemma 3.3. It follows from (3.15) that for all t > T, x ∈ E and f ∈ B(E, [0,∞]),

Ψ0Vt f (x) ≤ Vt f (x) · Ψ ′

0Vt f (x).

Now by (3.11) we have

Ψ0Vt f (x) = Vt f (x)C14
t,x, f (3.22)

for some non-negative C14
t,x, f with limt→∞ supx∈E, f ∈B(E,[0,∞]) C14

t,x, f < ∞.
Recall the quantity C13

t,s, f given in (3.20). Now we claim that for all u ≥ 0, t > T , x ∈ E
nd f ∈ B(E, [0,∞]),

PβΨ V f (x) = φ(x)ν(V f ) exp{−λuC13
}C15 (3.23)
u 0 t t+u t,u, f t,u,x, f
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for some non-negative C15
t,u,x, f with limt→∞ supu≥0,x∈E, f ∈B(E,[0,∞]) C15

t,u,x, f < ∞.

Pβ
u Ψ0Vt f (x) =

∫
E
Ψ0Vt f (y)Pβ

u (x, dy)
(3.22)
=

∫
E

Vt f (y)C14
t,y, f Pβ

u (x, dy)

(3.14)
=

∫
E
φ(y)ν(Vt f )C11

t,y, f C14
t,y, f Pβ

u (x, dy)

(3.20)
=

∫
E
φ(y)ν(Vt+u f ) exp{−λu(1 + C13

t,u, f )}C11
t,y, f C14

t,y, f Pβ
u (x, dy)

≤ ν(Vt+u f ) exp{−λu(1 + C13
t,u, f )}

(
sup
z∈E

C11
t,z, f C14

t,z, f

) ∫
E
φ(y)Pβ

u (x, dy)

= ν(Vt+u f ) exp{−λu(1 + C13
t,u, f )}

(
sup
z∈E

C11
t,z, f C14

t,z, f

)
eλuφ(x).

ow (3.23) follows from the fact that limt→∞

(
supz∈E, f ∈B(E,[0,∞]) C11

t,z, f C14
t,z, f

)
< ∞.

Note that (3.23) gives the asymptotic behavior of Pβ
u Ψ0Vt f (x). We want to reformulate it

nto the asymptotic behavior of Pβ
u Ψ0Vt−u f (x). To do this, we use the following elementary

facts: for any real function h on [0,∞)2,

lim
t→∞

sup
u≥0

|h(t, u)| < ∞ H⇒ sup
ϵ>0

lim
t→∞

sup
u∈(0,ϵ)

|h(t − u, u)| < ∞; (3.24)

lim
t→∞

sup
u≥0

|h(t, u)| = 0 H⇒ sup
ϵ>0

lim
t→∞

sup
u∈(0,ϵ)

u · |h(t − u, u)| = 0.

bserve that for all u > 0, t > T + u and f ∈ B(E, [0,∞]),

Pβ
u Ψ0Vt−u f (x)

(3.23)
= φ(x)ν(Vt f ) exp{−λuC13

t−u,u, f }C
15
t−u,u,x, f .

rom (3.24), we know that

sup
ϵ>0

lim
t→∞

sup
u∈(0,ϵ),x∈E, f ∈B(E,[0,∞])

C15
t−u,u,x, f < ∞

nd that

sup
ϵ>0

lim
t→∞

sup
u∈(0,ϵ), f ∈B(E,[0,∞])

uC13
t−u,u, f = 0.

hus,

Pβ
u Ψ0Vt−u f (x) = φ(x)ν(Vt f )C16

t,u, f,x (3.25)

or some non-negative C16
t,u, f,x with supϵ>0 limt→∞ supu∈(0,ϵ),x∈E, f ∈B(E,[0,∞]) C16

t,u, f,x < ∞.
Finally, we note that

Js,ϵVt f (x) =

∫ s

s−ϵ
Pβ

s−uΨ0Vt+u f (x)du =

∫ ϵ

0
Pβ

u Ψ0Vt+s−u f (x)du

(3.25)
=

∫ ϵ

0
φ(x)ν(Vt+s f )C16

t+s,u, f,x du ≤ ϵφ(x)ν(Vt+s f ) sup
u∈(0,ϵ)

C16
t+s,u, f,x .

t is elementary to see that

lim
ϵ→0

lim
t+s→∞

sup
x∈E, f ∈B(E,[0,∞])

(
ϵ sup

u∈(0,ϵ)
C16

t+s,u, f,x

)
= 0.

