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ABSTRACT

Spine decompositions and limit theorems for critical

branching processes and critical superprocesses

Zhenyao Sun (Probability Theory and Statistics)
Directed by Prof. Yan-Xia Ren and Prof. Renming Song

ABSTRACT

This thesis focuses on the limiting theory of critical Galton-Watson branching processes
and a class of critical superprocesses. Properties and relationships between their asymptotic
behaviors and the multi-spine theory are considered. In particular, we systematically study the
spine decompositions and the two-spine decompositions of critical Galton-Watson trees and a
class of critical superprocesses, and their Kolmogorov type, Yaglom type and Slack type limit
results.

We begin by proposing a two-spine decomposition of the critical Galton-Watson tree and
using that decomposition to give a new probabilistic proof of Yaglom exponential limit law.

Next, we establish a spine decomposition theorem and a 2-spine decomposition theorem
for some critical superprocesses. These two kinds of decompositions are unified as a decom-
position theorem for size-biased Poisson random measures. We use these decompositions to
give probabilistic proofs of the asymptotic behavior of the survival probability and Yaglom
exponential limit law for some critical superprocesses with second moments.

Then, using these spine decompositions, we prove that the characteristic functions of
superprocesses are mild solutions to a complex-valued integral equation. This equation will
help us to estimate the tail probability of a class of supercritical superprocesses with stable
branching.

Finally, we consider a critical superprocess {X;P,} with general spatial motion and
spatially dependent stable branching mechanism with lowest stability index vy, > 1. We
show that, under some conditions, P, (|| X;|| # 0) converges to 0 as + — oo and is regularly
varying with index (y, — 1)'. Then we prove the Slack type result that for a large class of
non-negative testing functions f, the distribution of {X,(f); P,(:|||X;|| # 0)}, after appropriate
rescaling, converges weakly to a positive random variable z7°~" with Laplace transform

E[e—uz(“ﬂ)’l)] -1- (1 + u—(yo—l))—l/(yo—l)_

I
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Chapter 1  Introduction

Chapter 1 Introduction

1.1 Backgrounds

Superprocess is a very important measure-valued Markov process. It was introduced
by Watanabe [8U], Ikeda, Nagasawa and Watanabe [40, 41, @7], and Dawson [17, 0R]. It
belongs to a large class of stochastic processes called Markovian branching processes. This
class includes other models such as Galton-Watson processes, multitype Galton-Watson pro-
cesses, continuous time Galton-Watson processes, multitype continuous time Galton-Watson
processes, branching random walks, branching Markov processes and continuous state branch-
ing processes. Nowadays the theory of Markovian branching processes is one of the most
important subjects in modern probability theory. On the applied side, they are inspired by and
used to model various genetic and biological systems. On the theoretical side, they are closely
related to nonlinear PDE’s, stochastic PDE’s, stochastic analysis and many other branches of
modern mathematics.

The asymptotic behavior of the extinction probability and the size of the population is a
fundamental problem in the theory of Markovian branching processes. Roughly, there are three
different cases to consider: in the supercritical case, the expectation of the population grows
exponentially; in the subcritical case, the expectation of the population decays exponentially; in
the critical case, the exponential grow rate (or decay rate) of the expectation of the population
is 0.

The limiting behavior of Galton-Watson processes is well known, see [5] for example. In
the critical case, Slack [75] considered Galton-Watson processes with offspring distribution
belonging to the domain of attraction of an a-stable law with @ € (1,2]. He showed that
the total population, after an appropriate rescaling and conditioning, converges weakly to a
random variable z@ with Laplace transform E [e‘“z(")] =1-(1+u®) Y2 Inthe case a = 2,
this result is first obtained by Yaglom [RT], and therefore, is known as Yaglom’s theorem.

It turns out that the Slack type result is universal, in the sense that, for almost all the
Markovian branching processes mentioned above, similar Slack type weak limit results are
true. For those results under various different names see table [T

Evans and Perkins [BT] established a Yaglom type result for a critical superprocess with
quadratic branching mechanism. Recently, Ren, Song and Zhang [b&] generalized this to a

class of critical superprocesses with more general branching mechanisms and more general
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Table 1.1

Kolmogorov, Yaglom and Slack type results

a = 2: Analytical method

a = 2: Probabilistic method

a € (1,2)

Galton-Watson processes

[2R] A. Kolmogorov (1938)
[8T] A. Yaglom (1947)

[46] H. Kesten, P. Ney

and F. Spitzer (1966)

[B8] R. Lyons, R. Pemantle
and Y. Peres (1995)

[B3] J. Geiger (1999)

[B2] J. Geiger (2000)

[63] Y.-X. Ren, R. Song
and Z. Sun (2018a)

[I75] R. Slack (1968)

Multitype
Galton-Watson processes

[24] A. Joffe and F. Spitzer
(1967)

[IZ9] V. Vatutin and E. Dyakonova
(2001)

[B5] M. Goldstein and F. Hoppe
(1978)

Continuous time
Galton-Watson processes

[8] K. Athreya and P. Ney
1972)

[IZR] V. Vatutin (1977)

Continuous time multitype
Galton-Watson processes

[A] K. Athreya and P. Ney
(1974)

[IZ8] V. Vatutin (1977)

Branching Markov
processes

[A] S. Asmussen and H. Hering

(1983)

[62] E. Powell (2015)

[4] S. Asmussen and H. Hering
(1983)

Continuous-state
branching processes

[55] Z. Li (2000)
[54] A. Lambert (2007)

[65] Y.-X. Ren, R. Song
and Z. Sun (2019)

[50] A. Kyprianou and J. Pardo
(2008)
[0] Y.-X. Ren, T. Yang

and G.-H. Zhao (2014)

[64] Y.-X. Ren, R. Song
and Z. Sun (2018b+)

[E1] Evans and Perkins (1990)
[BR] Y.-X. Ren, R. Song
and R. Zhang (2015)

[B5] Y.-X. Ren, R. Song

Superprocesses and Z. Sun (2019)

spatial motions. For critical superprocesses without second-moment conditions, it is natural to
ask whether Slack type result is valid. Also, for critical superprocesses with second-moment
condition, since the methods used in [B1] and [6R] are all analytic, it is natural to ask whether

an intuitive probabilistic proof exists.

The main topic of this thesis is to give positive answers to both of these questions. We
consider the asymptotic behaviors of branching processes and superprocesses in the critical
case using a method called multi-spine decomposition. The idea of using the spine method
to study the limiting behavior of branching processes is due to Lyons, Pemantle and Peres
[58]. For spine method in general branching processes and its applications under a variety of
names, see [2, B, 9, 072, D6, D77, D8, B34, 39, 54, 57, 69] for example. The multi-spine is first
investigated by Harris and Roberts [37] in the context of branching Markov processes. Our
main contribution is that we find a generic relationship between the multi-spine theory and the

limiting behaviors for both branching processes and superprocesses, in the critical case.

Roughly speaking, the spine is the trajectory of an immortal particle, and the k-spine-
skeleton is the combination of k spines. The multi-spine decomposition says that the size-
biased measure transformations of a Markovian branching process can be decomposed as
branching immigrations along with some multi-spine-skeleton. These decomposition theorems
are important at least for two reasons. The first is that they capture the interplays between the
original branching processes and their measure-transformed counterparts. This provides new

probabilistic points of view for characterizing properties of the original processes. The second



Chapter 1  Introduction

is that they are flexible and generic, in the sense that almost all the models mentioned earlier

can be decomposed under different measure transformations.

Now, in order to be more precise about all these results and methods, we first introduce

the models considered in this thesis.

1.2 Models

This thesis focuses on two models: Galton-Watson branching processes and superpro-

CESSES.

1.2.1 Galton-Watson branching processes

Let (£]');,n>1 be i.i.d. Z,-valued random variables. Define a sequence (Z,),>o by Zp = 1

and

Zn
Znit =1z,50 ) &1 (1.2.1)
k=1

(Z,)n>1 is called a Galton-Watson process. The idea behind the definition is that Z, is the
number of individuals in the n-th generation, and each member of the n-th generation gives
birth independently to an identically distributed number of children. u(k) = P(£!' = k) is
called the offspring distribution. Let m = E[£"] € (0,00). It can be verified easily that
M, = (Z,/m"),so is a non-negative martingale with respect to the natural filtration of (Z,).

So, this martingale has an a.s. limit which is denoted as M.

If m < 1, then it is easy to see that
P(Z,>0)<EZ,Z,>0)=E(Z,) =u"—>0.

Therefore, in this case we have almost surely that Z,, = 0 for n large enough. This also says
that M, = 0. If m = 1, then (Z,) itself is a non-negative martingale. Since (Z,),>( are integer
valued, so we have Z, = M, for large n. If our process (Z,) is non-trivial, or equivalently

speaking, if P(¢"" = 1) < 1, then from (") we have
P(Z,=k, Vn>=N)=0

forall N > 0 and k > 1. So, in this case we also have Z, = 0 for all n sufficiently large and

that M, = 0.
Denote by 6,, = P(Z,, = 0). Then it can be verified directly from (I2T) that (6,,) satisfies

3
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the following regression equation

Hn = Qa(en— 1 )7

where ¢(s) := Y50 u(k)s*. If m > 1, then from the above equation, it can be verified that
p:=P(Z,=0,3n > 0) = lim,,_, 6, is the unique fixed point of ¢ in [0, 1).

We will call (Z,),»0 a u-Galton-Watson processes, and say it is subcritical, critical and
supercritical according tom < 1, m = 1 and m > 1. In this thesis, we mainly focus on the
asymptotic behavior of critical branching processes. For the limiting behavior of the subcritical
and supercritical cases, we refer our reader to [5].

For critical branching processes, the following result is well known:

Theorem 1.2.1 ([26]). Let (Z,) be a critical Galton-Watson branching process with Var(Z,) =
0?2 € (0,00). Then
1. nP(Z, > 0) — 2/c?;

2. {n"'Z,; P(1Z, > 0)} —25 v,

where Y is an exponential random variable with mean o /2.

Under a third moment assumption, assertions (0) and () of Theorem T2 are due
to Kolmogorov [A8] and Yaglom [&1] respectively. Therefore, Theorem I27TI(1) is usually
called Kolmogorov’s theorem, and Theorem [2TI(2) is usually called Yaglom’s theorem. For
probabilistic proofs of the above results, we refer our readers to [33], [32], [58] and [63].

Slack [[75] considered critical Galton-Watson branching processes without the finite vari-

ance condition, and he obtain the following:

Theorem 1.2.2. Suppose that {(Z,),0; P} is a critical Galton-Watson process. Assume that

the generating function f(s) of its offspring distribution is of the form
f(&)=s+1 =51 -s5), s>0,
where a € (0,1] and [ is a function slowly varying at 0. Then
P(Z, > 0) =n""L(n),
where L is a function slowly varying at oo, and
P(P(Z, > 0)Z, < y|Z, > 0) — H,(y),

where H, is a probability distribution function on R, with Laplace transform given by

/ e dH,(y) =1-(1+679)7Ye, geR,.
[0,00]

4
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We will call the above Slack’s theorem. Note that, while @ = 2, Slack’s theorem
actually reduces to Kolmogorov’s and Yaglom’s theorem. As have been mentioned in the
first subsection, ever since these pioneering papers of Kolmogorov, Yaglom and Slack, lots
of analogous results have been obtained for more general critical branching processes. This
includes continuous time branching processes, discrete time multitype branching processes,
continuous time multitype branching processes, branching Markov processes, continuous-state
branching processes and superprocess. See table [Tl for the literature in this direction.

A large part of this thesis is devoted to give a new probabilistic proof of Kolmogorov
type and Yaglom type results for a class of critical superprocesses with finite second moment
condition, and to give a proof of Slack type result for a class of critical superprocesses without

the finite second moment condition. We now introduce the superprocesses.

1.2.2 Superprocesses

We first give the definition of superprocesses, and then give some explanation. Let E be
a locally compact separable metric space. Denote by M(E) the space of all finite measures on
E. For any measurable function f and a measure u on some measurable space, we write u( f)
for the integration / Jfdu whenever it exists.
A process X = {(X;)r>0; (Pu)ueme)} is said to be a (£, y)-superprocess if
* the spatial motion & = {(&;),>0; (ILy)xecg } is an E-valued Hunt process with its lifetime
denoted by ¢;
* the branching mechanism ¢ : E X [0,00) — R is given by
§2) = Az + @+ [ (@1 zyntdy)
where 8 € B,(E), a € B,(E,R,) and n(x,dy) is a kernel from E to (0, o) such that
SUP,c g o) A YP)T(x,dy) < 0.
* X = {(X)i>0; Pu)uemr)} is an M(E)-valued Hunt process with transition probability
determined by

Pﬂ[e_Xt(f)] — e—ll(vtf)’ t > O”u € M(E)9f € B;(E)’

where for each f € B,(E), the function (t,x) — V; f(x) on [0,00) X E is the unique

locally bounded positive solution to the equation

N
V) + L] [ UV ] = L@l 12 0B (122)

We refer our readers to [56] for the existence of such processes. To avoid triviality, we always
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assume that ¥ (x, z) is not identically equal to —3(x)z. This definition is quite technical, so we

give some examples below.
Example 1.2.3. Suppose that £ = {x(} is a space which has only one point. Let & = x; be
the trivial process. Let the branching mechanism be

W(x0,2) := ¥(z) := —bz + az® + / (e — 1+ zy)u(dy), z =0, (1.2.3)
(0,00)

0
(&,¢) superprocess is an M(E)-valued process. Therefore, there is a non-negative process

(Y;); >0 such that

where b € R,a > 0 and yu is a measure on (0, o) with /( o YA y’n(dy) < oo. Note that the

X, =Y,6,, 120

This process (Y;) is called a continuous-state branching process with branching mechanism .
It is easy to verify that (Y;) is also a Markov process, and its transition probability (P,),o

satisfies the following branching property:
Ple™] =P, [e™]P,le™], t>0,12>0,
where y = y; + y, and yy, y, > 0. If the branching mechanism takes the form of
U(z)=2, z2=0, (1.2.4)
then (Y;);>0 is also known as Feller’s diffusion, and it is the solution to the SDE
dY, =Y, dB,, t>0,

where (B,) is a standard Brownian motion on R. See [56] for more details about this example.

Example 1.2.4. Suppose that E = R?. Let the spatial motion (&;) be a standard Brownian

motion in R?. Let the branching mechanism takes the form of
(x,2) > 7% xeR%Lz>0.

In this case, the (£, )-superprocess {(X;); (P,),cra} is called a super Brownian motion with
branching mechanism ¢(x) = z>. Let u € M(R?) and f be a continuous nonnegative bounded

Borel function on R?. Then we have
P#[e—xr(f)] - e—ll(vt)’ > 0’

where the function v : (¢, x) — v,(x) on R, x R is the unique solution to the PDE

ov 1
EZEAU—UZ, U():f.
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Note that the total mass of this measure-valued process Y; := X,(1) is actually the Feller’s

diffusion mentioned above.

Besides its connection with non-linear PDEs, superprocesses can also been obtained as the
scaling limits of several discrete stochastic particle systems. This includes branching particle
systems [80, 177, D7], long-range contact process [bl, 1], voter model and Lotka-Volterra
model [I3, T4] and long range percolation [53]. We will not give the full picture in this
direction here. Instead, we present the following example which says that the scaling limit of a
binary branching Brownian motion is the super Brownian motion with branching mechanism
¥(z) = z>. This result will not be directly used in this thesis. We present it here, because
it gives an interpretation of superprocesses, and shows how superprocesses and branching
processes are connected.

Here, by a binary branching Brownian motion (X;),>o, we mean the following model:

« at the beginning, there are several particles living in R¢;

 independent of other particles, each particle in the system performs standard Brownian

motion and is killed at a constant rate r > 0;

* independent of other particles, each particle in the system, at the end of its life, dies

with no offspring or splits into two new particles, with equal probability;

* each particle in the system has a same weight m > 0; for r > 0 and any measurable

subset A of R?, X,(A) is the total weight of all the particles positioned in A at time .

The follwoing result is due to [I'Z, R0].

Theorem 1.2.5. Fix a u € M(R9). For every n € N, consider a binary branching Brownian
motion (X!") in R, with branching rate 2n and particle weights n™', with its initial configu-
ration X! satisfying that nX[ is a Poisson random measure on RY with intensity ny. Then
(X):>0 % (X,)i>0 in the Skorokhod space D(R,, M(R?)), based on the topology of weak
convergeZce in M(R?), where (X,),>0 is a super Brownian motion with branching mechanism

W(z) = 72 and initial configuration u.

As mentioned earlier, analogues results of Theorem 21 and Theorem 27 were ob-
tained for a lots of Markovian branching processes. The main interests of this thesis is to prove
those results for a large class of general superprocesses. Our approach for Kolmogorov type
and Yaglom type results for the superprocesses are different from the aforementioned works
[37] and [68], and is more intuitive and probabilistic. The statements of those results for the
general superprocesses is quite technical. For the sake of simplicity, in this subsection, we

only present our results for the continuous-state branching processes. More precise statements
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of the theory will be presented in Chapter 3 and Chapter 5. We will also give some intuitions
of our methods in the next section.
Suppose that {(Y;); P, } is a continuous-state branching process with branching mechanism

Y given by (IC”23). Then its Laplace transform satisfies that
Ple ] =W xeR"t>0,1€R,,
where for each 4 > 0, 7 — v,(A) is the unique positive solution to the equation

v(A) — /0’ U(vg(A)ds =1, t=>0.

