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This talk is based on the following two papers:

[1] Y.-X. Ren, R. Song Z. Sun and J. Zhao: Stable central limit
theorems for super Ornstein-Uhlenbeck processes. Elect. J. Probab., 24
(2019), No. 141, 1–42

[2] Y.-X. Ren, R. Song Z. Sun and J. Zhao: Y.-X. Ren, R. Song, Z, Sun
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Background/CLT with finite second moment

There have been many central limit theorem type results for branching
processes, branching Markov processes and superprocesses, under the
second moment condition.

Some spatial central limit theorems for supercritical branching OU
processes with binary branching were proved in Adamczak-Milos (EJP,
2015), and some spatial central limit theorems for supercritical
super-processes were proved in Milos (JTP, 2018). These two papers
made connections between spatial central limit theorems and branching
rate regimes. The results of these two papers have been refined and
generalized in a series of papers by Ren-Song-Zhang.
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Background/CLT with infinite second moment

There are also central limit theorem type results for supercritical
branching processes and branching Markov processes with branching
mechanisms of infinite second moment. For earlier papers, see
Asmussen, (AOP, 1976) and Heyde (JAP, 1971).

In a recent paper (arXiv:1803.05491) Marks and Milos established
some spatial central limit theorems in the small and critical branching
rate regimes, for some supercritical branching OU processes with a
special stable offspring distribution.

Our goal is to establish stable central limit theorems for super-OU
processes with general stable branching mechanisms.
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Model/Parameters

Suppose spatial motion ξ = {(ξt)t≥0, (Πx)x∈Rd} is an OU process on Rd

with generator
Lf(x) = 1

2σ
2∆f(x) − bx · ∇f(x)

with b, σ being positive constants.

Suppose that ψ is a branching mechanism of the form

ψ(z) = −αz + ρz2 +
∫

(0,∞)
(e−zy − 1 + zy)π(dy)

where α > 0 and ρ ≥ 0 and π is a measure on (0,∞) with∫
(0,∞)(y ∧ y2)π(dy) < ∞. We call α the branching rate.
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Model/Assumptions

Assumption 1
The branching mechanism satisfies Grey’s condition, i.e. there is some
constant z′ > 0 such that ψ(z) > 0 for all z > z′ and that∫∞

z′ ψ(z)−1dz < ∞.

Assumption 2
There exist constants η > 0 and β ∈ (0, 1) such that∫

(1,∞)
y1+β+δ

∣∣∣π(dy) − η dy

Γ(−1 − β)y2+β

∣∣∣ < ∞,

for some δ ∈ (0, 1 − β).

Roughly speaking, Assumption 2 says that ψ is “not too far away”
from ψ̃(z) = −αz + ηz1+β near 0.
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Model/Superprocess

Denote by M(Rd) (Mc(Rd), resp.) the space of all finite Borel
measures (of compact support, resp.) on Rd. We suppose that
X = {(Xt)t≥0, (Pµ)µ∈M(Rd)} is a superprocess with spatial motion ξ
and branching mechanism ψ, i.e., a super-OU process.

For each non-negative bounded Borel function f on Rd, we have

Pµ[e−Xt(f)] = e−µ(Vtf), t ≥ 0, µ ∈ M(Rd),

where (t, x) 7→ Vtf(x) is the unique locally bounded non-negative
solution to the equation

Vtf(x) + Πx

[ ∫ t

0
ψ(Vt−sf(ξs))ds

]
= Πx[f(ξt)], x ∈ Rd, t ≥ 0.
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Main Result/Preliminary

The OU process ξ has an invariant distribution

φ(x)dx :=
( b

πσ2

)d/2
exp

(
− b

σ2 |x|2
)
dx, x ∈ Rd.

Let L2(φ) :=
{
h ∈ B(Rd,R) :

∫
Rd |h(x)|2φ(x)dx < ∞

}
. Then, L2(φ) is

a Hilbert space with inner product ⟨·, ·⟩φ.

The OU operator L has discrete spectrum σ(L) = {−bk : k ∈ Z+}. The
eigenfunctions of L consists a family of polynomials {ϕp : p ∈ Zd

+}
which forms a complete orthonormal basis of L2(φ). For each p ∈ Zd

+,
ϕp is an eigenfunction of L corresponding to the eigenvalue b|p|, where
|p| :=

∑d
k=1 pk.
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Main Result/Preliminary

For p ∈ Zd
+, define a martingale Hp

t := e−(α−|p|b)tXt(ϕp), t ≥ 0.

For any u ̸= −1, we write ũ = u/(1 + u).

Lemma 1
For any µ ∈ Mc(Rd), (Hp

t )t≥0 is a Pµ-martingale. Furthermore, if
αβ̃ > |p|b, then for any γ ∈ (0, β) and µ ∈ Mc(Rd), (Hp

t )t≥0 is a
Pµ-martingale bounded in L1+γ(Pµ); thus Hp

∞ := limt→∞Hp
t exists

Pµ-almost surely and in L1+γ(Pµ).

Fixing β ∈ (0, 1), p ∈ Zd
+ and b > 0, if the branching rate α is large

enough so that αβ̃ > |p|b then we say we are in the large branching
rate regime; if αβ̃ = |p|b then we are in the critical branching rate
regime; if αβ̃ < |p|b then we are in the small branching rate regime.
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Main Result/Preliminary

Denote by P ⊂ L2(φ) the class of functions of polynomial growth on
Rd:{
f ∈ B(Rd,R) : ∃ C > 0, n ∈ Z+ s.t. ∀x ∈ Rd, |f(x)| ≤ C(1 + |x|)n

}
.