Combining the two displays above, we get the conclusion of Lemma 3.3. □
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3.3. Proof of Proposition 2.3

Recall that for each t ≥ 0, Γt := LX t ;Pν (·|∥X t ∥>0) is the log-Laplace functional for X t under
probability Pν(·|∥X t∥ > 0). For any unbounded increasing positive sequence t = (tn)n∈N, define
Gt f = limn→∞

Γ(tn ) f .
To prove Proposition 2.3, we first prove two lemmas.

emma 3.4. For any unbounded increasing positive sequence t = (tn)n∈N, Gt is a
0,∞]-valued monotone concave functional on B(E, [0,∞]) such that Gt(∞1E ) = ∞ and

that

1 − e−GtVs f
= esλ(1 − e−Gt f ), s ≥ 0, f ∈ B(E, [0,∞]).

Proof. Since (Γt )t≥0 are [0,∞]-valued functionals, so is Gt. Also, from Γt (∞1E ) = ∞ for
all t ≥ 0 we have that Gt(∞1E ) = ∞. We claim that Gt is monotone concave. In fact, for
each f ≤ g in B(E, [0,∞]), we have

Gt f = lim
n→∞

Γ(tn ) f ≤ lim
n→∞

Γ(tn )g = Gtg.

n the other hand, using Lemma A.2, we have for all t ≥ 0, f ∈ B(E, [0,∞]), u, v ∈ [0,∞),
∈ [0, 1], it holds that

Γt ((ru + (1 − r )v) f ) ≥ rΓt (u f ) + (1 − r )Γt (v f ).

Therefore, for all f ∈ B(E, [0,∞]), u, v ∈ [0,∞), r ∈ [0, 1], we have

Gt((ru + (1 − r )v) f ) = lim
n→∞

Γ(tn )((ru + (1 − r )v) f )

≥ lim
n→∞

(rΓ(tn )(u f ) + (1 − r )Γ(tn )(v f ))

≥ r ( lim
n→∞

Γ(tn )(u f )) + (1 − r )( lim
n→∞

Γ(tn )(v f ))

= rGt(u f ) + (1 − r )Gt(v f ).

Note that for any t > 0 and f ∈ B(E, [0,∞]), it holds that

1 − e−Γt f
=

Pν[1 − e−X t ( f )]
Pν(∥X t∥ > 0)

=
1 − e−ν(Vt f )

1 − e−ν(vt ) . (3.26)

ix a function f ∈ B(E, [0,∞]). Thanks to (3.4) and (3.26), we only need to consider the
case ν( f ) > 0. In this case, by (3.4), we have ν(Vt f ) > 0 for each t ≥ 0. Therefore, for any
s, t ≥ 0,

1 − e−Γt Vs f (3.26)
=

1 − e−ν(Vt+s f )

1 − e−ν(vt ) =
1 − e−ν(Vt+s f )

1 − e−ν(Vt f )

1 − e−ν(Vt f )

1 − e−ν(vt )

(3.26)
=

1 − e−ν(Vt+s f )

−ν(Vt f ) (1 − e−Γt f ). (3.27)

1 − e
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Thus, for any s ≥ 0,

1 − e−GtVs f
= lim

n→∞

(1 − e−Γ(tn )Vs f )
(3.27)
= lim

n→∞

(
1 − e−ν(Vtn+s f )

1 − e−ν(V(tn ) f ) (1 − e−Γ(tn ) f )
)

=

(
lim

t→∞

1 − e−ν(Vt+s f )

1 − e−ν(Vt f )