Taking derivative with respect to A4 on the both side, and letting 1 = 0, we get

ov, ;I8
Z7L) — : -1
a1 (0) /0 b a1 (0)ds ,

which says that
P[Y;] = x—(0) = xe™, 12>0.

If b > 0, then the expectation of (¥;) will grows exponentially; if » = 0, then the expectation of
(Y;) will be a constant; if b < 0, then the expectation of (¥;) will be decrease exponentially. So
we say the CSBP (Y,) is subcritical, critical, supercritical accordingto b > 0,5 =0and b < 0.

The following Kolmogorov and Yaglom type results for the critical CSBP are due to [55].

Theorem 1.2.6. Let {(Y;);s0; (Px)xs0} be a continuous state branching process with branching

mechanism  given in (24). Suppose that = 0 and
o :=y¢"(0+) < oo.

Then we have

tP.(Y, > 0) — 2x/o, x>0,
t—o00

and
P.(Y,/t > ulY, >0) — /7 4 >0.
t—o00

The Slack type result for CSBP is due to [50] and [[Z0]:

Theorem 1.2.7. Let {(Y;);s0; (Px)xs0} be a continuous state branching process with branching
mechanism  given in (ILZ4). Suppose that y(1) = A**L(1/A) where a € (0,1] and L is
slowly varying at infinity. Then F(t) := P;(Y; > 0) converges to 0 as t — oo, and is regularly

varying with index —1/a. Furthermore, for each x > 0 and y > 0, it holds that
P.(F(Y, < ylY, > 0) — P2 < y)
t—o00

8
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where 2% is a random variable with Laplace transform given by

E[e®=1-(1+0) " ¢>0.

1.3 Method

1.3.1 Spine method for Galton-Watson processes

Let(Z,), >0 be a Galton-Watson branching process with offspring distribution u. The spine
methods for branching processes are initiated in Lyons, Pemantle and Peres [58], where they
gave a probabilistic proof of Theorem [T using the so-called size-biased u-Galton-Watson
tree. In this thesis, by size-biased transform we mean the following: Let X be a random
variable and g(X) be a Borel function of X with P(g(X) > 0) = 1 and E[g(X)] € (0,00). We
say a random variable W is a g(X)-size-biased transform (or simply g(X)-transform) of X if
E[g(X)f(X)]

E[g(X)]

for each positive Borel function f. An X-transform of X is sometimes called a size-biased

E[f(W)] =

transform of X.

We now recall the size-biased u-Galton-Watson tree introduced in [58]. Let L be arandom
variable with distribution . Denote by L an L-transform of L. The celebrated size-biased
u-Galton-Watson tree is then constructed as follows:

* there is an initial particle which is marked;

* any marked particle gives independent birth to a random number of children according
to L. Pick one of those children randomly as the new marked particle while leaving
the other children as unmarked particles;

* any unmarked particle gives birth independently to a random number of unmarked
children according to L;

* the evolution goes on.

Notice that the marked particles form a descending family line which will be referred as

the spine. Let Z, be the population of the nth generation in the size-biased tree. It is proved in
[58] that the process (Z)nso i8S @ martingale transform of the process (Z, ), »o via the martingale

(Z,)n>0- That is, for any generation number n and any bounded Borel function g on N7,

ElgZy.... 2] = & [anéz[} ; . Z,)]

. (1.3.1)
It is natural to consider probabilistic proofs of analogous results of Theorem 21 for more

9
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general critical branching processes. Vatutin and Dyakonova [[/Y9] gave a probabilistic proof
of Theorem [27TI(1) for multitype critical branching processes. As far as we know, there is no
probabilistic proof of Yaglom’s theorem for multitype critical branching processes. It seems
that it is difficult to adapt the probabilistic proofs in [32] and [58] for monotype branching
processes to more general models, such as multitype branching processes, branching Hunt
processes and superprocesses.

In my joint paper with Ren and Song [63], we propose a k(k — 1)-type size-biased u-
Galton-Watson tree equipped with a two-spine skeleton, which serves as a change-of-measure
of the original u-Galton-Watson tree; and with the help of this two-spine technique, in the next
chapter, we give a new probabilistic proof of Theorem [CXT(2), i.e. Yaglom’s theorem. The
main motivation for developing this new proof for the classical Yaglom’s theorem is that this
new method is generic, in the sense that it can be generalized to more complicated critical
branching systems. In fact, in Chapter 3, based on our follow-up paper [65], we show that, in
a similar spirit, a two-spine structure can be constructed for a class of critical superprocesses,
and a probabilistic proof of a Yaglom type theorem can be obtained for those processes.

Another aspect of our new proof is that we take advantage of a fact that the exponential
distribution can be characterized by a particular x2-type size-biased distributional equation.
An intuitive explanation of our method, and a comparison with the methods of [32] and [5%],
will be made shortly. We think this new point of view of convergence to the exponential law
provides an alternative insight on the classical Yaglom’s theorem.

We now give a formal construction of our k(k — 1)-type size-biased u-Galton-Watson

tree. Suppose that u has mean 1 and finite variance, i.e.,

Z ku(k) = 1 (1.3.2)
k=0
and . -
0<o?:= Z(k —12u(k) = Z k(k = Du(k) < o. (1.3.3)
k=0 k=0

Denote by L an L-transform of L, and by L an L(L — 1)-transform of L. Fix a generation
number n and pick a random generation number K,, uniformly among {0,...,n — 1}. The
k(k — 1)-type size-biased u-Galton-Watson tree with height n is then defined as a particle
system such that:

* there is an initial particle which is marked;

* before or after generation K,,, any marked particle gives birth independently to arandom

number of children according to L; pick one of those children randomly as the new

10
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marked particle while leaving the other children as unmarked particles;

* the marked particle at generation K,,, however, gives birth, independent of other par-
ticles, to a random number of children according to L; pick two different particles
randomly among those children as the new marked particles while leaving the other
children as unmarked particles;

* any unmarked particle gives birth independently to a random number of unmarked
children according to L;

* the system stops at generation n.

If we track all the marked particles, it is clear that they form a two-spine skeleton with K,,
being the last generation where those two spines are together. It would be helpful to consider
this skeleton as two disjoint spines, where the longer spine is a family line from generation 0

to n and the shorter spine is a family line from generation K, + 1 to n.

For any 0 < m < n, denote by 7 the population of the mth generation in the k(k — 1)-
type size-biased u-Galton-Watson tree with height n. The main reason for proposing such a
model is that the process (Z,(,f) )o<m<n can be viewed as a Z,(Z,, — 1)-transform of the process

(Zm)o<m<n- This is made precise in the result below which will be proved in Section ZT1.

Theorem 1.3.1. Let (Z,,) >0 be a u-Galton-Watson process and (Z,(ff ))OSmSn be the population
of a k(k — 1)-type size-biased u-Galton-Watson tree with height n. Suppose that u has mean
1 and finite variance. Then, for any bounded Borel function g on N,

E[Zn(Zn B 1)9(2], BRER) Zn)]

= (n) AON I
Elg(Z}",....Z)")] = E[Z.(Z, - 1)]

The idea of considering a branching particle system with more than one spine is not new.
A particle system with k spines was constructed in [37] and used in the many-to-few formula
for branching Markov processes and branching random walks. Inspired by [37], we use a

two-spine model to characterize the k(k — 1)-type size-biased branching process.

Suppose that X is a non-negative random variable with E[X] € (0, c0). Then its distribu-
tion conditioned on {X > 0} can be characterized by its conditional expectation E[X|X > 0]
and its size-biased transform X. In fact, for each 1 > 0,
E[1 - e ]
P(X > 0)

1 1 X1 A
:m/() E[Xe X]ds—E[X|X>O]/O Ele™X]ds.

E[l1-e™|X>0]= (1.3.4)

11
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As a consequence, Theorem [L21l is equivalent to

Z, 2
E[24Z,> 0] — &= (13.5)
n n—oo 2
and
E[e™ "] — E[e™*]. (1.3.6)

where Y is a Y-transform of the exponential random variable Y. Indeed, since E[Z,] = 1,
(C33) is equivalent to Theorem [271(M); and assuming (I-39), according to (.34, we can
see that (IL376) is equivalent to Theorem L 2ZT(J). In Section 2, for completeness, we will
simplify the argument of [33] and [[/9], and give a proof of Theorem IT2TI(I).

Our method of proving (IC3-6) takes advantage of a fact that the exponential distribution
is characterized by an x*-type size-biased distributional equation. This is made precise in the

next lemma, which will be proved in Section 2

Lemma 1.3.2. Let Y be a strictly positive random variable with finite second moment. Then' Y

is exponentially distributed if and only if
vivy+u.-v, (1.3.7)

where Y and Y’ are both Y -transforms of Y, Y is a Y*-transform of Y, U is a uniform random

variable on [0,1], and Y, Y’, Y and U are independent.

With this lemma and Theorem L3711, we can give an intuitive explanation of the exponen-
tial convergence in Yaglom’s Theorem. From the construction of the k(k — 1)-type size-biased
u-Galton-Watson tree (Z,(,',‘ ))OSmSn, we see that the population Z,(f) in the nth generation can
be separated into two parts: descendants from the longer spine and descendants from the
shorter spine. Due to their construction, the first part, the descendants from the longer spine at
generation 7, is distributed approximately like Z,,, while the second part, the descendants from
the shorter spine at generation n, is distributed approximately like Z;,.,;. Those two parts are

approximately independent of each other. So, after a renormalization, we have roughly that

24 2, Ly,
Ol R UL (1.3.8)
n n Un

where the process (Z/)) is an independent copy of (Z,,). Suppose that Z, /n converges weakly
to a random variable Y, and Z, /n converges weakly to a random variable Y. Then, according
to [38, Lemma 4.3], Y is a size-biased transform of Y. Therefore, letting n — oo in (CL3X), Y
should satisfy (I377), which, by Lemma 372, suggests that (I”36) is true.

12
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It is interesting to compare this method of proving exponential convergence with the
methods used in [32] and [58]. In [58], Lyons, Pemantle and Peres characterize the exponen-
tial distribution by a different but well-known x-type size-biased distributional equation: A
nonnegative random variable Y with positive finite mean is exponentially distributed if and
only if it satisfies that

4

Y=U-Y (1.3.9)

where Y is a Y-transform of Y, and U is a uniform random variable on [0,1], which is
independent of Y. With the help of the size-biased tree, they then show that [U - Z,] is
distributed approximately like Z, conditioned on {Z, > 0}. So, after a renormalization, they
have roughly that .

Zy

Z,
{—;P(-lZn > 0)} Lu. (1.3.10)
n n

Suppose that { Z, /n; P(-|Z, > 0)} converges weakly to arandom variable Y, and Z, /n converges
weakly to a random variable Y. Then, according to [58, Lemma 4.3], Y is the size-biased
transform of Y. Therefore, letting n — oo in (IL3110), Y should satisfy (CL3:9), which suggests
that Y is exponentially distributed.

In [B7], Geiger characterizes the exponential distribution by another distributional equa-
tion: If Y and Y® are independent copies of a random variable Y with positive finite variance,
and U is an independent uniform random variable on [0, 1], then Y is exponentially distributed
if and only if

Y 2U® +y®), (1.3.11)

Geiger then shows that for (Z,,), conditioned on non-extinction at generation n, the distribution
of the generation of the most recent common ancestor (MRCA) of the particles at generation
n is asymptotically uniform among {0, 1, .. .,n} (a result due to [R3], see also [33]), and there
are asymptotically two children of the MRCA, each with at least 1 descendant in generation n.

After a renormalization, roughly speaking, Geiger has that

(1) )

Zn Z n Z n
{—;P(-IZn > 0)} dy. W gy 2l (1.3.12)

n Un Un

where for each m, Z\" and Z\? are independent copies of {Z,,; P(-|Z,, > 0)}. Therefore, if
{Z,/n; P(-|Z, > 0)} converges weakly to a random variable Y, then Y should satisfy (I311),
which suggests that Y is exponentially distributed.

From this comparison, we see that all the methods mentioned above share one similarity:

They all establish the exponential convergence via some particular distributional equation.

13
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However, since the equations (L37), (L3.9) and (L3-1T) are different, the actual way of proving
the convergence varies. In [58], an elegant tightness argument is made along with (IC3710).
However, it seems that this tightness argument is not suitable for (IL3172), due to a property
that the conditional convergence for some subsequence Z,, /n; implies the convergence of
U - an /n, but does not imply the convergence of Z(L?Jnk | /Uny,i = 1,2. Instead, a contraction
type argument in the L2-Wasserstein metric is used in [32].

For similar reasons, in Chapter 2, to actually prove the exponential convergence using
(C3R) and (C377), some efforts also must be made. We observe that the distributional
equation (I'378) admits a so-called size-biased add-on structure, which is related to Levy’s
theory of infinitely divisible distributions: Suppose that X is a nonnegative random variable
with a := E[X] € (0,00); then X is infinitely divisible if and only if there exists a nonnegative
random variable A independent of X such that X 2 X + A where X is the X-transform of X.
In fact, the Laplace exponent of X can be expressed as

e~V

—InE[e™] = aa({0)A + a / 1_—'a(dy),
y

(0,00)

where « is the distribution of A. Moreover, if A is strictly positive, then
Pl
—InE[e ] = a/ E[e™"]ds.
0

From this point of view, after considering the Laplace transforms of (I.38) and (IL3.7), we can
establish the convergence of £ [e~1%n/n] to E[e~], which will eventually lead us to Yaglom’s

theorem. This is made precise in Section 2.

1.3.2 Spine methods for CSBP

The spine decomposition of size-biased superprocesses is constructed in [25, D8, 57]
under different settings. Roughly speaking, the spine is the trajectory of an immortal moving
particle and the spine decomposition theorem says that, after a size-biased transform, the
transformed superprocess can be decomposed in law as the sum of a copy of the original
superprocess and an immigration processes along this spine. We will develop this result to
more general settings and give a general spine decomposition theorem for the superprocesses in
Chapter 3. We will also develop a 2-spine decomposition for a class of critical superprocesses
in Chapter 3. The precise statements of those decomposition theorem are quite technical. In
order to have a simple overview of the spine theory for the superprocesses, we only consider
CSBP in this section.

Let {(Y;); P} be a CSBP with branching mechanism y(z) = z2. It is helpful to consider

14
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Y = (Y¥;) as a random element taking values in the following Skorokhod spaces:
D := {w = (w,) : wis an R, -valued cadlag paths on [0, o) with O as a trap.}

The branching property of ¥ = (¥;) now says that Y can be considered as an infinitely
divisible D-valued random element. According to [24], there is a o-finite measure N on D
which can be considered as the “Lévy measure” of this infinitely divisible random element Y.
Such measure can be characterized by the following properties:

* N(Vt >0,Y, =0)=0;

* N(¥p #0) =0;

 forany u € M(E), if N is Poisson random measure defined on some probability space

with intensity yN with y > 0, then the CSBP {(Y;); P, } can be realized by ¥, := y and
Y, := N|w,] for each t > 0.
We refer to N as the Kuznetsov measure for the CSBP. And with some abuse of notation, we
will always assume that our CSBP {(Y;); P, } is given by ¥; = N[w,],t > 0 for some Poisson
random measure {N; P, } with intensity xN.

Similar to the size-biased decomposition of infinitely divisible non-negative random
variables mentioned earlier, the CSBP has the following spine decomposition: For each
measure y and a non-negative measurable function f with u(f) € (0,00), we define the

f-transform of y as the following probability measure

d/v‘f = Ld,u.

plf]
For each fixed x € R and ¢ > 0, denote by Pf’ the Y,-transform of P,. We say {Y, Z,n; ng)} is

a spine representation of P’ if
* {Y = (¥,)o<s<: OV} is a copy of the original CSBP {(¥;)o<,<: Px}:
* independent of {(¥)o<s<s; ng)}, n(ds,dw) is a Poisson random measure on [0,7] X D
with intensity

2ds X N(dw);
* (Zy)o<s<: is a non-negative process defined by

Zs = / ws_n(dr,dw), 0<s <t (1.3.13)
0

Theorem 1.3.3 ([25, 28, 57]). Suppose that {Y,Z,n; ng)} is a spine representation of P, then

law

Y; .
we have {(Y)o<s<is PV} 2 {(Y; + ZyJo<s 3 OF):
Let us explain some intuition about the above spine representations: The Poisson random

15



B N e W S R

measure n(ds, dw) there can actually be interpreted as an immigration process. Note that it can
be represented as the summation of (possibly infinite many) atomic measures on [0,7] X D,
n(ds,dw) = Z O(s(i), i)
sieD

where, roughly speaking, at time s' € 9, there is a bunch of population immigrated into the
system whose evolution afterwards are determined by w”. Here the set D is the set of the
times of all the immigration events. 9 is obviously countable since n(ds,dw) is a Poisson
random measure. Therefore, Z; given by (I'313) is well defined, since it is a summation of at
most countably many positive values. Zg can actually be interpreted as the total contribution
of all immigrations at time s.

Note that, the CSBP {(Y;); P, } itself is a martingale. So the Y;-transform of probability
P, can be considered as Doob’s martingale transformation. In Chapter 3, we develop this
theory further to include other type of size-biased transformation which may not be Doob’s
martingale transformation: Let F' be a functional of the path (w)y<s<; Where w € D. Suppose
that this functional satisfies that N[ F(w)] € (0, o). Then from the mean formula for the Poisson

random measure, we have
PIN(F)] = xN[F(w)] € (0,00), x> 0.