Then we have the decomposition P = Cs ⊗ Cc ⊗ Cl where

Cs := P ∩ Span{ϕp : αβ̃ < |p|b}
Cc := P ∩ Span{ϕp : αβ̃ = |p|b}
Cl := P ∩ Span{ϕp : αβ̃ > |p|b}.

Note that Cs is an infinite dimensional space, Cl and Cc are finite
dimensional spaces, and Cc might be empty.
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Main Result/Preliminary

Define a semigroup

Ttf :=
∑

p∈Zd
+

e−
∣∣|p|b−αβ̃

∣∣t⟨f, ϕp⟩φϕp, t ≥ 0, f ∈ P,

and a family of functionals

mt[f ] := η

∫ t

0
du
∫
Rd

(
− iTuf(x)

)1+β
φ(x)dx, 0 ≤ t < ∞, f ∈ P.

Proposition 2
For each f ∈ P, there exists a (1 + β)-stable random variable ζf with
characteristic function θ 7→ em[θf ], θ ∈ R, where

m[f ] :=
{

limt→∞mt[f ], f ∈ Cs ⊕ Cl,

limt→∞
1
tmt[f ], f ∈ P \ (Cs ⊕ Cl).
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Main Result/Preliminary

For f ∈ P, note that

Xt(f) =
∑

p∈Zd
+

⟨f, ϕp⟩φe
(α−|p|b)tHp

t , t ≥ 0.

Define the centering

xt(f) :=
∑

p∈Zd
+:αβ̃>|p|b

⟨f, ϕp⟩φe
(α−|p|b)tHp

∞, t ≥ 0.

Let D := {∃t ≥ 0, such that ∥Xt∥ = 0} be the extinction event.
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Main Result

Theorem 3 (Ren, Song, S. and Zhao, arXiv:2005.11731)
If µ ∈ Mc(Rd) \ {0}, fs ∈ Cs, fc ∈ Cc and fl ∈ Cl, then under Pµ(·|Dc),

S(t) :=
(
e−αt∥Xt∥,

Xt(fs)
∥Xt∥1−β̃

,
Xt(fc)

∥tXt∥1−β̃
,
Xt(fl) − xt(fl)

∥Xt∥1−β̃

)
d−−−→

t→∞
(H̃∞, ζ

fs , ζfc , ζ−fl),

where H̃∞ has the distribution of {H0
∞; P̃µ}; ζfs , ζfc and ζ−fl are the

(1 + β)-stable random variables described in Proposition 2; H̃∞, ζfs ,
ζfc and ζ−fl are independent.
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Main Result

Corollary 4
Let µ ∈ Mc(Rd) \ {0} and f ∈ P with f = fs + fc + fl where fs ∈ Cs,
fc ∈ Cc and fl ∈ Cl. Then under Pµ(·|Dc), it holds that

1 if fc ≡ 0, then

Xt(f) − xt(f)
∥Xt∥1−β̃

d−−−→
t→∞

ζfs + ζ−fl ,

where ζfs and ζ−fl are the (1 + β)-stable random variables
described in Proposition 2, ζfs and ζ−fl are independent;

2 if fc ̸≡ 0, then
Xt(f) − xt(f)

∥tXt∥1−β̃

d−−−→
t→∞

ζfc .

where ζfc is the (1 + β)-stable random variable described in
Proposition 2.
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Intuition

The central limit theorem for Xt(ϕp) takes different forms depending
on whether it’s in the large branching regime (αβ̃ > |p|b), or in the
critical branching regime (αβ̃ = |p|b), or in the small branching regime
(αβ̃ < |p|b). We now give some intuitive explanation of this phase
transition.

A superprocess can be thought of as a cloud of infinitesimal branching
“particles” moving in space.

The phase transition is due to an interplay of two competing effects in
the system: coarsening and smoothing. The coarsening effect
corresponds to the increase of the spatial inequality and is a
consequence of the branching. The smoothing effect corresponds to the
decrease of the spatial inequality and is a consequence of the mixing
property of the OU processes.
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Intuition

Let us discuss how the parameters α, β, b and |p| influence those two
effects for Xt(ϕp):

The branching rate α captures the mean intensity of the branching in
the system. Therefore, the lager the branching rate α, the stronger the
coarsening effect.

The tail index β describes the heaviness of the tail of the offspring
distribution. When β is smaller i.e. the tail is heavier, then it is more
likely that one particle can suddenly have a large amount of offspring.
In other words, the larger the tail index β, the smaller the fluctuation
of offspring number, and then the stronger the coarsening effect.
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Intuition

The drift parameter b is related to the level of the mixing property of
the OU particles. The larger the drift parameter b, the faster the
OU-particles forgetting their initial position, and therefore the stronger
the smoothing effect.

The order |p| is related to the capability of ϕp capturing the mixing
property of the OU particles. In particular, in the case that |p| = 0, no
mixing property can be captured. (Since ϕ0 ≡ 1, we are only
considering the total mass Xt(ϕ0) = ∥Xt∥). In general, the higher the
order |p|, the more mixing property can be captured by ϕp, and
therefore the stronger the smoothing effect.
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Intuition

The drift parameter b is related to the level of the mixing property of
the OU particles. The larger the drift parameter b, the faster the
OU-particles forgetting their initial position, and therefore the stronger
the smoothing effect.

The order |p| is related to the capability of ϕp capturing the mixing
property of the OU particles. In particular, in the case that |p| = 0, no
mixing property can be captured. (Since ϕ0 ≡ 1, we are only
considering the total mass Xt(ϕ0) = ∥Xt∥). In general, the higher the
order |p|, the more mixing property can be captured by ϕp, and
therefore the stronger the smoothing effect.
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Thank you!
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