)
· lim

n→∞

(1 − e−Γ(tn ) f ) = esλ(1 − e−Gt f ),

here the last equality follows from Proposition 2.1, (3.20), and the fact that (1 − e−x )/
x −−→

x→0
1. □

emma 3.5. Suppose that r ∈ [λ, 0). If Gr is a [0,∞]-valued monotone concave functional
n B(E, [0,∞]) such that Gr (∞1E ) = ∞ and that

1 − e−Gr Vs f
= esr (1 − e−Gr f ), s ≥ 0, f ∈ B(E, [0,∞]),

hen for any unbounded increasing positive sequence t = (tn)n∈N,

1 − e−Gr f
= (1 − e−Gt f )r/λ, f ∈ B(E, [0,∞]).

roof. Let (Qt )t≥0 be the family of [0,∞)-valued functionals on B(E, [0,∞]) given by

Qt g := e−r t (1 − e−Gr (gvt )).

Note that, by (2.5), vt (x) > 0 for all x ∈ E . It follows from Proposition 2.1 that vt (x) < ∞

for all x ∈ E and all t > T . Thus vt (·) is a (0,∞)-valued function for all t > T .
We claim that for any u ∈ [0, 1], Qt (u1E ) is non-increasing in t ∈ (0,∞). In particular,

we can define the [0,∞]-valued function q(u) := limt→∞ Qt (u1E ), u ∈ [0, 1]. In fact, note
that Pδx [e−Xs (uvt )] = e−Vs (uvt ), x ∈ E, s, t > 0, u ≥ 0. Lemma A.2 says that, for all s, t > 0
and x ∈ E , u ↦→ Vs(uvt )(x) is a [0,∞]-valued concave function on [0,∞). Therefore, for
u ∈ [0, 1], we have

Vs(uvt ) ≥ uVs(vt ) + (1 − u)Vs(0 · vt ) = uvs+t , s, t > 0.

Using this, we get

Qt+s(u1E ) = e−r (t+s)(1 − e−Gr (uvt+s )) ≤ e−r (t+s)(1 − e−Gr [Vs (uvt )])

= e−r t (1 − e−Gr (uvt )) = Qt (u1E ), s, t > 0, u ∈ [0, 1].

We want to show that q(u) = ur/λ, u ∈ [0, 1]. In order to do this, we first show that

the function q is non-decreasing and concave on [0, 1] with q(1) = 1.
In particular, thanks to Lemma A.1, q is a continuous function on (0, 1].

(3.28)

In fact, from Gr (∞1E ) = ∞ and Vt (∞1E ) = vt , we get

Qt (1E ) = e−r t (1 − e−Gr vt ) = e−r t er t (1 − e−Gr (∞1E )) = 1, t ≥ 0.

Therefore q(1) = 1. The above argument also says that Grvt < ∞ for each t > 0. Now from
the condition that Gr is monotone concave, we have that for all t > 0, the map u ↦→ Gr (uvt )
is a non-decreasing and concave [0,∞)-valued function on [0, 1]. From Lemma A.3 we get
that, for each t > 0, u ↦→ Qt (u1E ) is a [0,∞)-valued, non-decreasing and concave function
on [0, 1]. Since the limit of concave functions is concave, we get (3.28) by letting t → ∞.

We now show that
r/λ
q(u) = u , u ∈ [0, 1]. (3.29)

125



R. Liu, Y.-X. Ren, R. Song et al. Stochastic Processes and their Applications 132 (2021) 108–134

U

n

s
(

e

f

To see this, note that for all s ≥ 0, t > T and x ∈ E , we have that

eλs(φ−1vt )(x)
Proposition 2.2

= eλsν(vt )(1 + C4
t,x,∞1E

)
(3.20)
= ν(vt+s) exp{−λsC13

t,s,∞1E
}(1 + C4

t,x,∞1E
)

Proposition 2.2
= (φ−1vt+s)(x)(1 + C4

t+s,x,∞1E
)−1 exp{−λsC13

t,s,∞1E
}(1 + C4

t,x,∞1E
)

= (φ−1vt+s)(x)(1 + C17
s,t,x ),

for some real C17
s,t,x with limt→∞ supx∈E |C17

s,t,x | = 0. Thus, we know that for all s ≥ 0 and
ϵ > 0 there exists T 1

s,ϵ > 0 such that

1 − ϵ ≤
eλsvt (x)
vt+s(x)