Therefore, both PY*)—the N(F)-transform of probability P, and N¥—the F-transform of
measure N are all well defined probability measure on D. We say {(¥;)o<s<s» (Zs)o<s<t3 ng)} is

a size-biased representation of PN it

* {(Y)o<s<r: 01} is a copy of the original CSBP {(¥,)o<,<i3 Pu}:
« independent of {(¥,)o<s<r; OV}, {(Zy)o<s<; OV} is a process which has the same law
as {(wy)o<s<r: N}
If we take F(w) = wy,, then it will be proved in Chapter 3 that the process {(Z;)o<s<:; ng) }
given in (L3 13) has the exactly the same law as {(wy)o<s<,; N** }. In other words, if we know
{Y,Z,n; QEC’)} is a spine representation of Pz’, then {Y, Z; ng)} is a size-biased representation

of PY. The following theorem explained the naming:

Theorem 1.3.4. Suppose that {(YS)OSSQ,(ZS)OSSS,;Q?} is a size-biased representation of

lciw

PY®). Then we have {(Y,)o<s<rs PY '} 2 {(Ys + ZyYo<sers OV}

In Chapter 3, we will prove that, if F takes the form of F(w) = wf and {Y, Z; Qﬁf)} is the

(1)
x

2
corresponding size-biased representation of Piv Lo ], then {Z; O’} can be decomposed further
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as a immigration processes along a 2-spine skeleton. More precisely, we say

{(YS)OSSSI’ (Zs)o<s <t Ks11, 125 Qﬁf)}

is a 2-spine representation of P)/(V[wf] if
* {Y := (¥,)o<,=: 0V} is a copy of the original CSBP {(¥)o<y<i: P}
* independent of {(¥;)o<s<s; QEC’)}, ni(ds,dw) is a Poisson random measure on [0,7] X D

with intensity

2ds X N(dw);

 independent of Y and n;, « is a random time selected uniformly in the time interval
[0,7]; and conditioned on the «, n,(ds, dw) is a Poisson random measure on [«,7] X D
with intensity

ZISG[K,I]dS X N(a’w),
* (Zy)o<s<: is a non-negative process defined by

Z, = / wy_n(dr,dw) + ISZK/ ws_,mo(dr,dw), 0<s<t.
0 K

The Z; above can be interpreted as the total contribution of two different type of immigrations
at time s. The first type of immigrations are directed by Poisson random measure n; and
the second type are directed by Poisson random measure n,. It would be helpful to imagine
that there is a “spine particle” with life time [0,7] who “generates” new mass of branching
populations into the system according to a certain Poissonian way, and at a random time «,
there suddenly appears another “spine particle” with life time [«,¢] who also “generates” new
mass of branching populations into the system according to a certain Poissonian way. In

Chapter 3 we will prove the following 2-spine decomposition for the CSBP:

Theorem 1.3.5. Suppose that {(Yy)o<s<t>(Zs)o<s<t» K 11,12} ng)} is a 2-spine representation of

w? w?]y law
P, then {(V)ozs<rs Y} (K, + Zo)oy s Q).

The reason that those decompositions for size-biased CSBP is useful for proving Yaglom
type results is similar to that for the Galton-Watson branching processes. In fact, we can see
that Theorem .33 characterized the size-biased transformation of the CSBP, while Theorem

33 characterized the double size-biased transformation of the CSBP. To distinguish those

Ef)} to denote a spine representation of P)’, and

~ o~ ~ 2
use {Y, Z, k,ny,no; Ef)} to denote a 2-spine representation of P)/CV [w’]. The construction of the

two characterization, we will use {Y,Z,n; Q
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2-spine representation actually says that
5 1
Z,'= Zi+ Z)

where Z’ is a copy of Z, U is an uniform distributed random variable in [0, 1], and Z, Z’ and
U are independent. Note that Z, has the same law as {w,; N*'}, and Z, has the same law as
{w,;N“/}. This actually implies that Z, is the size-biased transform of Z,. Suppose that Z, /¢
converges weakly to a random variable X, and Z, /t converges weakly to a random variable X.

Then, according to [58, Lemma 4.3], X is an X-transform of X, and we should have
X=X+U-X,

where X’ is a copy of X, U is a uniform random variable on [0, 1], and X, X’, U are independent.
With this observation and Lemma 372, we can see why Yaglom type result for CSBP should
be true. The precise proofs of both Kolmogorov type and Yaglom type results for a large class
of critical superprocesses using a 2-spine method will be presented in Chapter 3.

A proof of Slack type result for a large class of critical superprocess without the second
moment condition will be presented in Chapter 5. We mention here that the 2-spine decompo-
sition for the critical superprocesses requires the second moment condition, so we can not use
it anymore in Chapter 5. The general one-spine decomposition theorem developed in Chapter

3 still plays a central role though.

1.4 Organization of the thesis

The rest of the thesis is organized as follows: Chapter 2 is based on my work [63]
in collaboration with Yan-Xia Ren and Renming Song. We give a relatively short and self-
contained application of the multi-spine techniques providing a new proof of Yaglom’s theorem
for the critical Galton-Watson processes. We show that the double-size-biased transformation
of a critical Galton-Watson tree corresponds to a branching tree with 2 distinguishable spines.
Note that, we already explained intuitively why Yaglom’s theorem should be true using this
2-spine method earlier. In Chapter 2, we translate this intuition into mathematics. This is
useful both for giving a new point of view on Yaglom type theorem and a new application to
multi-spine theory. Our method is generic in the sense that it can be applied to much more
complicated branching systems such that superprocesses.

Chapter 3 is based on my work [65] in collaboration with Yan-Xia Ren and Renming

Song. In that chapter, we give a probabilistic proof of Yaglom type results for a class of
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critical superprocesses using a newly developed general size-biasing technique for the super-
processes. First, we establish a general framework for size-biased decomposition theorems
for the superprocesses using their Poissonian representations. Second, under this framework,
we establish a spine decomposition theorem and a 2-spine decomposition theorem for critical
superprocesses. Third, we give a proof of the Kolmogorov type and Yaglom type result using
those spine decompositions. Compared to the analytical methods used by Perkins [B1] and
Ren, Song and Zhang [68], our probabilistic proof is more intuitive and gives results under
weaker conditions. Also, our general framework connects the spine theorem to the Poissonian
representation of the superprocesses. This connection is fundamental and seems has not been
fully exploited before in the literature.

In Chapter 4, we consider the characteristic function of superprocesses. We prove that
the characteristic exponent of (X, f) is the mild solution to a non-linear complex-valued PDE
where (X;);s0 is a general non-persistent superprocess and f is a testing function. This is more
general than the classical theory about the Laplace exponents of a superprocess satisfying a
non-linear real-valued PDE, because we allow our testing function f to take both positive and
negative values. The general spine decomposition theorem in Chapter 4 is used to prove this
result. In the follow-up work [[Z1] in collaboration with Yan-Xia Ren, Renming Song and
Jianjie Zhao, we use this result to prove several stable central limit theorems for supercritical
super Ornstein-Uhlenbeck processes.

Chapter 5 is based on the work [64] in collaboration with Yan-Xia Ren and Renming
Song. In that chapter, we establish Slack type results for a class of critical superprocesses
with spatially dependent stable branching. Using the general spine theory for the superprocess
developed in Chapter 3, we could establish rate of decay of the survival probability. We can
also show that the Laplace transform of the one-dimensional distributions of the superprocess,
after proper rescaling, can be characterized by a non-linear delay equation. We then show that
the Laplace transform of Slack’s random variable z* can also be characterized by a similar
non-linear equation. As far as we know, this characterization of Slack’s random variable is
new. The desired Slack type results can then be showed by comparison of those equations.
That the stable index is spatially inhomogeneous and that the second moment is infinite make
the arguments challenging. This work adds more results to the theory of critical superprocess

and provides a new point of view for Slack type universal results.
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Chapter 2 A 2-spine Decomposition of the Critical Galton-Watson Tree

Chapter 2 A 2-spine Decomposition of the Critical

Galton-Watson Tree

2.1 Trees and their decompositions

2.1.1 Spaces and measures

Suppose that u is an offspring distribution with mean 1 and finite variance. In this

subsection, we give a proof of Theorem [371l. Consider particles as elements in the space
U := {0} U U Nk,
k=1

where N := {1,2,...}. Therefore elements in U are of the form 213, which we read as
the individual being the 3rd child of the 1st child of the 2nd child of the initial ancestor

(. For two particles u = u;y...u,,v = v;...0v, € U, uv denotes the concatenated particle

Uv := Uy ...UL; ...0,. We use the convention u® = Qu = u and u; ...u, = 0 if n = 0. For
any particle u := u;...u,_u,, we define its generation as |u| := n and its parent particle
as W := uy...u,_,. For any particle u € U and any subset a C U, we define the number

of children of u in a as l,(a) := #{a € a : @ = u}. We also define the height of a as
|a| := sup,., |@| and its population in the nth generation as X,(a) := #{u € a : |u| = n}. A
tree t is defined as a subset of U such that there exists an Ny-valued sequence (1), <y, indexed

by U, satisfying
t={uw...upeU:m=20,u; <l ., ,Vj=1,...,m}.

A spine v on a tree t is defined as a sequence of particles {v® : k = 0,1,...,|t|} C t such
H

that v©@ = 0 and v® = v*=Y for any k = 1,...,|t|. In the case that |[t| = co, we simply write
k=01,... ask=0,1,...,]t|.

Fix a generation number n € N. Define the following spaces.

» The space of trees with height no more than n,

T., := {t: tisatree with [t| < n}.
» The space of n-height trees with one distinguishable spine,

T, := {(t,v) : tis atree with |t| = n,V is a spine on t}.
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* The space of n-height trees with two different distinguishable spines,
T, = {(t,v,v) : (t,v) e T,.,(t, V) € T,,v £ V'}.

Let (L,),cu be a collection of independent random variables with law y, indexed by U.

Denote by T the random tree defined by
T:={w ... uy €U:0<m<nuj <L, . ,,Vj=1...,m}

We refer to T as a p-Galton-Watson tree with height no more than n since its population
(X0n(T))o<m<n is a u-Galton-Watson process stopped at generation n. Define the u-Galton-
Watson measure G,, on T, as the law of the random tree 7. That is, forany t € T,
G.(t) := P(T = t) = P(L, = l,(t) for any u € t with |u| < n) = ]_[ u(L,(1)).
uet:|ul<n

Recall that L is an L-transform of L. Define C as a random number which, conditioned
on L, is uniformly distributed on {1,.. L} Independent of (L, ),cq, let (Lu, C)ucu be
a collection of independent copies of (L,C), indexed by U. We then use (L,),cqs and
(Lu, Cu)ueqs as the building blocks to construct the size-biased u-Galton-Watson tree 7 and its
distinguishable spine V following the steps described in Section 2. We use L,, as the number
of children of particle u if u is unmarked and use L, if u is marked. In the latter case, we
always set the C,,-th child of u, i.e. particle uC,, as the new marked particle. For convenience,

we stop the system at generation n. To be precise, the random spine V is defined by
Vi={v...0m€U:0<m< n,vj = C‘Ul._.vj_l,Vj =1,...,m},

and the random tree 7 is defined by
T={uy... upeU:0<m< nu; < Zulmuj_],Vj =1,...,m},

where, for any u € U, L, := L, 1,5y + L, 1,y .

We now consider the distribution of the T,-valued random element (7,V). For any

(t,v) € T,, the event {(T,V) = (t,v)} occurs if and only if:

e L, =1,(t)foreach u € t\ v with |u| < n and

* (Luy.y»Copov) = (Lyy..0, (£),0m41) foreach vy ... v, € vWithO <m <n—1.

Therefore, the distribution of (7', V) can be determined by

PAV == ] wh) [] LOLO;G=60. L)

uet\v:lul<n uev:|lul<n

22



Chapter 2 A 2-spine Decomposition of the Critical Galton-Watson Tree

The size-biased u-Galton-Watson measure G, on T, is then defined as the law of the
T.,-valued random element 7. That is, for any t € T,
G,(t):=P(T =t) = Z P((T,V) = (t,v)) 2.1.2)
vi(t,v)eT,

=#H{v:(tv) € T,} - G, (1) = X, (1) - G, (1).

Equations (1), (ZT2) and their consequence (IC31]) were first obtained in [58]. We
use these equations to help us to understand how the k(k — 1)-type size-biased u-Galton-Watson
tree can be represented.

Recall that K, is a random generation number uniformly distributed on {0, ...,n—1}, and
L is an L(L — 1)-transform of L. Define (C,C’) as a random vector which, conditioned on L,
is uniformly distributed on {(i,j) € N> : 1 <i # j < L}. Suppose that (L,),cas, (Lu, Co)uctss
(L C.C ) and K,, are independent of each other. We now use these elements to build the
k(k — 1)-type size-biased u-Galton-Watson tree 7 and its two different distinguishable spines
V and V' following the steps described in Section 2. Write C, := C, 1,2k, + C1j,=x, and
C, = Cu1|u‘¢,<n + C'1|u|:1<n- We define the random spines V and V” as

Vi={vy...omeU:0<m< n,v; = Cy 0y ,Vj = 1,...,m},

Vii={v..0peU:0<m< n,vj = C;l___vjil,‘v’j =1,...,m},
and the random tree 7" as
T:={u...un€U:0<m<nu; < L) . Vi=1,....m},

where, for any u € U, L] := Ly l,gpopr + Lulyeyov e, + Lluevor, ju=k, -

We now consider the distribution of (7', V, V’). Forany (t,v,v’) € T,,, theevent {(T,V,V’) =
(t,v,v')} occurs if and only if:

* K, =k, :=|vnv|,

e L, =1,(t)foreachu € t\ (vU V) with |u| < n,

. (Lvl...vm’Cvl...vm) = (ly..v, (), Um41) foreach vy . . . 0,011 € VUV With &, # m < nand

. (L, é, C’) = (lmmvk" (t), Ukn+1’vl;n+l) for U1...0k,Vk,+1 €V and U1... vknv,inﬂ cv.

Using this analysis, we get that

PETT) =0wv) =1 [ w0 [ Louhog
uet\(Vuv'):|ul<n uevuv':k, #|lul<n u

LOGWO - Du(®) 1
7 LOGO- 1)

uevuv’:|ul|=k,
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Lo

no?
The k(k — 1)-type size-biased u-Galton-Watson measure G,, on T -, is then defined as the

law of the random element 7. That is, for anyte T,

G.():=PT =1t) = Z P((T,V, V") = (t,v, V")) (2.1.3)
(v,v):(t,v,v)eT,

no? no?

=#{(v,v): (t,v,v)eT,}- - G,(t).

We note in passing that, because of the way they are constructed, the measures (G,,),>
are not consistent, that is, the measure G,, is not the restriction of G,,,,. This implies that the

change of measure in Theorem [ 371 is not a martingale change of measure.

Proof of Theorem [L3_1. Note that

(X ®)ozmen: Gu} = Znozmen  a0d  {(Xn(®)ozmen: Gu} = Zdozmen-

According to (ZZI3)), for any bounded Borel function g on N, we can verify that

E[g(Z\",..., 2] = G,lg(Xi(t), .. ., X, (V)] (2.1.4)
= G, [P OEO =D o). x,(0)]

no?
1
= —ZE[Zn(Zn -Dg(Zy,....Z,)].
no

Taking g = 1 in equation (ZZ1-4)), we get that

E[Z.Z,-1)] = E[Z, - 1] = no™. (2.1.5)

2.1.2 Double size-biased transform for Galton-Watson tree

Using the notation introduced in the previous section, we are now ready to give a precise

meaning to (C3R):

Proposition 2.1.1. Let (Z,,)o<m<n be the population of a size-biased pu-Galton Watson tree and
(Z,(,f))ogmgn be the population of a k(k — 1)-type size-biased u-Galton-Watson tree with height
n. Suppose that u satisfies (L32) and (T373). Then

E[e"] = E[e"|E[g(A, | Un])e~20m],
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Chapter 2 A 2-spine Decomposition of the Critical Galton-Watson Tree

where U is a uniform random variable on [0, 1] independent of {Z,, : 0 < m < n}; and g(A,m)

is a function on [0, 00) X Ny such that g(A,m) — 1, uniformly in A as m — oo,

Proof. For any particle u = u, ...u,, we define [0,u] := {u;...u; : j = 0,...,n} as the

descending family line from O to u. The particles in T can be separated according to their

nearest spine ancestor. For each k = 0,...,n, we write A, := {u € T : |[0,u] N V| = k}. Then
X, (T) = Z X, (Ag). (2.1.6)
k=0

Notice that the right side of the above equation is a sum of independent random variables;

and from their construction, we see that X,,(A;) 4 Zr(lL;;)l. Here, Z((_Ll_)l) =1 and (Z,(nL _1))m€No

denotes a u-Galton-Watson process with Z(()L_l) distributed according to L — 1. Taking Laplace
transforms on both sides of (Z_T-f) we get

E[e—/lZn] — E[e_/lz'(‘ijl]. (217)

Similarly, we consider the k(k—1)-type size-biased u-Galton-Watson tree (T, V, V’). Write

A'i ={ueT  |[0,u]lnV]|=k[0,u]ln(V'\V)=0}

and
A,‘< ={ueT:|[0,ulnV|=k[0,u]ln (V' \V)=+0}.
Then,
X (1) = D XAy + > Xu(A}), (2.1.8)
k=0 k=K, +1

Notice that, conditioning on K,, = m with m € {0,...,n — 1}, the right side of the above
equation is a sum of independent random variables; and from their construction, we see

that X, (Al) L 78D for each k # m; X,(AL) £ zL? + and X, (A) 2 70D for each

n—-k-1 n-m—1° n—k-1

k > m+ 1. Here, Z((i_)z) ;=1 and (Z,(f_z))keN0 is a u-Galton-Watson process with initial

population distributed according to L — 2.