≤ 1 + ϵ, x ∈ E, t > T 1
s,ϵ . (3.30)

From this we get that for all s ≥ 0, ϵ > 0, t ≥ T 1
s,ϵ , and u ≥ 0,

Qt+s[(1 − ϵ)u1E ] = e−r (t+s)(1 − e−Gr [(1−ϵ)uvt+s ])
(3.30)
≤ e−r t e−rs(1 − e−Gr (ueλsvt ))

= e−rs Qt (ueλs1E )
(3.30)
≤ e−r (t+s)(1 − e−Gr [(1+ϵ)uvt+s ])

= Qt+s[(1 + ϵ)u1E ].

Letting t → ∞ in the display above, we get that for all s ≥ 0, ϵ > 0 and u satisfying
0 < (1 − ϵ)u < (1 + ϵ)u < 1, it holds that

q((1 − ϵ)u) ≤ e−rsq(ueλs) ≤ q((1 + ϵ)u). (3.31)

sing (3.28), letting ϵ → 0 and then u ↑ 1 in (3.31), we get that

q(1) = 1 = e−rsq(eλs), s ≥ 0.

In other words, q(u) = ur/λ for u ∈ (0, 1]. Finally noticing that q is non-negative and
on-decreasing on [0, 1], we also have q(0) = 0.

We are now ready to finish the proof of Lemma 3.5. Fix an unbounded increasing positive
equence t = (tn)n∈N and a function f ∈ B(E, [0,∞]), we only need to prove that 1 − Gr f =

1 − Gt f )r/λ.
From the definition of Gt f , we can choose a subsequence t′ = (t ′

n)n∈N of t such that for
ach n ∈ N, we have t ′

n > T and

Gt f = Γt ′n f + C18
n (3.32)

or some real C18
n (depending on both f and t′) such that limn→∞ |C18

n | = 0.
Therefore, we have for any n ∈ N,

1 − e−Gt f (3.32)
= 1 − e−Γt ′n

f −C18
n

= (1 − e−Γt ′n
f )e−C18

n + (1 − e−C18
n )

(3.26)
=

1 − e−ν(V(t ′n ) f )

1 − e−ν(v(t ′n ))
e−C18

n + (1 − e−C18
n )

=
ν(V(t ′n ) f )
ν(v(t ′n ))

(1 + C19
n ) + (1 − e−C18

n )
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for some real C19
n with limn→∞ |C19

n | = 0, by Proposition 2.1 and the fact that (1−e−x )/x −−→
x→0

. Thus

1 − e−Gt f Proposition 2.2
=

V(t ′n ) f (x)
v(t ′n )(x)

1 + C4
t ′n ,x,∞1E

1 + C4
t ′n ,x, f

(1 + C19
n ) + (1 − e−C18

n ). (3.33)

t is elementary to see that

lim
n→∞

sup
x∈E

⏐⏐⏐⏐⏐1 + C4
t ′n ,x,∞1E

1 + C4
t ′n ,x, f

(1 + C19
n ) − 1

⏐⏐⏐⏐⏐ = 0.

herefore, for any ϵ > 0, there exists Nϵ > 0 such that for any n > Nϵ ,⏐⏐⏐(1 + C4
t ′n ,x,∞1E

1 + C4
t ′n ,x, f

(1 + C19
n )

)−1
− 1

⏐⏐⏐ < ϵ; and |1 − e−C18
n | < ϵ. (3.34)

ote from (2.1), 0 ≤ Vt f ≤ vt for each t ≥ 0. It is elementary to verify from (3.33) and (3.34)
hat, for any ϵ > 0, n > Nϵ and x ∈ E ,

(1 − ϵ)
(

(1 − e−Gt f
− ϵ) ∨ 0

)
≤

V(t ′n ) f (x)
v(t ′n )(x)

≤ (1 + ϵ)(1 − e−Gt f
+ ϵ) ∧ 1.

ince Gr is a monotone functional, we know that for each t ≥ 0, Qt is also a monotone
unctional. This implies that for any ϵ > 0 and n > Nϵ ,

Q(t ′n )

[
(1 − ϵ)

(
(1 − e−Gt f

− ϵ) ∨ 0
)

1E

]
≤ Q(t ′n )

(
V(t ′n ) f
v(t ′n )

)
(3.35)

≤ Q(t ′n )

[(
(1 + ϵ)(1 − e−Gt f

+ ϵ) ∧ 1
)

1E

]
.

ote from the definition of (Qt )t≥0 and Gr , we always have for t > T that

Qt

(
Vt f
vt

)
= e−r t (1 − e−Gr Vt f ) = 1 − e−Gr f .

Therefore, taking n → ∞ in (3.35), and using (3.29) we get that(
(1 − ϵ)

(
(1 − e−Gt f

− ϵ) ∨ 0
))r/λ

≤ 1 − e−Gr f
≤

(
(1 + ϵ)(1 − e−Gt f

+ ϵ) ∧ 1
)r/λ

.

Taking ϵ → 0, we get the desired result. □

Proof of Proposition 2.3. Combining Lemmas 3.4 and 3.5 (taking r = λ) with a sub-sub-
sequence type argument, we can easily get the conclusion of Proposition 2.3. □

3.4. Proof of Proposition 2.4

Proof of Proposition 2.4. We first consider the case that g = 0 ν-almost surely. From (3.1)
and (H1), we have

V1gn(x) ≤ Pβ

1 gn(x) ≤ C20φ(x)ν(gn), n ∈ N, x ∈ E, (3.36)

here C20
:= supx∈E, f ∈L1

+
(ν) eλ(1 + |H1,x, f |). By the bounded convergence theorem, we have

lim ν(gn) = ν(g) = 0. (3.37)

n→∞
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On the other hand, from (3.9), we know that t ↦→ e−λtν(vt ) is a non-increasing (0,∞)-valued
ontinuous function on (T,∞). Since λ < 0, we have

t ↦→ ν(vt ) is a strictly decreasing (0,∞)-valued continuous function on (T,∞). (3.38)

By Proposition 2.1, we have

lim
t→∞

ν(vt ) = 0. (3.39)

Using (3.37), (3.38) and (3.39) we can see that there exist n0 > 0 and a sequence {tn : n > n0}

f positive numbers such that

lim
n→∞

tn = ∞ (3.40)

nd that, for any n > n0,

2C20ν(gn) ≤ ν(vtn ). (3.41)

t follows from Proposition 2.2 that there exists n1 > n0 such that for all n > n1 and x ∈ E ,

ν(vtn ) ≤ 2φ(x)−1vtn (x). (3.42)

ow, for any n > n1 and x ∈ E , we have

V1gn(x)
(3.36)
≤ C20φ(x)ν(gn)

(3.41)
≤

1
2
φ(x)ν(vtn )

(3.42)
≤ vtn (x). (3.43)

herefore, for any n > n1,

1 − e−Ggn (2.6)
= e−λ(1 − e−GV1gn ) ≤ e−λ(1 − e−Gvtn ) = e−λeλtn ,

here in the inequality above we used (3.43) and the monotonicity of G (Proposition 2.3), and
n the last equality, we used Proposition 2.3 with f = ∞1E . Letting n → ∞ in the display
bove, noticing (3.40) and the fact that λ < 0, we get the desired result in this case.

We now consider the case that gn ↓ g pointwisely where ν(g) > 0. The monotonicity of G
Proposition 2.3) implies that limn→∞ Ggn exists and is greater than Gg. So we only need to
how that limn→∞ Ggn ≤ Gg. From Proposition 2.2, for any ϵ > 0 there exists T 2

ϵ > 0 such
hat for any t ≥ T 2

ϵ , x ∈ E and f ∈ B(E, [0,∞]),

(1 − ϵ)φ(x)ν(Vt f ) ≤ Vt f (x) ≤ (1 + ϵ)φ(x)ν(Vt f ). (3.44)

herefore, we have for any ϵ > 0, t ≥ T 2
ϵ , x ∈ E and f, h ∈ B(E, [0,∞]) with ν(h) > 0 that