Taking Laplace transform on both sides of (Z-I-8) and using (Z-177), we get

i 1 n-1 n . - n -
E[e_’lzil )] = — ( 1_[ E[g_’lzleikl—)l]) . E[e_/lzizl;nf)—l] . ( n E[e_’lziﬁkl—)l])
n m=0 k=0,k#m k=m+1

n—1 (£.-2)
_ E[e_ﬂz"]l Ele /lznim_l] [ —/lZn-m-l]
n L Elenmi]
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, 15 E[e %] . . .
E[e*"]- — - E[e™%"] = E[e"*"]E[g(A, LUn])e™**10m],
n A Ele=1zn ]
where )
. [e=Zn ]
P(Z,(f_Z) = ()) < g(/l’ m) = _/lZ(L—l)] P(z(L 1 — O) 1
Notice that, from the criticality, P(Z,(,f 2 — = 0) and P(Z(L D= = 0)~! converge to 1. O

2.2 Proof of Theorem I.2.1

Proof of Theorem [[Z71(I). Denote by B the event that the Galton-Watson process (Z,)n>0
survives up to generation n, and the left-most particle in the n-th generation is a descendant of
the jth particle of the first generation. Write ¢, = P[Z, = 0] = f"’(0) and p,, = 1 — g,, where
f is the probability generating function of the offspring distribution . Then

E[Z,|Z, > 0] = ZE[Z,,,Z1 = k|Z, > 0] = ZE[Z,,,Z1 =k:Z,>0] (22.1)
00 k ) o) k -
= p;! ZZE Z,:Zi = k;Bi] = p;! Z ZP[Zl = k; BI1E[Z,|Z; = k, B!]
k=1 j=1 k=1 j=1
o k
=p,' Y Y PIZ = ks BI(ELZua|Zay > 01+ K - j)
k=1 j=1
o k )
= ElZy1Zy1 > 0]+ = Pl S wk)gy (k - ).
" ok=1 j=1

The criticality implies that ¢,, T 1 as n — oo, and that

Pn — 1 - f(n)(o) — 1 - f(Qn—l)
Pn-1 1- f(n_l)(o) l =gy noe

By the monotone convergence theorem,

(1) =1.

2

o  k
Prl S kgl (k - J)—>Zz,ll(k)(k J)—Z,u(k)k(k—l)/2——-
Jj=1

Pn 13 k=1 j=

Now combining (Z22T1) with the above, we get

1
— = "E[ZJZ,>0
nP(Z, > 0) 2|2, > 0]
1 1 & Pt o
m—1 .
= —E[Z]Zy > 0] + = D0 utkg) (k= j)
n = P j=1
0.2
%_
n—oo 2
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Chapter 2 A 2-spine Decomposition of the Critical Galton-Watson Tree

]

In order to compare distributions using their size-biased add-on structures, we need the

following lemma:

Lemma 2.2.1. Let Xy and X, be two non-negative random variables with the same mean
a = E[Xy] = E[Xi] € (0,00). Let Fy be defined by E[e**] = E[e~™]|Fy(1), where X,
is an Xo-transform of Xo, and F, be defined by E[eX] = E[e™*X]F,(X), where X, is an
X -transform of X,. Then,

2
|E[e"lx0] - E[e"lx‘]| < a/ |Fo(s) — Fi(s)|ds, A >0.
0

Proof. Since X is an X,-transform of X, we have

E[Xpe ] aE[e %]

O(—InE[eX]) = E[e=%] ~— E[e-%]

= aF()(/l)
Similarly, 9,(— In E[e~**1]) = aF;(A). Therefore, since x — In x is decreasing on [0, 1],
B p
|E[e_/lX°] - E[e"lX‘]| < |1n E[e™**] —1n E[e"lX‘]| = a|/ Fo(s)ds — / Fl(s)ds|
0 0

A
<a /0 |Fo(s) — Fi(s)]ds

as desired. O]

We are now ready to prove Lemma 372, Itis elementary to verify thatif ¥ is exponentially
distributed, then it satisfies (3~7). So we only need to show thatif Y is a strictly positive random
variable with finite second moment, then (I'377) implies that it is exponentially distributed.

The following lemma will be used to prove this.

Lemma 2.2.2. Suppose that ¢ > 0 is a constant, and F is a non-negative bounded function on

[0, 00) satisfying that, for any A > 0,

1 2
F(1) < l/ du/ F(us)ds. (2.2.2)
¢ Jo 0

Then F = Q.

Proof. By dividing both sides of (ZZZ72) by ||F||., Without loss of any generality, we can

assume F' is bounded by 1. We prove this lemma by contradiction. Assume that
p:=inf{x > 0: F(x) # 0} < oo, (2.2.3)
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with the convention inf @ = co. Then, for each 1 > 0,

1 1 p+A 1 1 p+A /l
F(p+/l):z'/ du/ F(us)ds:E/ du/ F(us)ds < =
0 0 0 P

Using this new upper bound, we have

F(p+ )= / du/ F(us)ds<—/ du/pm—ds<—

Repeating this process, we have F(p + 1) < :}—m for each m € N, which implies that F = 0 on
[0, o + ¢). This, however, contradicts (ZZ23)). 0

Proof of Lemma . Suppose that Y is a strictly positive random variable with finite second
moment, and (I377) is true. Define a := E[Y] € (0,00). Consider an exponential random
variable e with mean a/2. It is elementary to verify that e satisfies (37), in the sense that
é 4 é+ Ué’, where é and ¢’ are both e-transforms of e, é is an e>-transform of e, U is a uniform
random variable on [0, 1], and &, é’, € and U are independent. Notice that E[é] = a, therefore

we can compare the distribution of ¥ with that of ¢ using Lemma ZZ21. This gives that
_ . 2 pl _ _
|E[e_”] - E[e_ﬂe]| < a/ / |E[e_s"y] - E[e_s"e]|duds, A1=0,
0 Jo

. . sd . : . .
which, according to Lemma 27, says that Y’ = €. Since Y and e are strictly positive, according
to (34)), we have

E[l1 —eY]/E[Y] = E[l — e *]/E[e], A>0.
Letting A — oo, we get E[Y] = E|[e]. Therefore, Y 2 ¢ as desired. [

Proof of Theorem [LZ1(D). Consider an exponential random variable ¥ with mean o%/2. Let
Y be a Y-transform of Y. As in Section 371, we only need to prove that Z, /n converge weakly

to Y. From Proposition 221711, we know that
E[e™%") = E[e#")E[g(A, |Un])e™Avm),

where U is a uniform random variable on [0, 1] independent of {Z,, : 0 < m < n}; and
g(4,m) is a function on [0, c0) X Ny such that g(4,m) — 1, uniformly in A as m — oco. After a

renormalization, we have that

z(”) 1

Ele 5] = Bl E g5 Lunl)e ] 1z 0.
n

According to Theorem 3], one can verify that (Z(") 1)/n is a (Z, — 1)/n transform of

(Z, — 1)/n. Therefore, the above equation can be viewed as the size-biased add-on structure
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Chapter 2 A 2-spine Decomposition of the Critical Galton-Watson Tree

for the random variable (Z, — 1)/n. It is easy to see that the mean of Y is o-2. According to
(-I3), the mean of (Z, — 1)/n is also o-2. Then comparing the distribution of (Z, — 1)/n with
that of ¥, and using Lemma 211, we get that

Zun|

. A 1
—/l% _ -Y 2 5 —su—p 1 —suY
|E[e 1-Ele™]| <o /O ds/o |g(n,|_unJ)E[e 1 - E[e™"]|du.

Taking n — oo and using the reverse Fatou’s lemma, we arrive at

I pl
M) < 0'2/ du/ M(us)ds, A1 =0,
0 0

where M(2) := limsup, |E[e‘427"] — E[¢™"]|. Thus by Lemma 272, we have M = 0,
which says that Z, /n converges weakly to Y. O
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Chapter 3 Spine decompositions of critical

superprocesses: Yaglom type result

3.1 Introduction

3.1.1 Motivation

As mentioned in Chapter 1, it is well known that for a critical Galton-Watson process
{(Z,)nav; P}, we have

2
nP(Z, > 0) — — G.1.1)
n—o00 0‘
and )
Zn aw
{—;P(-|Zn > 0)} aw, %e, 3.1.2)
n n—oo

where o2 is the variance of the offspring distribution and e is an exponential random variable
with mean 1. The result (B-1T) was first proved by Kolmogorov in [48] under a third moment
condition, and the result (B3:12) is due to Yaglom [KT]. For further references to these results,
see [38, 46]. Ever since these pioneering papers of Kolmogorov and Yaglom, lots of analogous
results have been obtained for more general critical branching processes. For continuous time
critical branching processes, see [8]; for discrete time multitype critical branching processes,
see [, 44]; for continuous time multitype critical branching processes, see [f]; and for critical
branching Markov processes, see [#]. We will call results like (B-1-1) Kolmogorov type results
and results like (B-I.2) Yaglom type results. Similar results have also been obtained for some
superprocesses. Evans and Perkins [31] obtained both Kolmogorov type and Yaglom type
results for critical superprocesses when the branching mechanism is (x, z) — z2 and the spatial
motion satisfies some ergodicity conditions. Recently, Ren, Song and Zhang [68] obtained
similar limit results for a class of critical superprocesses with general branching mechanisms
and general spatial motions.

The proofs of the limit results in the papers mentioned above are all analytic in nature and
thus not very transparent. More intuitive probabilistic proofs would be very helpful. This was
first accomplished for critical Galton-Watson processes, see [33, 58] for probabilistic proofs of
(B1D), and [B2, 58, 63] for probabilistic proofs of (B1-2). For more general models, Vatutin
and Dyakonova [[79] gave a probabilistic proof of a Kolmogorov type result for multitype critical

branching processes. Recently, Powell [62] gave probabilistic proofs of both Kolmogorov type
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and Yaglom type results for a class of critical branching diffusions.

In this chapter, we will use the spine method to give probabilistic proofs of both Kol-
mogorov type and Yaglom type results for a class of critical superprocesses. We will first
establish a size-biased decomposition theorem for superprocesses (Theorem B-T2) which will
serve as a general framework for the spine method. Then, we will establish a spine decomposi-
tion theorem for superprocesses (Theorem B-T3) which is more general than those previously
considered in [25, D8, 57]. We will also establish a 2-spine decomposition theorem for a
class of critical superprocesses (Theorem B-T.9). Those spine decompositions are all special
forms of the aforementioned size-biased decomposition. Finally, we use these tools to give
probabilistic proofs of a Kolmogorov type result (Theorem BT10) and a Yaglom type result
(Theorem B-I_TTI) for critical superprocesses under slightly weaker conditions than [6&]. To
develop our decomposition for critical superprocesses, we first prove a size-biased decomposi-
tion theorem for Poisson random measures (Theorem B13), which we think is of independent
interest. Before we present our main results, we first give a brief review of earlier results on
the spine method.

The spine method was first introduced in [S8]. Roughly speaking, the spine decomposition
theorem says that the size-biased transform of the branching process can be interpreted as an
immigration branching process along with an immortal particle. This spine approach is generic
in the sense that it can be adapted to a variety of general branching processes and is powerful in
studying limit behaviors due to its relation with the size-biased transforms. In this chapter, by
the size-biased transform of a stochastic process we mean the following: Suppose that we are
given, on some probability space (Q,.%, P), a process (X;);cr, with " being an arbitrary index
set, and a non-negative random variable G with P[G] € (0, ). We say a process {(X;);cr; P}
is a G-transform of the process {(X,);cr; P} if {(X,)rer; P} o {(X));er; PC}, where PC is
a probability measure on Q given by dPS := (G/P[G])dP. (This also gives the definition of
a size-biased transform of a random variable since a random variable can be considered as a
stochastic process whose index is a singleton.)

Using the spine decomposition theorem for the Galton-Watson process (Z,),.»o, Lyons,
Pemantle and Peres [58] investigated the Z,-transform of the process (Z;)o<k<n, Which is
denoted by (Zi)o<k<n. Their key observation in the critical case is that U - Z, is distributed
approximately like Z, conditioned on {Z,, > 0}, where U is an independent uniform random
variable on [0, 1]. If one denotes by X the weak limit of % conditioned on {Z, > 0}, and
by X the weak limit of %, then [58] proved that X is the X-transform of the positive random

law

variable X and X '= U - X, which implies that X is an exponential random variable.
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The spine method is also used by Powell [62] to establish results parallel to (B3-1-1) and
(BI2) for a class of critical branching diffusion {(Y;);0; (Px)xep } in a bounded smooth domain
D c R%. As have been discussed in [62], a direct study of the partial differential equation
satisfied by the survival probability (¢, x) — P,(||Y;|| # 0) is tricky. Instead, by using a spine
decomposition approach, Powell [62] showed that the survival probability decays like a(7)¢(x),
where ¢(x) is the principal eigenfunction of the mean semigroup of (Y;) and a(¢) is a function
capturing the uniform speed. In this chapter, our proof of the Kolmogorov type result for
critical superprocesses follows a similar argument.

The spine method for superprocesses was developed in [25, 28, 57] and is very useful
in studying limit behaviors of supercritical superprocesses. Heuristically, the spine is the
trajectory of an immortal moving particle and the spine decomposition theorem says that, after
a martingale change of measure, the transformed superprocess can be decomposed in law as
an immigration process along this spine. The spine decomposition theorem established in this
chapter is more general than those in [25, 8, 57]. We will say more about this in the next
subsection.

In chapter 2, we developed a 2-spine decomposition technique ( see also [b3]) for critical
Galton-Watson processes and used it to give a new probabilistic proof of Yaglom’s result
(B-I2). One of the facts we used in Chapter 2 is that, if X is a strictly positive random variable

with finite second moment, then X is an exponential random variable if and only if

e law

X=X+U-X (3.1.3)

where X and X’ are independent X-transforms of X; X is the X?-transform of X; and U is
again an independent uniform random variable on [0, 1]. We then proved in Chapter 2 that
the Z,(Z, — 1)-transform of the critical Galton-Watson process (Z )o<x <n, Which is denoted as
(Z,E"))ng <n» can be interpreted as an immigration branching process along a 2-spine skeleton.
One of those two spines is longer than the other. The spirit of our proof in Chapter 2 is to show
that the immigration along the longer spine at generation n is distributed approximately like
Z,, while the immigration along the shorter spine at generation 7 is distributed approximately

like Z[’U_n]. Here Z, and Z’ are independent Z,-transforms of Z,. Roughly speaking, we have
7o

aw -

~ Z,+ Z[’U.n], and therefore, if X is the weak limit of % conditioned on {Z, > 0}, then
X is a positive random variable satisfying (B-1-3). In this Chapter, we adapt the method of
Chapter 2 to develop a 2-spine decomposition for critical superprocesses and then use this 2-
spine decomposition to give probabilistic proofs of Kolmogorov type and Yaglom type results

for superprocesses. The spirit of this chapter is similar to that of Chapter 2, but the arguments
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are more complicated.

The idea of multi-spine decomposition is not new. It was first introduced by Harris and
Roberts [B7] in the context of branching processes. Our 2-spine methods for Galton-Watson
trees [B3] and for superprocesses in this chapter are both inspired by [37]. An analogous
k-spine decomposition theorem also appeared in [B6] and [45] in the context of continuous
time Galton-Watson processes. The k-th size-biased transform of Galton-Watson trees is also
considered in [1]. A closely related infinite spine decomposition is also established in [[I] for
the supercritical Galton-Watson tree.

There is another decomposition theorem for supercritical Galton-Watson trees with in-
finite spines which is first introduced in [5, Section 12] and is now known as the skeleton
decomposition. The infinite spines in [[I] and the skeleton decomposition in [5, Section 12]
are two different decomposition theorems. Our 2-spine methods for Galton-Watson trees [63]
and for superprocesses in this chapter are more relevant to [[I].

We mention here that the analog of the skeleton decomposition in [5, Section 12] for
supercritical superprocesses is also available and is very popular. Heuristically, the skeleton is
the trajectories of all the prolific individuals, that is, individuals with infinite lines of descent.
The skeleton decomposition says that the supercritical superprocess itself can be decomposed
in law as an immigration process along this skeleton. For the skeleton methods and its
applications under a variety of names, see [[Z, B, 19, 25, 9, 30, 51, 52, 59, b&]. If we consider
critical superprocesses conditioned to be never extinct, then we will get the transformed
superprocesses (after a Doob’s h-transformation) considered in [25, 28, 57] for the classical
spine decomposition theorem. In this situation, there will be only one prolific individual which
is exactly the spine particle. So the natural analog of the skeleton decomposition in the critical
case is the classical spine decomposition. The skeleton decomposition will not be used in this

thesis.