Vt f (x)
(3.44)
≥ (1 − ϵ)φ(x)ν(Vt f )

(3.4)
= (1 − ϵ)φ(x)

ν(Vt f )
ν(Vt h)

ν(Vt h)
(3.44)
≥

1 − ϵ

1 + ϵ

ν(Vt f )
ν(Vt h)

Vt h(x)

≥

(
1 − ϵ

1 + ϵ

ν(Vt f )
ν(Vt h)

∧ 1
)

Vt h(x). (3.45)

ince G is a monotone concave functional (Proposition 2.3), we know that for any f ∈

(E, [0,∞]), u ↦→ 1 − e−G(u f ) is a concave function on [0, 1] (Lemma A.3); and therefore,

1 − e−G(u f )
≥ u(1 − e−G f ) + (1 − u)(1 − e−G(01E )) = u(1 − e−G f ), u ∈ [0, 1]. (3.46)
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Now we have for any ϵ > 0, t ≥ T 2
ϵ , x ∈ E and f, h ∈ B(E, [0,∞]) with ν(h) > 0 that

1 − e−G f Proposition 2.3
= e−λt (1 − e−GVt f )

(3.45)
≥ e−λt

(
1 − e−G

((
1−ϵ
1+ϵ

ν(Vt f )
ν(Vt h) ∧1

)
Vt h

))
(3.46)
≥ e−λt

(
1 − ϵ

1 + ϵ

ν(Vt f )
ν(Vt h)

∧ 1
) (

1 − e−GVt h)
Proposition 2.3

=

(
1 − ϵ

1 + ϵ

ν(Vt f )
ν(Vt h)

∧ 1
)

(1 − e−Gh).

eplacing f by g, h by gn , and then taking n → ∞, noticing that by monotone convergence
heorem ν(Vt gn) −−−→

n→∞
ν(Vt g), we get

1 − e−Gg
≥

1 − ϵ

1 + ϵ
lim

n→∞
(1 − e−Ggn ),

as desired (noticing ϵ > 0 is arbitrary). □

4. Proofs of Propositions 2.5–2.7

4.1. Proof of Proposition 2.5

Proof of Proposition 2.5(1). Denote by G the functional given by Proposition 2.3; and by Qλ

the Yaglom limit given by Theorem 1.1. By (2.9), we know that G is the log-Laplace functional
of Qλ. Now note that for t ≥ 0,

(QλP)(∥X t∥ > 0)
(2.4)
=

∫
M f (E)

(1 − e−µ(vt ))Qλ(dµ)
(2.9)
= 1 − e−Gvt

Proposition 2.3
= eλt . (4.1)

herefore, we have that for all f ∈ B(E, [0,∞]) and t ≥ 0,

(QλP)[1 − e−X t ( f )
|∥X t∥ > 0]

(4.1)
= e−λt (QλP)[1 − e−X t ( f )]

(2.3)
= e−λt

∫
M f (E)

(1 − e−µ(Vt f ))Qλ(dµ)
(2.9)
= e−λt (1 − e−GVt f )

Proposition 2.3
= 1 − e−G f (2.9)

=

∫
M f (E)

(1 − e−µ( f ))Qλ(dµ).

ccording to [21, Theorem 1.17], this says that

(QλP)(·|∥X t∥ > 0) = Qλ(·), t ≥ 0.

herefore Qλ is a QSD of X . From (4.1) and (1.4), its mass decay rate is λ. □

roof of Proposition 2.5(2). Denote γ = r/λ ∈ (0, 1). We first claim that there exists a
+-valued random variable {Z; P} with probability generating function P[s Z ] = 1 − (1 −

)γ , s ∈ [0, 1]. To see this, we set

P(Z = n) =
γ (1 − γ ) · · · (n − 1 − γ )

, n ∈ Z+.
n!
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Using Newton’s binomial theorem (see [30, Exercise 8.22]), we get

1 − (1 − s)γ =

∞∑
n=1

γ (1 − γ ) · · · (n − 1 − γ )
n!

sn, s ∈ [0, 1],

hus, such a random variable exists.
Now let {(Yn)n∈N; P} be an Mo

f (E)-valued i.i.d. sequence with law of the Yaglom limit Qλ.
Let Z and (Yn)n∈N be independent of each other. Define the probability Qr on Mo

f (E) as the
law of the finite random measure

∑Z
n=1 Yn .