3.1.2 Main results

Let E be a locally compact separable metric space. We will use bZr and p A to denote
the collection of all bounded Borel functions and positive Borel functions on E respectively.
We write bp &g for bABr N pHABg. For any functions f,g and measure u on E, we write
1f ks = supyep [FON u(f) = (i, ) = [, fduand (f,g), = [, fgdu as long as they have
meanings. We use 0 to denote the null measure and use f = 0 to mean that f is the zero function.
If g(z, x) is a function on [0,00) X E, we say g is locally bounded if sup, (o 71 vex |9(1, X)| < 0

forevery T > 0.
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Let the spatial motion & = {(&,);>0; (Ilx) ek } be an E-valued Hunt process with its lifetime
denoted by ¢ and its transition semigroup denoted by (P;),o. Let the branching mechanism

be defined as a function on E X [0, c0) by
W(x,2) = —B(x)z + a(x)z* + / (e =1+ zr)n(x,dr), xeE,z>0,
0
with 8 € bABE,a € bpHABg and n(x,dy) being a kernel from E to (0, co) satisfying that

sup (y A yz)ﬂ(x, dy) < oo.
xeE (0,00)

Define an operator ¥ on p#r by

(F1)(x) :=y(x f(x), fepBexekE.

Let M, denote the space of all finite measures on E equipped with the weak topology. A
(&,)-superprocess is an My-valued Hunt process X = {(X;);»0; (Py)uem, } satisfying

P le XD = VD)t >0,ue My, f € bpBy, (3.1.4)

where, for each f € bpAg, the function (¢, x) — V,f(x) on [0,00) X E is the unique locally

bounded positive solution to the equation

v+ [ @vepes] =il rzoxer G1)

We refer our readers to [[16, 23] and [5€, Section 2.3 & Theorem 5.11] for detailed discussions
about the existence of such processes. Notice that we always have Py(X, = 0) = 1 for each
t > 0, i.e. the null measure 0 is an absorption state of the superprocess.

We will always assume that our superprocess is non-persistent:
Assumption 3.1. Ps (X; =0) > O foreach x € E and ¢t > 0.

By a size-biased transform of a measure we mean the following: For a non-negative
measurable function g on a measure space (D,.%p,D) with D(g) € (0,00), we define the
g-transform DY of the measure D by

g
dD? = —2—4D.
D(g)

Note that, the measure D is not necessarily a probability measure, but after the g-transform,
DY is always a probability measure.

Our first result is about a decomposition theorem of the size-biased transforms of super-
processes. To state it, we need to introduce the Kuznetsov measures (N, )£ (also known as

the excursion measures or N-measures) of the superprocess X.
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Lemma 3.1.1 ([56, Section 8.4 & Theorem 8.24]). Under Assumption B1, there exists an
unique family of o -finite measures (N, )< defined on the Skorokhod space of measure-valued

paths
W= {w = (w;);>0 : w is an My-valued cadlag function on [0, o0) having 0 as a trap}

such that
1. N {Vt > 0,w, =0} =0 foreach x € E;
2. Ny {wy # 0} =0 for each x € E;

3. foreach p € My, if N(dw) is a Poisson random measure on W with mean measure

N,(dw) := /ENx(dw),u(dx), we W,

then the process defined by

X, := u; X, := / w; N(dw), t>0,
W

is a realization of the superprocess {X; P, }.

The measures (N, ),cg are called the Kuznetsov measures of the superprocess X. Note
that, the superprocess X itself can be considered as a W-valued random element. Roughly
speaking, the branching property of superprocess says that X can be considered as an “infinitely
divisible” W-valued random element. The Kuznetsov measure N, can then be interpreted as
the “Lévy measure” of X under Ps_. We refer our readers to [24] and [56, Section 8.4] for
more details about such measures.

In the remainder of this chapter, we will always use (N,),cr to denote the Kuznetsov
measures of our superprocess X. We will always use w = (w,),o to denote a generic element

in W. With a slight abuse of notation, we always assume that our superprocess X is given by

Xo:=w; X := / w; N(dw), t>0,
W

where, for each u € My, {N;P,} is a Poisson random measure on W with mean measure
N,. Recall that, for any w € W and ¢t > 0, w; is a finite measure on E, and thus w,(f) =
/E f(x)w,(dx) for any f € pP.

Our first result is about the N(F)-transform of the superprocess X, where F is a non-
negative measurable function on W with N,[F] € (0,0) for a given u € M;. In this case,

according to Campbell’s formula, we have
P, [N(F)] = N,[F] € (0, 0).
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Therefore, both N/f — the F-transform of N, and PZ,V ) __ the N (F)-transform of P, are

well defined probability measures.

Theorem 3.1.2. Suppose that Assumption B holds. Let u € My and F be a non-negative
measurable function on W with N,(F) € (0,00) . Let {(Y;);50; Qu} be a W-valued random

element with law Nﬁ. Then we have {(X;);s0; P;V(F)} Jodd- {Xi + Y )i50: Py ® Q).

In order to prove Theorem B2, we develop a decomposition theorem for size-biased

transforms of Poisson random measures which we think should be of independent interest:

Theorem 3.1.3. Let (S,.) be a measurable space with a o -finite measure N. Let {N; P} be a
Poisson random measure on (S,.’) with mean measure N. Let g € p.¥ satisfy N(g) € (0, ).
Denote by N9 and PN9 the g-transform of N and the N(g)-transform of P, respectively.
Let {9;Q} be an S-valued random element with law NY. Then we have {N;PN9}
{N+69;P®Q}.

law

Define (S;),;>o the mean semigroup of the superprocess X by

S, f(x) := T [eh P& £(£)], x € E,t>0,f € pBe.

For each pu € My, we define (ull)(-) := fE IT,(-)u(dx). Note that ulIl is not necessarily a
probability measure. It is well known (see [56, Proposition 2.27] for example) that for each

1 EMpt>0and f € pAe,

PLIX, ()] = Nu[w (F)] = (uD[eh P ety ] = u(S,f). (3.1.6)

Thanks to Theorem BT, in order to study the size-biased transform of a superprocess
we only have to study the corresponding size-biased transform of its Kuznetsov measures. We
first consider the case when the function F in Theorem takes the form of F(w) = wr(g)
where T > 0 and g € p%g with u(Srg) € (0,00) for a given u € M;. In this case, according
to (B1LA), we have

P,[Xr(9)] = Ny [wr(g)] = (uID[eh P& g(Er)1r2] € (0,0).

Therefore, P @ __ the Xr(g)-transform of P, N @ __the wy(g)-transform of the Kuznetsov

measure N, and H/(,g’T) — the (efoT BE&s g(&r) 17~ )-transform of the measure ull, are all well

defined probability measures. Also note that, in this case, we have X7(g) = N(F), therefore

PXT (9)

= Pﬁf (F) Recall that the superprocess X itself can be considered as a W-valued random

element. Denote by P,(X € dw) the push-forward of P, under X, i.e., the distribution of X
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under P,. Then, P,(X € dw) is a probability measure on W. Recall that we always assume

that Assumption BT holds.

Definition 3.1.4. Suppose that u € My, T > 0 and g € pAg satisfy u(Srg) € (0,00). We say
{(E)o<t<r> Y)o<i <7075 PLg’T)} is a spine representation of N, @ if the following are true:

1. the spine process {(&;:)o<i <t PifJ’T)} is a copy of {(&)o<r <73 H,(f’T)};

2. conditioned on o (¢, : 0 < t < T), the immigration process {(K)OStsT;P/(f”T)} is an

M -valued process given by
Y, = / w;_ng(ds,dw), 0<t<T, (3.1.7)
(0,7]xW
where, ny is a Poisson random measure on [0,7'] X W with mean measure
m?(a’s,dw) = 2a(&)Ng, (dw) - ds + / yPys. (X € dw)n(&s,dy) - ds.  (3.1.8)

(0,00

We are now ready to present our theorem on the spine decomposition of superprocesses:

Theorem 3.1.5. Suppose that Assumption B holds. Suppose that u € My, T > 0 and
g € pBy satisfy u(Srg) € (0,00). Let {(&)o<i <1, (Y o<i<r0r; P} be a spine representation

. f.d.d. g
of N9, Then, {(1,),<rs P} =7 {(w))crs M)

As a simple consequence of Theorems and BT3, we have the following:

Corollary 3.1.6. Suppose that Assumption B holds. Suppose that u € My, T > 0 and
g € pABr satisfy u(Srg) € (0,00). Let {(¢:)o<i<1> Y )o<t <1, 0075 PL‘J’T)} be a spine representation
of N9 Then, {(X),0: P™ "} 2% {(X +%)z0: P @ P},

Corollary BT fl can be considered as a generalization of the classical spine decomposition
theorem for superprocesses developed in [25, 28, 57]. In these earlier papers, the testing
function g is chosen specifically to be the principal eigenfunction ¢ of the mean semigroup
of the superprocess (which will be introduced shortly). In the classical case (i.e. g = ¢), the
four families of probability measures (PffT(g))TZo, (Hf,g’T))Tzo, (PLQ’T))BO and (NZT(“’))bO are
all consistent, but in the general case (i.e. g # ¢), they are typically not consistent. More
details about these consistencies will be provided in Lemma B3°4 and Remark B376.

In the papers mentioned in the paragraph above, the Kuznetsov measures have already
been used to describe infinitesimal immigrations along the spine. However, our Theorem
BT provides another relation between immigration and the Kuznetsov measures: the total
immigration {(YI)IZO;PLQ’T) } actually has law of a size-biased transform of the Kuznetsov

measures. It seems that this fact has not been exploited before, even in the classical case.
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The study of the limit behavior of superprocesses X relies heavily on the spectral property

of the mean semigroup. In this chapter, we assume the following:

Assumption 3.2. There exist a o-finite Borel measure m with full support on E and a family

of strictly positive, bounded continuous functions {p(t,-,-) : t > 0} on E X E such that,

P f(x) = / Pt ) f)m(dy), 1> 0,x € E, f € by, (3.1.9)
E
/p(t,x, y)m(dx) <1, t>0,y €E, (3.1.10)
E
/ / p(t, x, y)’m(dx)m(dy) < oo, t >0, (3.1.11)
E JE

and that x fE p(t,x,y)*m(dy) and y — fE p(t, x, y)>m(dx) are both continuous on E.

In the reminder of this chapter, we will always use m to denote the reference measure in
Assumption B72.

Assumption is a pretty weak assumption. (B-T10) implies that the adjoint operator
P} of P, is also Markovian, and (B-T-1T)) implies that P, and P; are Hilbert-Schmidt operators.
Under Assumption B2, it is proved in [68] and [67] that the semigroup (P;),o and its adjoint
semigroup (P});»o are both strongly continuous semigroups of compact operators on L*(E, m).
According to [bY, Lemma 2.1], there exists a function ¢(z,x, y) on (0,00) X E X E which is

continuous in (x, y) for each r > 0 such that
e Pt p(t, x, y) < qt,x,y) < ¥ "p(t,x,y), 1> 0,x,y €E,
and that for any 7 > 0,x € E and f € bH,

S f(x) = /E a(t.x ) f ()m(dy). (3.1.12)

(From (BI6), we see that g(t, x, y)m(dy) can be roughly interpreted as the density of the
expected mass of X, at position y, under probability Ps_.) Define a family of transition kernels

(S;*)tzo on E by
So=1;, S fly):= / qt,x,y)f(x)m(dx), t>0,y€E,febAg.
E

It is clear that (S7),» is the adjoint semigroup of (S,);s0 in L*(E,m). It is proved in [68] and
[67] that (S;);>0 and (S}),»o are also strongly continuous semigroups of compact operators in
L*(E,m). Let L and L* be the generators of the semigroups (S;);so and (S}),»0, respectively.
Denote by o (L) and o(L*) the spectra of L and L*, respectively. According to [[73, Theorem
V.6.6.], A := supRe(o (L)) = supRe(o(L*)) is a common eigenvalue of multiplicity 1 for both
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L and L*. Using the argument in [6&], the eigenfunctions ¢ of L and ¢ of L* associated with
the eigenvalue A can be chosen to be strictly positive and continuous everywhere on E. We
further normalize ¢ and ¢* so that (¢, $),, = (#,¢*),, = 1. Moreover, for eacht > 0,x € E,
we have S;¢(x) = eY¢(x) and S;¢*(x) = e ¢*(x). We call ¢ the principal eigenfunction of

the mean semigroup (S;); 0.

Remark 3.1.7. Note that we do not require the operators (P, ), to be self-adjoint in L*(E,m),
i.e., we do not assume p(t,x,y) = p(t,y,x) for each x,y € E and t > 0. In other word, the
spatial motion & considered in this chapter is not necessarily a symmetric Markov process with

respect to the measure m. As a consequence, (S;),»o are not necessarily self-adjoint either.

We will use the following function
A(x) :=2a(x) + / y’n(x,dy), xe€E
(0,00)
in Assumption B3 below.

For all 1 > 0 and x € E, it is now clear that Ps_[X;(¢)] = S;¢(x) = eV p(x). If 1 > 0,
the mean of X,(¢) will increase exponentially; if 4 < 0, the mean of X;(¢) will decrease
exponentially; and if A = 0, the mean of X;(¢) will be a constant. Because of this, we say X is
supercritical, critical or subcritical, according to A > 0, 4 = 0 or 4 < 0, respectively. In this
chapter, we are mainly interested in critical superprocesses with finite second moments. So,

for the remainder of this chapter, we always assume the following:

Assumption 3.3. 1. the superprocess X is critical, i.e., 4 = 0;

2. the function @A : x — ¢(x)A(x) is bounded on E.

Assumption B3.(D) is satisfied, for example, when ¢ and A are bounded on E. These
conditions appeared in the literature and was used by [b&] in the proof of the Kolmogorov type
and the Yaglom type results for critical superprocesses.

Denote by M;f’ the collection of all the measures u € M, such that u(¢) € (0,00). It will
be proved in Proposition that P,[X,(¢)*] < oo for each u € Mjf and ¢t > 0 provided the
function ¢A : x — ¢(x)A(x) is bounded on E.

Taking u € M?%,T > Oand g = ¢ in Definition B-T4.(I), it will be proved in Lemma B34
that the family of probability measures (Hl(fb’T) )r>0 is consistent, i.e., there exists an E-valued

process {(&);0; I, } such that

d.d .
{(ft)OStsT;H,(,¢’T)} T2 {(&osi<rs I}, T > 0.
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The process {(£;);=0; I, } is exactly the spine process in the classical spine decomposition.

It will also be proved in Proposition that, under Assumptions Bl and B3, for

all u € M}Z’ and T > 0, we have

. T
M ur(@)) = (o [ (A0)Eds| € 0.0)

As a consequence, N,'j’T<¢)2 — the wr(¢)*-transform of N,,, and lzll(,T) — the ( /()T(Aqﬁ)(fs)ds)—
transform of H,,, are both well defined probability measures. Recall that we always assume

that Assumptions BT, and B3 hold.

Definition 3.1.8. Let u € M]‘f and 7 > 0. We say

{EDo<e<rs K, (fz/)KSl‘ST’ (Y )o<t<r»0r, (Yz/)KSt <T» n'T, (Xz’)KStST’ (Z)o<i<rs p,(,T)}

2
is a 2-spine representation of NZ’T(@ if the following are true:

1. the main spine {(§,)osi < pLT)} is a copy of {(&r)o<r<r3 ﬁ;(lT)};
2. conditioned on (&, )o<; <7, the splitting time « is a random variable taking values in [0, T

with law

.. Lo, <r(A)(&,)ds
P(T)(K € ds (é:t) <t< ) = ===t 5
g (Eozar 1 (Ag)(&,)dr

3. conditioned on (&;); <7 and «, the auxiliary spine (&¢])<:<r is defined such that

law

(€ Dozt PUCIE Y = {EDoisr— e b5 (3.1.13)

4. write 9 := 0 {(&)r<r> K (&))<t <1 }; conditioned on &, the main immigration (Y;)o<; <t
is given by

Y, = / w;_sngy(ds,dw), t€[0,T],
(0,7]xW
where n7 is a Poisson random measure on [0,7] X W with mean measure

mi(a’s, dw) :=2a(&)Ng, (dw) - ds + /

yPys,. (X € dw)n(é,dy) - ds;
(0,00)

5. conditioned on ¥, the auxiliary immigration (Y,), <, <r is given by
Y = / w,—sny(ds,dw), t e [kT],
(k,t]XW
where n’. is a Poisson random measure on [«,7] X W with mean measure

mf:T(ds,dw) = 2a(é;)Ng (dw) - ds + /( ) yPys,, (X € dw)r(é.,dy) - ds;
0,00 :
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6. conditioned on ¥, the splitting-time immigration (X/),<;<r is defined by

(X Dozt BuCID} 'L {(X)o<r<r—: Pe, ),

where, for each x € E, the probability measure P, is given by

20(X)Po(')+f(0 ) y*Pys, (In(x,dy) .

B , . ifA(X) >0,

P.(-) := 2000} fo o 70 d9) (3.1.14)
Po(-), if A(x) = 0.

7. Conditioned on ¢, the main immigration {Y,nz}, the auxiliary immigration {Y’,n%.}
and the splitting-time immigration X’ are mutually independent. Setting ¥ = 0 and

X/ = 0 for each r < «, the total immigration (Z;)o<;<r is given by

Z,=Y+Y' +X, 0<r<T.
We are now ready to state our 2-spine decomposition theorem for critical superprocesses:

Theorem 3.1.9. Suppose that Assumptions B, and hold. Let u € /\/(J‘,’> and T > 0.