In the rest of this proof, we will argue that Qr is a QSD of X with mass decay rate r . To
do this, we calculate that

e−LQr f
= P[e−

∑Z
n=1 Yn ( f )] = P

[
P

[
Z∏

n=1

e−Yn ( f )
⏐⏐σ (Z )

]]
= P

[
e−Z ·LQλ f

]
= 1 − (1 − e−LQλ f )γ , f ∈ B(E, [0,∞]). (4.2)

Therefore, for each t > 0 and f ∈ B(E, [0,∞]), we have

(QrP)
[
1 − e−X t ( f )

⏐⏐∥X t∥ > 0
]

= (QrP)(∥X t∥ > 0)−1
· (QrP)[1 − e−X t ( f )]

(2.3), (2.4)
= (1 − e−LQr vt )−1(1 − e−LQr Vt f )

(4.2)
= (1 − e−LQλvt )−γ (1 − e−LQλVt f )γ

(2.3), (2.4)
= (QλP)

[
1 − e−X t ( f )

⏐⏐∥X t∥ > 0
]γ Proposition 2.5 (1)

= (1 − e−LQλ f )γ
(4.2)
= 1 − e−LQr f .

his proves that Qr is a QSD. To see its mass decay rate is r , we calculate that for each t ≥ 0,

(QrP)(∥X t∥ > 0)
(2.4)
= 1 − e−LQr vt

(4.2)
= (1 − e−LQλvt )γ

(2.4)
= (QλP)(∥X t > 0∥)γ

Proposition 2.5 (1)
= er t . □

.2. Proof of Proposition 2.6

roof of Proposition 2.6(1). First observe that for any t ≥ 0,

er t
= (Q∗

rP)(∥X t∥ > 0)
(2.4)
= 1 − e−LQ∗

r
(vt )
. (4.3)

ccording to Lemma A.2, for any t > 0, we know that u ↦→ LQ∗
r (uvt ) is a [0,∞]-

alued concave function on [0,∞). According to Lemma A.3, for any t > 0, we know that
↦→ 1 − e−LQ∗

r
(uvt ) is a [0, 1]-valued concave function on [0,∞). In particular, we have for

ny t > 0 and u ∈ [0, 1] that

1 − e−LQ∗
r

(uvt )
≥ u(1 − e−LQ∗

r
(1·vt )) + (1 − u)(1 − e−LQ∗

r
(0·vt )) = u(1 − e−LQ∗

r
(vt )). (4.4)

ecall that T 1
s,ϵ is the constant given in (3.30). Now for any s > 0, ϵ > 0 and t > T 1

s,ϵ we have

ers (4.3)
=

1 − e−LQ∗
r
vt+s

1 − e−LQ∗
r
vt

(3.30)
≥

1 − e−LQ∗
r

( eλs
1+ϵ

vt )

1 − e−LQ∗
r

(vt )

(4.4)
≥

eλs

1 + ϵ
.

Letting ϵ → 0, we get the desired result. □

Proof of Proposition 2.6(2). From the definition of QSD, we know that Q∗
r has no

oncentration on {0}. Therefore L ∗ (∞1 ) = ∞. According to Lemma A.2, we know that
Qr E
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LQ∗
r is a monotone concave functional. Knowing that Q∗

r is a QSD for X with mass decay rate
, it can be verified that for each f ∈ B(E, [0,∞]) and t ≥ 0,

1 − e−LQ∗
r

f
= (Q∗

rP)
[
1 − e−X t ( f )

⏐⏐∥X t∥ > 0
]

= e−r t (Q∗

rP)[1 − e−X t ( f )]
(2.3)
= e−r t

∫
M f (E)

(1 − e−µ(Vt f ))Q∗

r (dµ)