Suppose that {(€)o<i<r> K (€] )e<r<r» Vo< <r> 00 (V) ezs <ro Wy (X i< (Z oo Py ) is a

2-spine representation ofNIIfT(d’)z. Then {(Z,); <t PLT) fodd- {(wt)tsT;N,'fT(q))z}.

As mentioned earlier in Subsection BT, this 2-spine decomposition theorem for super-
processes is an analog of the 2-spine decomposition theorem for Galton-Watson trees in [63],
and is closely related to the multi-spine theory appeared in [37], [B6], [45] and [T]. Of course,
depend on the choice of F, there are many versions of Theorem B-T-2. We only consider the
cases when F(w) takes the forms of w,(g) and w,(¢)?, because they are sufficient for our pur-
pose to give probabilistic proofs of the Kolmogorov type and Yaglom type results for critical
SUpPErprocesses.

We now turn our attention to the limit behavior of critical superprocesses. First, we want
to consider the asymptotic behavior of v,(x) := —logPs (X; = 0), where t > 0 and x € E.

(They are well defined thanks to Assumption B71.) From (B-T"4) and monotone convergence,

we have

v(x) = E}im Vi(01g)(x), t>0,x € E, (3.1.15)
and

P,(X, =0)=e*"), e Myt >0, (3.1.16)

where the operators (V;);so are given by (B14). We call (V)50 the cumulant semigroup
of the superprocess X, because it satisfies the semigroup property in the sense that, for all

f € pAr,t,s > 0and x € E, it holds that V;V, f(x) = V., f(x) (see [56, Theorem 2.21]).
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Let ¢ be a function on E X [0, c0) defined by

Yo(x,2) == ¥(x,2) + B(x)z = a(x)* + (e =1 +rz)n(x,dr), xe€E,z>0.
(0,00)

Let ¥, be an operator on pZA defined by

(Fo)(x) := do(x, f(x)), [ €pPp,x€E.

It is known, see [56, Theorem 2.23] for example, that for each f € bpHBg, (t,x) — V,f(x) is

the solution of the equation

Vif(x) + /Ot(S,_S‘POVSf)(x)ds =S f(x), t>20,xekE. (3.1.17)

Indeed, (B117) can be obtained from (B-1-3) using a Feynman-Kac type argument. It is also

clear that
Viug(x) = —log Ps [~ Xrlimooe Vs@1))] — _ lim logPs, [e-Xe-VsO@LEN]  (3.1.18)
= —f}l_r)l(}o ViVi(01g)(x) = v44(x), s, >0,x € E.

So, if we allow extended values, it follows from (B-T-17) and (B-T18) that we have the following

equation for (v;),>¢:
t
Upss(X) + / (S;_-Yov,15)(X)dr = S;v(x), x € E,t >0. (3.1.19)
0

In order to study the asymptotic behavior of (v,),o using (3:1-19), we need to understand the
asymptotic behavior of the mean semigroup (S;),;>o. The following assumption is commonly

used for this purpose:

Assumption 3.4. In addition to Assumption B2, we further assume that the mean semigroup
(8;)s>0 is intrinsically ultracontractive, that is, for each r > 0 there exists ¢; > 0 such that for

all x,y € E, we have ¢q(t,x,y) < ¢;¢(x)d*(y).

The concept of intrinsic ultracontractivity was first introduced by Davies and Simon [15]
in the symmetric setting and was extended to the non-symmetric setting in [47]. Assumption
B4 is a pretty strong condition on the mean semigroup (S;);»o. For instance, it excludes the
case of super Brownian motions in the whole space. However, it is satisfied in a lot of cases.
For a long list of (symmetric and non-symmetric) Markov processes satisfying Assumption
B4, see [bX].

A consequence of this assumption is that (see [47, Theorem 2.7]) there exist constants
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¢ > 0 and y > 0 such that

q(t.x.y)
$(x)¢*(y)

We will see in Subsection B32 that, under Assumption B2, the spine process {(&;);>0; (IL)xer }

l|<ce™, xeE;t>1. (3.1.20)

in the classical spine decomposition is a time homogeneous Markov process with invariant

measure ¢(x)¢*(x)m(dx). It can be verified that its transition density with respect to measure

d(x)p*(x)m(dx)is ;éct)’;;é’y)) . Therefore Assumption B4 implies that the spine process in classical
spine decomposition is exponentially ergodic.

Define v(dy) := ¢*(y)m(dy). Under Assumption B4, v(dy) is a finite measure on
E. In fact, according to (BI20), for + > 0 large enough, there is a ¢; > 0 such that
¢*(y) < q(t,x,y)(c])'¢~'(x), and clearly, the right hand of this inequality is integrable in
y with respect to measure m. Therefore, we can consider a superprocess X with initial
configuration v. Under Assumptions Bl and B4, it will be proved in Lemma that the
following statements are equivalent:

* S;vs(x) < oo for some s > 0,7 > 0 and some x € E;

 P,(X; =0) > 0 for some ¢t > 0.

Note that, in order to take advantage of (B-1.19), we need S;v,(x) to be finite at least for some

large s, > 0 and some x € E. Therefore, we also need the following assumption:

Assumption 3.5. In addition to Assumption B, we further assume that P, (X, = 0) > 0 for

some t > 0.

We are now ready to state our Kolmogorov type and Yaglom type limit results for

superprocesses:

Theorem 3.1.10. Suppose that Assumptions B3, and B3 hold. Then,

(1, D)
o0 2(AQ, P )

where m is the reference measure appeared in Assumption B2.

P, (X, # 0) ue M?

Theorem 3.1.11. Suppose that Assumptions 33, B4 and B3 hold. Let f € bp%’g and u € Mjf.
Then,

law 1

(XD RUCIX # O} =5 (07 P ($A.96 e,

where e is an exponential random variable with mean 1, and m is the reference measure in

Assumption B2.
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As mentioned earlier, our Kolmogorov type and Yaglom type results for critical super-
processes are established under slightly weaker conditions than [68]. We now make this more
precise. In [68], the authors considered a (&, )-superprocess {(X;);»0; (Pu)uem, } which also
satisfies Assumption BT, and B73.() as the basic setting. In addition to that, [68] assumed
the following

(a) the transition semigroup (P;) of the spatial motion is intrinsically ultracontractive,

(b) the principal eigenfunction of (P,) is bounded,

(c) the function A is bounded, and

(d) there exists 7y > O such that infcg Ps_(X;, = 0) > 0.
It is shown in [6&] that, under conditions (a) and (b), the mean semigroup (S;) is also intrin-
sically ultracontractive, and the principal eigenfunction ¢ of (S;) is also bounded. Therefore,
conditions (a), (b) and (c) combined together are stronger than our Assumption and B3.
Condition (d) is stronger than our Assumption B4 because according to (B-I.T6), we always

have the following:

PV(XZ = 0) = eXP{_<Uz,V>} = eXP{<log P6.(Xt = 0), V>}’ t>0.

3.2 Size-biased decomposition

3.2.1 Size-biased transform of Poisson random measures

In this subsection, we digress briefly from superprocesses and prove the size-biased
decomposition theorem for Poisson random measures, i.e., Theorem B13. Let (S,.%) be
a measurable space with a o-finite measure N. Let {N; P} be a Poisson random measure
on (S,.#) with mean measure N. Campbell’s theorem, see [49, Proof of Theorem 2.7] for

example, characterizes the law of {N; P} by its Laplace functionals:
Ple N9 = ¢ NI=) e p.7.

According to [4Y, Theorem 2.7], we also have that P[N(g)] = N(g) for each g € .¥ with

N(lg|) < co. By monotonicity, one can verify that
P[N(9)] = N(9). geps.
Lemma 3.2.1. Ifg € L'(N) and f € p., then N(g)e ™) is integrable and
P[N(g)e M| = P[e N |N[ge]. (3.2.1)
Furthermore, (B2X10) is true for each g, f € p if we allow extended values.
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Proof. Since N is a o-finite measure on (S,.”), there exists a strictly positive measurable
function % on S such that N(h) < co. According to [49, Theorem 2.7.], N(%) has finite mean.
Forany g € bp." := {g € p’ : ||h"'glle < o} and f € p.7, it is clear that N(g) and
N(g)e N are integrable. Therefore, by the dominated convergence theorem, we deduce that
P[N(g)e_N(f)] = P[—59|e:o€_N(f+0g)] = —59|e:oP[€_N(f+0g)]

= —59|9:06_N(1_e#+99)) = e_N(l_eff)ae)b:oN(l — e"U09)

= Ple N |N[ge™].
For any g € p.# and s € S, define ¢g"(s) := h(s)min{Ah(s)"'g(s),n}. Then (g™),cy is a
bp.#"-sequence which increasingly converges to g pointwise. Note that (3221)) is true for each
g™ and f. Letting n — oo, by monotonicity, we see that if we allow extended values, then

(B2Z) is true for each g, f € p.. In the case when g € L'(N), we simply consider its positive

and negative parts. O
Proof of Theorem B2 3. By Lemma BZXT], it is easy to see that, for any f € p.¥,

PNO[e™ND] = N(g)™ PIN(9)e "] = N(g)™' Ple M PIN[ge ]
= Ple NN [ ] = (P ® Q)[e N D] = (P @ Q)[e" N0,

which completes the proof. ]

Lemma 3.2.2. Forall g, f € L'(N) N L*(N), N(g)N(f) is integrable and

PIN(g)N(f)] = N(g)N(f) + N(g ). (3.2.2)
Furthermore, (B322) is true for all g, f € p.7 if we allow extended values.

Proof. Since N is a o-finite measure on (S,.7), there exists a strictly positive measurable
function 7 on S such that N(h) < co. Define h(s) := min{A(s), h(s)"/*} for each s € S.
It is clear that & is a strictly positive measurable function on § such that N(h) < oo and
N(h?) < o0. According to [49, Theorem 2.7], N(h) has finite 1st and 2nd moments. For any
g.f € bpS" :={g € pI : |h"'g|l < o0}, it is easy to see that N(g),N(f),N(f)N(g) are

integrable. Thus, using Lemma B2 and the dominated convergence theorem, we have
P[N(g)N(/)] = =P[dslo=oN(g)e "] = —84l4=0 P[N(g)e "]
= —(99|0:0P[3_N(9f)]N(ge_0f)
= —N[g10slo-0P[e "] = Bylo-oN(ge™*)

= —N(g)P[0slo=0e "] = N(8plg=0ge™")
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= N(g)N(f) + N(gf).

For any g, f € p. and s € S, define ¢g"(s) := h(s) min{h(s)"'g(s),n}. Then (g),cy is a
bp.#"-sequence which increasingly converges to g pointwise. Define £ similarly. Then from
what we have proved, (322) is true for g and . Letting n — oo, by monotonicity, (B-22)
is true for each g, f € p.7 if we allow extended values. In the case when g, f € L'(N)N L*(N)

we simply consider their positive and negative parts. O

3.2.2 Size-biased transform of the superprocesses

Let X = {(X;)i>0; (Pu)uem, } be the (&,¢)-superprocess introduced in Subsection
which satisfies Assumption B1l. In this subsection, we will give a proof of Theorem BT2.
Recall that, for any 4 € My, {N;P,} is a Poisson random measure with mean measure N,,,

and our (&, )-superprocess (X;);>o is given by
Xo:=pw  X():=Nlw(), >0

For any T > 0, we write (K, f) € K7 if f : (s,x) — fi(x) is a bounded non-negative
Borel function on (0,7] X E and K is an atomic measure on (0,7’] with finitely many atoms.

For any (K, f) € Kr and any M -valued process (¥;),~o, we define the random variable
Kl r(Y) = / Y,_(f)K(dr), sel0,T].
(s.T]

It is clear that the two M-valued processes (Y;);~o and (X;),~o have same finite-dimensional

distributions if and only if
Ele <0n®] = Bl 0n™), (K, f) € K. T > 0.

Proof of Theorem B 2. Since N,(F) € (0,00), it follows from Campbell’s formula that
P.[N(F)] = N,(F) € (0,00). Therefore, P}’ (F) _ the N(F)-transform of I1,, and NI —
the F-transform of IN,,, are both well defined probability measures. Notice that, under P;V (F),
Xo = ( is deterministic, and so is Xy + ¥, under P, ® Q,, since X, + Yj = u. Therefore, we

only have to show that,
(X0 PYOYET (X, 4 Y)120: P © Q).
It then immediately follows from Theorem BT that
(N;PYOYIE (N 4 5,5 P, © Q).
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This completes the proof since for any 7' > 0 and (K, f) € K7,
P;v(m[ e—Kg;,TJ<X>] _ PIIIV(F)[ e—N[K{(;,TJ(w)]] = (P, ® Q) e—<N+6y>[K{;,TJ<w>]]

— (P'u ® Qﬂ)[e_K(f()’T](X+Y)]- D

3.3 Spine decomposition of superprocesses

The classical spine decomposition theorem characterizes the superprocess X after a
martingale change of measure, and has been investigated in the literature in different situations,
see [25, 28, 57] for example. The martingale that is used for the change of measure is defined
by M, := e~YX,(¢), where ¢ is the principal eigenfunction of the generator of the mean
semigroup of X with A being the corresponding eigenvalue. After this martingale change of
measure, the transformed process preserves the Markov property, and thus, to prove the spine
decomposition theorem, one only needs to focus on the one-dimensional distribution of the
transformed process.

In this section, we generalize this classical result by considering the X7 (g)-transform of
the superprocess X, where ¢ is a non-negative Borel function on E. If g is not equal to ¢, the
X7(g)-transformed process is typically not a Markov process. So we have to use a different
method to develop the theorem. Thanks to Theorem BT, we only have to consider the

wr(g)-transform of the Kuznetsov measures.

3.3.1 Spine decomposition theorem

Let X = {(X;)i»0; (Pu)uem, } be the (&,¢)-superprocess introduced in Subsection
which satisfies Assumption Bl In this subsection, we will give a proof of Theorem BT3.
Recall that (N, ), are the Kuznetsov measures defined in Lemma B1T1. We now recall a

result from [56] which is useful for calculations related to (N, ) cf.

Lemma 3.3.1 ([56, Theorems 5.15 and 8.23]). Under Assumption B, for all T > 0 and
(K, f) € Kr, we have

N, [1 - e 6] = u(u,) = —log P, [e X6r1™], s € [0.T]1 € M;,

where the function u : (s,x) — ug(x) on [0,T] X E is the unique bounded positive solution to

the following integral equation:

T
w0 =1L, k() - / (¥u,)&-)dr|. s €0.T]x € E.

(s, T
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We now prove the following lemmas:

Lemma 3.3.2. Forall x € E,T > 0,(K, f) € Ky and g € pABrg, we have
NX[wT(g)e‘K‘(ﬁ,nW] = Hx[g(fT)e_/oT W(é’”s,us(és))db'], (3.3.1)
where

U'(x,2) = 0.0 (x,z) = —B(x) + 2a(x)z + / (1-e")yn(x,dy), x€E,z>0,
(0,00)

and u : (s,x) — uy(x) on [0,T] X E is defined in Lemma B3

Proof. We first prove assertion (B331)) in the case when g € bpZr. Throughout this proof,
we fix (K, f) € K7 and consider 0 < 6 < 1. Define

u¥(x) 1= N [1 = e Kon@or@0] g5 0 x e E. (332)
Let
K(dr) := o<, rK(dr) + 67(dr),
fr = Yoorar fr + L (KT fr + 09).
Then (K, f) € K¢ and (337) can be rewritten as
ul(x) ;=N [1- e_K{;Tl(w)], s>0,xeE.

It follows from Lemma B3 that, for any 6 > 0, (s, x) > u%(x) is the unique bounded positive

solution to the equation

£ =] [ ek - / (u)(E-)dr|. sel0T)xeE,

(s.T]

which is equivalent to

T
d =1 [ pieok@n oge) - [ wdie-gdr]. 633

(s,T]

We claim that u%(x) is differentiable in 6 at § = 0. In fact, since

| o Kl r@)-wr—s(0g) _ e—K{s,n<w>|
2 <wr_(g), 0<6<1, (3.3.4)
and
T-s
N, [wr—y(9)] = Sr_sg(x) = I [eh P& g )] < eTIPl||g],, (3.3.5)
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it follows from (B32) and the dominated convergence theorem that
1y (x) = Ggloou (x) = Ny [wr_,(g)e Xor1)] < T IBl g . (33.6)
From (B32), we also have the following upper bound for u?(x) with 0 < 6 < I:
ul(x) < N, | /( K + wr4(09)] (3.3.7)
s,T

_ /( RATSGALCORENTR)
< L (| fLoK (O, T]) + lglle) = Lo.

By elementary analysis, one can verify that, for each L > 0, there exists a constant Cy, ;, > 0

such that foreach x € Fand 0 < z,zp < L,

lW(x,z0) — ¥ (x,2)] < Cy,Llz = 20 (3.3.8)

In fact, one can choose Cy 1. := ||Bllo + 2Ll + max{L, 1} sup, g /(0 oW A yP)n(x,dy).
This upper bound also implies that

lW'(x,2)] < Cyr, x€E,0<z<L.
Therefore, we can verify that IT,[ fs T(‘Puf )(&,_5)dr] is differentiable in 6 at & = 0. In fact, by

(B3XR), (B33, (3372), (334) and (B33), we have

|(Pu?)(x) ; (Pu)(x)| < Cw’Loluf(X) ; 1y (x)]

<Cyr- €T”ﬁ”°°||g||oo, 0<6<1.

Therefore, by the bounded convergence theorem, we have

koo, | / v dr] = 1| / el iG], (339

Now, taking dg|go on the both sides of (3373), we obtain from (B3:9) that

T
10 = ]gE- - [ W (e dr]. seTlxeE (310

Notice that the function i : (s,x) +— ii,(x) is bounded on [0,7] x E by e’ ¥l~||g|l; g is
bounded on E by |[|g|lw; and ¥’'(x,u’(x)) is bounded on E by C, r,. These bounds allow us
to apply the classical Feynman-Kac formula, see [23, Lemma A.1.5] for example, to equation
(B310) and get that

io(x) = T [g(&p)e b ¥ (E (e (33.11)
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The desired result when g € bp % then follows from (B3.6) and (BE3.11).
In the case when g € p &g, we write g"’(x) := min{g(x),n} for x € E and n € N. Then,

from what we have proved, we know that
_ f T ,
Nx[wT(g("))e K(O,T](w)] - Hx[g(")(fr)e_fo w(fs,us(fs))ds]’ neN.

Letting n — co we complete the proof. [

Lemma 3.3.3. Let T > 0,k € [0,T] and (K, f) € Kr. Let p € My and g € pABg satisfy
that u(Srg) € (0,00). Suppose that {(&;)o<i<1» (Y7 )o<t <7, 075 P,(f’r)} is a spine representation of

N,lfT(g). Then, we have

T
~ log PloT[e Kieri ] = / U§(Esmrs s (E-1)ds, (33.12)
k
where the function u is defined in Lemma B3I

Proof. Throughout this proof, we denote by n;_;, and m?_k the restriction of ny and mi
on [0,T — k] X W respectively. It follows from properties of Poisson random measures that,
conditioned on &, ny_; is a Poisson random measure with mean measure mi_k.

It follows from (B-17) and Fubini’s theorem that
Kin®= [ YethkG@n) (33.13)
(k.T]
- [k Wo—tr-s () (ds. )
(k.T] (0,r—k]x M
-/ np(ds,dw) [ wgeq(f)K(dr)
(0,T-k]xM;y (k+s,T]

= / K(];HS’T](w)nT_k(ds, dw).

Conditioned on &, it follows from Campbell’s formula and Lemma B3l that
—log P,(?’T>[e—K<’Z,T]<Y>|€] = —log PY" [e—/ Kl i (ds, )
) ./(1 - e_K(J;“’T](w))mi—k(ds, dw)
Tk )
B / (za(é‘:s)Nfs [1 - e_K(k+s,T](w)]
0
' / YRy, [1 = ¢ Nteoss (g, dy))ds
(0,00) =

T-k
- [ (et [ (- e yni.dy)as
0 (0,00)

T-k T
. /O U (£t i (£0))ds = /k U (ot tts(64-1)) d,
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as desired. O]

Proof of Theorem BZI3. We only need to prove that

: f.dd. .
(o< PYTH ST {)ocr<rs N7,

since both {Yy; P,(,g’T)} and {wy; N,’fr(g)} are deterministic with common value 0. By Lemma

and B33, we have

—KY) o (w - k' (w
Nllfr(g) [e K(O’Tl( )] = Nﬂ[wT(g)] IN# [wT(g)e K(O,TJ( )]
Ty u N
= (Srg) T, [g(&r)e b ¥/ EusEnds]
T, . ) s
= HLg’T)[e_fO lﬂg(fs,us(fs))dS] — PLg,T) [P/(Jg,T)[e K“”T](Y)|§]]

- p;lg,n[e—K{;,ﬂ(Y)}

The proof is complete. ]

3.3.2 Classical spine decomposition theorem

Let X = {(X;)i>0; (Pu)uem, } be the (&,¢)-superprocess introduced in Subsection
which satisfies Assumptions BT and B2. In this subsection, we will recover the classical spine
decomposition theorem for X which is developed previously in [25, 28, 57].

It is clear that {(e""qﬁ(f,)efotB(&‘)dsl,q),zo; (ITy)xee} is a non-negative martingale. De-
note by {(&),s0; (ITy)xcr} the martingale transform (also known as Doob’s A-transform) of
{(&)rs0; (I1y)xecg } via this martingale in the sense that

dTL| 5 _ &)

t
el ﬁ(f“‘)dsltq, xeE,t >0,

where (ﬁ,‘f)tzo is the natural filtration of the spatial motion £. It can be shown that (see [27] for
example) {(&,)r0; (Iy)xcx} is a time homogeneous Markov process. Its semigroup is Doob’s

h-transform of (S,),»o with & = ¢ and its transition density with respect to the measure m is

q(t,x,y) := e_’"Mq(t, xy), xye€kEt>0.

$(x)
It can also be verified that ¢(x)¢*(x)m(dx) is an invariant measure for {(&,),;50; (I )xer }.
Recall that, for each T > 0, I1""" is defined as the (eh BlEs (&)1 1 )-transform of the
measure ull(-) := fE I, (-)u(dx).

Lemma 3.3.4. Let u € M? Define a probability measure IL,(+) := u(¢)™! /E SOOI () u(dx).

law

Then, for each T > 0, we have {(ft)OStsﬁnl(f’T)} = {(‘ft)OStsT;H,u}'
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Proof. Let A € ﬂf . Then we have

(UID)[14eh PENS p(g )1 ]
(uIT)[eh BEs g 1, ]
= 1(@) " (UID[1ge T eh BE g )17, ]

= (o)™ / ML [1e ™ ek PE5 g1 ] pu(di)
E

(¢,7) —
Hﬂ (A) -

= u()” /E H(TLL(A) u(dx) = TL,(A). =

Fix a measure u € Mj‘f. Define M, := e Y X,(¢) for each t > 0. It is clear that
{(M;);>0; P, } is a non-negative martingale. Let {(X;);>0; PjY } be the martingale transform of
{(X¢)r>0; P, } via this martingale in the sense that

dP}| zx M,
dP,ul?ﬁx . :u(d)),

We now give the classical spine decomposition theorem:

Theorem 3.3.5 (Spine decomposition, [25, 28, 57]). Suppose that Assumptions B and B2
hold. Let u € M? Let the spine immigration {(&,);s0,(¥;)=0,0; P, } be defined as follows:
1. the spine process {(£,);=0; Py} is a copy of {(&)r=03 T, };

2. the immigration process {(Y;);s0; P, } is an Mg-valued process given by
Y, = / w,_n(ds,dw), t>0,
(0,¢]xW

where, conditioned on &, n is a Poisson random measure on [0,00) X W with mean
measure
m¢(ds, dw) := 20(&5)Ng, (dw) - ds + / yP,s. (X € dw)n(é,,dy) - ds.
(0,00) )

f.dd. R
Then, {(Xt)tzo;Pﬁ/I} = {(X; +Y)is0;: P, @ P}

Proof. Fix T > 0. We only need to show that

d.d. .
{(X)ier: PPY T E5 (X 4 V)i P @ B,
From Lemma B34, we can verify that
. f.d.d. .
{(V)e<rs P} =7 {0 PPT) (3.3.14)

Also it follows easily from the definitions of Pfy and PffT @) that

My f-dd.

(X< Py} =7 (X< PRT Y. (3.3.15)
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The desired result then follows from Corollary BT6. [

Remark 3.3.6. Lemma B34 indicates that {(&;)o</<7; Hff”T)} are consistent. From (B33139)
we have that {(X;)o<s<73 P,)fT("’)} are consistent. From (B314) we have that {(¥;);<7; P(¢’T) }

. . d.d
are consistent. According to Theorem B3, we have {(w,);<r; NZ’T("’)} T {Y));<1: P (¢’T>}

which implies that {(w;);<r; NZ’T(¢)} are also consistent.

3.4 2-spine decomposition of critical superprocesses

3.4.1 Second moment formula

Let X = {(X;)i»0; (Pu)uem, } be the (&,¢)-superprocess introduced in Subsection
which satisfies Assumptions B, and B3. In this subsection, we give a second moment

formula for superprocesses.

Lemma 3.4.1. Suppose that Assumptions B, B2 and B3 hold. Let g, f € bp B, u € M¢

and t > 0. Suppose that {(&)o<s <, (Y )o<s<,,n,,P(g D) is the spine representation of Nw’(g)

Then,
POy, (f)1¢] = /O AE) - (S )ENds < ] AGlI6™ Flle BYD-as.

Proof. Define G(s,w) := 1y ,w,_4(f) forall s > 0 and w € W. Under Assumption B33, it is
clear from (B1-R) that

mé (G) = / D&M, [y (f)]ds + / ds / UP o [Xoes(F)e(&sndy)
- / 20(&y) - (Ss F)Eds + / ds / 02 (S )& dy)
0 0 (0,00)

- /O AE) - (S f)(E)dS.

Since, conditioned on &, {n,;l')ﬁf’"t)} is a Poisson random measure on [0,7] X W with mean

measure mf, we conclude from Campbell’s theorem that

PO (HIE] = P[0, (G)é] = m (G) = /0 A& - (Sims f)(Eds, PY-as..
Noticing that

/0 A (Sisf)(ENds = /0 [ADS'S,-(6 - 67 PIENdSs < | ABoll6™ F e
we have our result as desired. OJ
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Proposition 3.4.2. Under Assumptions B, and B3, for all g,f € bA%, u € M? and
t > 0, we have that X,(g)X,(f) is integrable with respect to P, and

PX@X (] = (059000 + L [@79)E) [ AE)- Seuieds|. G

Proof. We first consider the case when g, f € bp%’g In this case, the right hand of (B241)) is
finite. Actually, by Lemma B4, the right side of (B-41)) is less than or equal to

(1 S @)t Se Y + (DI [ (67 9) (D]t Adllolld ™" fllso
<3 + (i P)tI|ABlloll ' glloll ™" flleo < 0.

We can also assume that m(g) > 0. Since if g € bpABr with m(g) = 0, then according to
(B112), (B18) and Lemma B34, we have

Sig(x) = /E q(t,x,y)g(y)m(dy) =0, t>0,x€E,

P.[X,(9)] = u(Sig9) =0, pe Mgt >0,

MLl g(6)] = e[ g(e)] = “O9) _,
u(e)

1 E Mgt >0.

These imply that the both sides of (B-41l) are 0.

Now in the case when g, f € bp%ﬁ and m(g) > 0, from Theorem B-T3 and Lemma B-41]

we know that, for each x € E,
N Ow, ()] = PG = PYO[PYOIY(f)IE]
5y 5y 5y

v [ A (S ds] = 1| / A (S e s

= 5,900 L@k e [ A (S eds).

Therefore,

N [w;(g)w: ()] = Ny[w,(9)INy P [wi (f)]

- i [gt@peh e [ A (S Eds|
= 6L (97 &) /0 A (S €S-
Integrating with 1 € M?, we have
g (0] = o)L [0 96 [ A (neds] G4
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It then follows from Lemmas BT1 and B2 that

Pl (9)X, ()] = () I )] + M (g
= (S0 m S + (|67 9 [ (AS-Eds

as desired. For the more general case when g, f € b2, we only need to consider their positive

and negative parts. O

3.4.2 2-Spine decomposition theorem

Let X = {(X;)i>0; (Pu)uem, } be the (&,1)-superprocess introduced in Subsection
which satisfies Assumptions BT, and B3. In this subsection, we will prove the 2-spine
decomposition theorem for superprocesses, i.e., Theorem B-1T9.

First, we give a lemma which says that N,'f’(‘ﬁ)z — the wy(¢)*-transform of N,,, and f[f,T)

— the ( /OT (A@)(&,)ds)-transform of H,,, are both well defined probability measures.
Lemma 3.4.3. N, [wr(¢)*] = ,u(¢)f[,1 [fOT(A¢)(§S)ds] € (0,00) forall u € M]'f and T > 0.

Proof. According to (B242), we have

lor (7] = o), [ (aox€)ds] < @A, < o

According to N, [wr(¢)] = u(¢) > 0, we must have N, [wr(¢)*] > 0. O

Remark 3.4.4. Note that NZ}T("S)Z is also the wy(¢)-transform of NZ}T("S). In fact, the size-biased
transforms satisfy the following chain rule: If g, f are non-negative measurable functions on
some measure space (D,.%p,D) with D(g) € (0,) and D(g f) € (0,00). Denoted by D? the
g-transform of D, then (D7) = D%, i.e., the f-transform of DY is the g f-transform of D. This
is true because it is easy to see that
g(5)f(s)D(ds) _ f(s)D?(ds)
Dlgf] Do[f]
For each u € M}p let the spine immigration {(&,); 0, (¥;);=0,0; P, } be given by Theorem
B35. We first state a property of {Y; P, }, which is needed later.

DY (ds) := = (DY (ds), seS.

Lemma 3.4.5. P, (Y, = 0) = 0 for all y € M} and t > 0.
Proof. According to Theorem BTH, we have

P, (Y, = 0) = NP (w,(¢) = 0) = (1 )™ Ny [wi(¢)1y(9)=0] = 0. O
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The proof of Theorem B 1Y relies on the following lemma:
Lemma 3.4.6. Forany ue M? T > 0and (K, f) € Ky, we have
P [Yr(@)e " 0n ]
: Kl (¥ ! : K ")1p K/ (x
=P, e 0rVlg] / (AQ)(E P, [e eV Py, [e” r s,
0
where Py is defined by (B114) for each x € E.

Proof. Define G(s,w) := 1y.7wr_s(¢) for all s > 0 and w € W. Notice that from (B313),
under the probability P we have Yr(¢) = n(G) and K
B4 and B4 we know that

K. T](Y) = n(k’ (5,71 (w)). From Lemmas

0 < P,[Yr(¢)|¢] < 0o, P,-as..
Therefore, we can apply Lemma B2l to the conditioned Poisson random measure n, and get
P,[n(G)e ™ bn@|g] = P, [ Ko@) | £Jmé [Ge Kb, (34.3)

It is clear from the definitions of m¢, N“(®) and PM that

T .
mé[Ge o] = / (20, [wr (@) n ™) (3.4.4)

0

¥ / yPys,, [XT-s(¢)e_K<f4”(X)]ﬂ(§s, dy))ds

(0,20) B
T p
:/ (2agyenyr e eni®)
O S

o [ atemit, [l dy)ds

(0,00)
According to Theorem BTH, we have
Nor= @[ Ken®] = By [e7K0r®] = By [ Ko Ryl K0n ™), (3.45)

where we used the fact that Py(X; = 0, for any ¢ > 0) = 1. It follows from Theorem B33 that
forany s € [0,T],x € E and y € (0, ),

PY [ K6n®] = by [ KeariX] = Py [ KEnO]P, 5 [ KX, (3.4.6)
Plugging (B249) and (B-4-6) back into (B24-4) and rearranging terms, we have that
mé[Ge ¥r(w))] (3.4.7)

:/ (2(a¢)(§s)P5§S [e_K(f“’T](Y)]PO[e_K{v,T](X)]
0
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. o et
+ A Y HENRs [Py e Ko ®(e,, dy) )ds.

T . f
_ / (e Py, [ Kbri™)
0

Plugging (B-477) back into (B-43), we get the desired result. [

Proof of Theorem BZL9. Note that {Zo;f’,(f)} and {wO;N,'fT(‘p)z} are both deterministic with
common value 0. So we only have to prove {(Zt)0<,sT;PLT) Jodd {(wt)0<t$T;NZ)T(¢)2}' In
order to show this, according to Theorem and Remark B 4.4, we only need to show that
{(Z)o<i<T3 P/(,T)} is the Y7 (¢)-transform of process {(Y;)o<;<7; Pﬂ}.

Let (K, f) € Kr. Similar to (B313), we have K/, ;. (¥) = ng[K!, Jand K/ . (¥') =

n; [K(J; +.’T]] for each r < T. Therefore, using Campbell’s theorem and an argument similar to

that used in the proof of Lemma B33, one can verify that

T
—log i'),,[e—KfS,rﬁY)g] = /o W (€ us(€s))ds (3.4.8)

and .
—logpﬂ[e_K{(;vTJ(Y’)Kﬁ]: / Wi (€L us(€)))ds, (3.4.9)

where u : (s,x) — uy(x) is the function on [0,7] X E defined in Lemma B31l. It is then clear

from (B49), (371 13) and Lemma that

.o f ’ oo T ’ ’ ’ o
B e Kon™)|g, k] = B, [e e Y& us@ds 2 4] (3.4.10)
= T, e} hEraEds) = Ps, [ KoY, _,
By the construction of the splitting immigration X’ at time «, we also have
.. _xf ’ =~ _xf
Bl on™ @] = P, [ 01| . (34.11)

Using (B4.R), (3:4.10), (B141T) and the construction of the 2-spine immigration, we deduce
that

Bl K0r D) k] = B, [B,[e 01 |9]|¢, k]

— 1")'“ PH [e_K(fO,T](Y) |g]f)ﬂ [e_K(]:),TJ(Y’) |g]f)ﬂ [e_K({)’TJ(X,) |g] ‘é_“, K]

T , . xS —~ i/
= e_f() wo(gs"us(érs))dspdfr [e K(r,T](Y)]P‘fr [e K(r.T](X):”

r=k’
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Chapter 3 Spine decompositions of critical superprocesses: Yaglom type result

Therefore, from the conditioned law of « given &, we have

P, eF0n?)g] (3.4.12)

~ [ (&g &nds  pT N

e ) o >

T M avE)d /0 (AP)E s, [e KoM |Py, [P ]dr
0 r)ar

Taking expectation, we get that

.. f
B, [ 0ri®)

~ W& usEds T . _
"= an{ / (ADNEPs,, [e™ e B, [ ¥}
J (Ag)(&)dr  Jo |
~ W Eus&ds  pT ) _
=1, {—— | A0 a, L6 B [e e har)
ML.[ [, (A)(&)dr] Jo
p 1o Kb T _
D) .”{ .Pﬂ[i 0.1 €] / (AB)E )P, [e—K(];’TJ(Y)]Pgr[e—K{i’TJ(X)]d,,}
Pl (Ag)&)dr] Jo |
Lemm:am P {Pﬂ[Ynglﬁ)e_K({),T](Y”é:]} _ P#[Y];(gf))e_K({),T](Y)]
g P,[Yr(¢)] P,[Yr(¢)]

where in the second equality we used the definition of f[flT) . The display above says that

(Z;)o<:t <t is the Yr(¢)-transform of the process {(¥;)o<;<7; Pﬂ}, as desired. O

3.5 The asymptotic behavior of critical superprocesses

3.5.1 Intrinsic ultracontractivity

Let {(X;)r20; (Pu)uem, } be the (£, ¢)-superprocess introduced in Subsection which
satisfies Assumptions Bl and B-4. In this subsection, we give some more results related to

intrinsic ultracontractivity.