= e−r t (1 − e−LQ∗
r

Vt f ). □

.3. Proof of Proposition 2.7

roof of Proposition 2.7. This is now obvious from Lemma 3.5 and the fact that G f =

imt→∞ Γt f for f ∈ B(E, [0,∞]) (Proposition 2.3). □

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper.

cknowledgments

We thank Zenghu Li and Leonid Mytnik for helpful conversations. We also thank the two
eferees for helpful comments on the first version of this paper.

ppendix

.1. Extended values

In this paper, we often work with the extended non-negative real number system [0,∞]
hich consists of the non-negative real line [0,∞) and an extra point ∞. We consider [0,∞]

s the one point compactification of [0,∞); and therefore, it is a compact Hausdorff space.
We also make the following conventions that

• x + ∞ = ∞ for each x ∈ [0,∞];
• x · ∞ = ∞ for each x ∈ (0,∞];
•

1
∞

= 0; 1
0 = ∞; e−∞

= 0; − log 0 = ∞.

Note that ∞·0 has no meaning, but we use the convention that ∞·0 = 0 when we are dealing
ith indicator functions. For example, we may write expression like

h(x) = g(x) · 1A(x) + ∞ · 1E\A(x), x ∈ E,

s a shorthand of

x =

{
g(x) if x ∈ A,
∞ if x ∈ E \ A.
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A.2. Concave functionals

We say an R-valued (or [0,∞]-valued) function f on a convex subset D of R is concave
iff

f (r x + (1 − r )y) ≥ r f (x) + (1 − r ) f (y), x, y ∈ D, r ∈ [0, 1].

The following lemmas about concave functions are elementary, we refer our readers to
[5, Chapter 6] for more details.

Lemma A.1. If f is a non-decreasing R-valued concave function on (a, b] where a < b in
R, then f is continuous on (a, b].

Lemma A.2. Suppose that {Z; P} is a [0,∞]-valued random variable. Define L(u) :=

− log P[e−u Z ] with u ∈ [0,∞), then L is a [0,∞]-valued concave function on [0,∞).

emma A.3. Suppose that g is a concave function on some convex subset D of R, then so
s q := 1 − e−g .

A.3. Continuity theorem for the Laplace functional of random measures

In this subsection, we discuss the continuity theorem for finite random measures on Polish
pace. The following result is not new. We included it here for the sake of completeness. Let

E be a Polish space. Denote by M f (E) the collection of all the finite Borel measures on E
quipped with the topology of weak convergence. According to [16, Lemma 4.5], M f (E) is

a Polish space.

Lemma A.4. Let (Pn)n∈N be a sequence of probabilities on M f (E). Suppose that (1) for each
f ∈ Bb(E, [0,∞)), the limit L f := limn→∞ LPn f exists; and (2) for each fn ↓ f pointwisely
in Bb(E, [0,∞)), L fn ↓ L f . Then there exists a unique probability Q on M f (E) such that
(Pn)n∈N converges weakly to Q and LQ = L on Bb(E, [0,∞)).

Proof. We say a [0,∞)-valued functional Γ on Bb(E, [0,∞)) is positive definite if
n∑

i, j=1

ai a jΓ ( fi + f j ) ≥ 0

for any R-valued list (ak)n
k=1 and Bb(E, [0,∞))-valued list ( fk)n

k=1. It is proved in [4, Theorem
3.3.3] that for any n ∈ N, f ↦→ e−LPn f is positive definite on Bb(E, [0,∞)). Therefore,
f ↦→ e−L f is positive definite. Now from [9, Corollary (A.6)] and the condition (2), we know
that there exists a sub-probability Q on M f (E) such that∫

M f (E)
e−µ( f )Q(dµ) = e−L f , f ∈ Bb(E, [0,∞)). (A.1)

Taking f = 0·1E in condition (1) we get that L(0·1E ) = 0. This says that Q is a probability on
M f (E). Now condition (1) and [21, Theorem 1.8] imply that (Pn)n∈N converges to Q weakly.
Finally, (A.1) implies that LQ = L on Bb(E, [0,∞)). □
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