Lemma 3.5.1. Suppose that F(x,u,t) is a bounded Borel function on E X [0, 1] X [0, 00) such

that F(x,u) := lim,_,. F(x,u,t) exists for all x € E and u € [0, 1]. Then we have,

! 2y [ )
F(futa u, t)du t—) <F(a l/l), ¢¢ >mdu, X € E
0 - 0

Proof. We first show that

IL[F (s, )] — (F(,u),¢¢" ), x € E,u € (0,1). (3.5.1)

r—o00
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In fact,
g(ut, x, y)

e (607)(y)

Note that f(¢¢*)(y)m(dy) is a finite measure, (y,r) +— ‘f;“(;;;c(’yy))F(y, u,t) is bounded by (1 +

ce))||F||o fort > u~!, and ‘i;”(; ;‘( y))F(y, u,t) — F(y,u). Using the bounded convergence
t—00

theorem, we get (35.1]). By Fubini’s theorem,

IL[F(unu,0)] = | = F(y,u,0)(¢¢")(y)m(dy).

1 1
Hx[./o F(fut,u,t)du]:/ov I [F(£up u,t)]du, x€E.

Since I1,[F(&,,u,t)] is bounded by ||F|l and IT[F (£, u, t)] (F( u),¢¢*),, by the

bounded convergence theorem, we get

I | /0 1 F (& u,t)dul —cp = /0 1(F(-,u),¢¢*)mdu.
Using (BI2) and a similar argument, one can verify that for any 0 < u < v < 1,
L [F (s s 1)F (€01, 0,1)]
= [ [t )0 = 08,0, g P gyt
s (F ). 08V FC0). 08

The above convergence is also true for 0 < v < u < 1 since the limit is symmetric in # and v.

We have again, by Fubini’s theorem and the bounded convergence theorem,
I, [( /01 F(&.:,u, t)du)2] = /01 du /01 IL [F(Eusrt, 1) F(&yp,0,1)]dv — cr.
Finally, we have
I, [( /01 F(&uou,t)du — cF)z]

= Hx[(/ol F(fu,,u,t)du)z] —ZCFﬂx[/Ol F(éuu,t)du| + cx

— 0

t—o00

b

as desired. O]

As mentioned earlier in Subsection B-17, in order to study the asymptotic behavior of
(vy)s >0 and take advantage of (B-1-19), we need S,v;(x) to be finite at least for some large s,z > 0

and for some x € E. The following lemma addresses this need.

Lemma 3.5.2. Under Assumption Bl and B4, the following statements are equivalent.
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Chapter 3 Spine decompositions of critical superprocesses: Yaglom type result

(1) S;v5(x) < oo for some s > 0,t >0 and x € E.

(1”) There is an sy > 0 such that for any s > so, t > 0 and x € E, we have S;vs(x) < 0.
(2) (vg, ") < 00 for some s > 0.

(2") There is an sy > 0 such that for any s > s,, we have (v, ¢*),, < co.

(3) There is an sy > 0 such that for any s > sy, we have v; € bp%ﬁ.

4) P,(X; =0)> 0 for somet > 0.

(5) ¢~ 'v, converges to 0 uniformly when t — .

(6) Forany ue M?, P,(3t >0, s1.X, =0)=1.

Proof. We first give some estimates. In this proof, we allow the extended value +oco. According

to (BIT6H) and the fact that 0 is an absorption state of the superprocess X, we have

<USO’ ¢*>m = log Pv(Xso = 0) (352)
2 _lOg PV(XY = 0) = <US’ ¢*>m7 0 < 80 <s.

According to Assumption B4, we have for each ¢ > 0, there is a ¢, > 0 such that ¢(¢, x, y) <
c:9(x)¢*(y). Using an argument similar to that of [47, Proposition 2.5], we have for each ¢ > 0,

there is a ¢, < 0 such that g(¢, x, y) > ¢/¢(x)¢*(y). Therefore, we have
P(x){vs, @ Imc; < Sivs(x) < G(X) (U5, @ ey, s> 0,0 >0,x € E. (3.5.3)

Let ¢,y > 0 be the constants in (B2I-20). Notice that ¢ is strictly positive, using (31-17), one
can verify that
V) _ S
P(x) — P(x)
Taking f = V;(61f) in (B34) and letting § — oo, by (B-I13) and (B-I_IR), we have that,

<(I+ce”){f,¢"), f€bpPBr,xckE:t>]1. (3.5.4)

U0 1y oY (0 ¢V x € Eys > 0,6 > 1, (3.5.5)
$(x)
We can also verify that
Sivs(x) < (167 05 IS 4(x) = 67 05 llwp(x) 51> 0,x € E. (3.5.6)

Now, we are ready to give the proof of this lemma using the following steps: (1’) =
H=2)=2)=03)=(1")and 2) = (5) = (6) = (4) = (2). In fact, it is obvious that
(1’ = (1). For (1) = (2) we use (B53). For (2) = (2’) we use (332). For (2') = (3) we
use (333). For (3) = (1) we use (B3.8).

For (2) = (5), we follow the argument in [68, Lemma 3.3]. Note that, from what we

have proved, (2) is equivalent to (1),(1”),(2’) and (3). Integrating (B3-1_11) with respect to the
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measure v, by Fubini’s theorem and monotonicity, we have that, for any f € pZA and t > 0,

F 8 m = 5,0 0 = (Suf 8 (3:57)
= 8+ [ (1 ¥V f 6"l
= Wf 6+ [ Y, £,
Define
o(x) = lim u,(x) = lim(~log Ps, (X, = 0)) = ~logPs, (31 > 0, 5. X, = 0).

Since v,(x) = —logPs (X; = 0) is non-increasing in ¢, and by (3), we know that v, € bp,%’z
for t large enough. Therefore, we have v € bp%ﬁ C L*(E,m). Taking f = V,(61g) in (B30)

and letting & — oo, by monotonicity and (2’), we have that, there is an sy > 0 such that

t
/ <IPOUr+s, ¢*>mdr = <Us, ¢*>m - <vt+s, ¢*>m, s > 5o, > 0. (358)
0

Letting s — oo, by monotonicity, we have

/ (Pov, 9" )mdr = 1{¥o0, ¢ )m = (0, )m = (0, ¢")m = 0.
0

Since ¢* is strictly positive on E, we must have Wy(v) = 0,m-a.e.. This, with (B3-.9), implies
that S;Wy(v) = 0 for any r > 0. By (1’), we know that S,v,(x) take finite value for s large
enough. Letting s — oo in the (B-1-19), by monotonicity, we have

v(x) = S;v(x) - /0 S WYo(v)(x)dr = S;v(x), x€E,t >0,

which says that the non-negative function v, if not identically 0, is an eigenfunction of L
corresponding to A = 0, where L is the generator of the semigroups (S; ). Since v € L*(E, m),
by the uniqueness of the eigenfunction in L?*(E,m) corresponding to A = 0, there is a constant
¢ € R, such that v(x) = c¢(x) for all x € E. So with Wy(v) = 0,m-a.e., we must have v = 0.
Using the fact that v,(x) converges to 0 pointwise, by monotonicity and (B335), we can verify

the desired result (5).

For (5) = (6), note that, by the definition of v,, for any u € M?, we have

—logP,{3r > 0, s.t. X, =0} = lim(-logP,(X; =0)) = lim{u,v,) = 0.
t—o0 1—00

Finally, note that (6) = (4) and (4) = (2) are obvious. O
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Chapter 3 Spine decompositions of critical superprocesses: Yaglom type result

3.5.2 Kolmogorov type result

Let {(X:)r20; (Pu)uem, } be the (&, ¢)-superprocess introduced in Subsection B2 which
satisfies Assumptions B3 and B4 and B3. In this subsection, we will give a proof of Theorem
BTT10. Thanks to Lemma B3, we know that each of the statements in is true. In

particular, v,(x)/¢(x) converges to O uniformly in x € E.

Lemma 3.5.3. Under Assumptions B3, and B3, we have

su Ut(x) .
ver | (0 0 V() | o

Proof. We use an argument similar to that used in [62] for critical branching diffusions. Fix a

0.

non-trivial u € M?, and let the spine immigration {(&); 0, (¥; )0, 1; P,} be given by Theorem
B33, For any ¢ > 0, we have

(1 PV = (1, POV [(V(8)) 7] (3.5.9)

Theorein 13

25 (YN O ()] = Ny{wi(@) > 0} = lim N, [1 - &)

G O i (—log B[/ @)]) = ~ log P, {X, = 0)

A—00

=0 ().

Taking y = 6, in (B39), we get v,(x)/¢(x) = Ps [(Yi(#))™']. Taking u = v, we get (v, ¢*), =
P,[(Y,(¢))""]. Therefore, to complete the proof, we only need to show that

b Ps [(Y(¢)']
P [ ()]

xeE

— 0.

r—o00

For any Borel subset G C (0,7], define

JAE / w;_sn(ds,dw).
GXW
Then we have the following decomposition of Y:
Y, =Y 4 y®il 0 <q <1< oo (3.5.10)

It is easy to see, from the construction and the Markov property of the spine immigration

{Y,&; P}, that forany 0 < 1, < t < oo,

P @) FE] = Po, [ (@)'] = (67 00 (E).

Therefore, we have

P LY (@) = TLIG ™ 0t E)] = (Vrmtgs 8"V
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and

Ps [ ()] = TLL(¢ vy )(E)] = [E G(to, X, )@ vr—)(y)m(dy). (3.5.11)
By the decomposition (B3:53.11), we have
¢~ v (x) = Ps [(Y(¢)) "] (3.5.12)
=P, (¥ (@) + (Ps, [(X ")) = P, [(X " (9))])
+ (P [( ()" = (")) ™)

= (Vy—ipr @ Y + €L(t0,1) + €2(t0, 7).

Suppose that 7y > 1, and let ¢,y > 0 be the constants in (3:1-20), we have

lex(to. )] = [Ps [ (@)1 = P [, (p))]| (3.5.13)

oy / (100 %, )6 01 ))M(AY) = i D
< / l4(0.x, 9) — (@6 )| ) (ym(dy)
yeE

S Ce_)/to <Ut—l‘0’ ¢*>m .

We also have

|€(10,0)] = [Ps, [(%()) ™" = (o)) ]| (3.5.14)
=P, [Y" N ¢) - (W) - (N (g)) ]
< Ps, (L0010 - (5 (9)7]

= Ps, [P, [1000,. 0| Zi ] - Po (G (0D 1Z51].

Notice that, by Campbell’s formula, one can verify that

Ps [ 00| FE = o bW Vims O NENs,

Letting & — oo we have

) - oy r—s(Es))ds
P(gx [].Yt(o,ro]zolﬁtf] =e Yo(&sovr-s(&s))ds .
We also have

W01y () = 20(x)0ps () + / (1 — ) yn(x, dy)

(0,00)

< (2a(x) + A )
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Chapter 3 Spine decompositions of critical superprocesses: Yaglom type result

= A(X)v—5(x) < [|ABlsollp™" Vi llco-
Therefore

By, (Lo Fig] = 1 = e b EDD < ]| AG 167 v (3.5.15)
Plugging (B513) into (35314, using (B311) and letting ¢,y > 0 be the constants in (31-210),

we have that

1€2(10,1)] < 10l A lleo 1@~ Vi)l [V (@) | 7] (3.5.16)
< 1o ABIL (6 o)l /E (10,5, 9)(@ 01 )(ym(dy)
< t0||A¢||oo||¢_1vt_,O||oo(l + Ce—7t0)<vt—t()’¢*>m-

Combining (B5172), (3313) and (B316), we have that

R P L I = )
<Ul—t0’ ¢*>m B <Uz—to»¢*>m <vt—t0’¢*>m

< ce™ + 1|l Adlloll ¢ vy lloo(1 + ce77™).

(3.5.17)

Since we know from Lemma B3(5) that ||¢~'v;]|l.c — O when t — oo, there exists a map
t — to(t) such that,

to(t) H—w> 00; fo(f)||¢_lvt—zo(t)||oo H—m> 0.

Plugging this choice of #,(¢) back into (3317), we have that
¢'v(x)

su -1 0. 3.5.18)
xelIE) <Ut—t0(t)’ ¢*>m f—o0 (
Now notice that
<Ut’¢ Ym /‘ Ut(x) ‘
- — 1|¢p¢" (x)m(dx) (3.5.19)
(U, t0(t)> P* Ym (V- 10(1)» * )
< sup ) - 0.
x€E <Ut—to(t)’ ¢*>m t—oo

Finally, by (B31R), (B3:19) and the property of uniform convergence,

¢ 'v,(x)
<Ul"¢ >m

as desired. L]

-1

su 0,

xEE

t—oo

Lemma 3.5.4. Under Assumptions B3, and B3, we have

1
t<vt’ ¢*>m !
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Proof. We use an argument similar to that used in [62] for critical branching diffusions.
1
R(x,z) = ¢o(x,2) - 51‘1(95)22

where
1
e(x,z) = / y* (1 A gyz)ﬂ(x, dy) < A(x).
(0,00)

By monotonicity, we have that
e(x,2) — 0, x€E. (3.5.20)
>

Taking b(t) := (v, ¢*),, and writing [,(x) := v,(x) — b(t)$(x), Lemma says that,

l,(x)
b(1)¢(x)
Now, taking sy > 0 as in (32.8), we have that r +— b(t) is differentiable on the set

sup

xeE

— 0. (3.5.21)
t—00

C = {t > sy : the function t — (¥(v;), #*),, is continuous at ¢}

and that
S0 = ~(T0). ) = (540 + RE0 (.0, (:522)
- —<%A (b + 1) + RC,0,()), )
= b0 544,00 + g0)], 1EC,
where

00~ (a0, (e, (BP0

=1 g1(t) + g2(1) + g3(1).

From (B321]), we have g;(t) — 0 and g,(t) — 0 as t — oco. From

RGuo(x) (oo (0)-n(xP TR
e e U (R el B

using (B321)), (3520), Lemma B3 (5) and the dominated convergence theorem (e(x, v,(x))

is dominated by A(x)), we conclude that g;(t) — 0 as t — co.

Finally, from (B322) we can write

d(1y_ dbt) 1 .
E(b(t)) = “har - 2\ AP Im o), 1EC (3.5.23)

Notice that, since the function t — (W¥y(v;), ¢*),, is non-increasing in ¢, the complement of C
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has at most countably many elements. Therefore, using (3538) and (B3373), one can verify

that 1 — ﬁ is absolutely continuous on the interval [so,#]| as long as sy and 7, are large

enough. This allows us to integrate (3323) on the interval [sy, o] with respect to the Lebesgue

measure, and get that

1
b(to)  b(so) 2

Dividing by 7, and letting #, — oo in the above equation, we have

)
(A, 9™ ), (ty — 50) + / g(s)ds, for0 < sy < t, large enough.
S0
1 1 A o
— % —
b(t)t - 2 .99 Im
as desired. [

Proof of Theorem BZII0. For € M?, from Lemma B32.(5) we know that

Gue = [ uoutan = [ Esuian —o. (3.5.24)
From Lemma we know that
(K, 0r) _ v, (x) N
sl A wres L Pt ) (3523

It then follows from (B324), (3323) and Lemma B34 that

(o) 1= e
<Ul’ ¢*>m </’t7 Ut>

tP,(X; #0) =1(1 - e~y = 1y, %)

(1, &)
oo 1(AQ, ¢9*),,

3.5.3 Yaglom type result

Let {(X/):>0; (Pu)uem, } be the (£,¢)-superprocess introduced in Subsection which
satisfies Assumptions B3 and B4 and B3. In this subsection, we will give a proof of Theorem
BT

Slutsky’s theorem is used quite often to prove convergence in law of two components, in
which one contributes to the limit, and the other one is negligible. The following proposition
says that under P, the weighted mass Y,(¢) coming off spine, normalized by ¢, converges to a

Gamma distribution as t — oo.

Proposition 3.5.5. Suppose that Assumptions B3, and B3 hold. Suppose that u € M;’.
Let {(&):50-(Y:)r20,m; P, } be the spine immigration given by Theorem B33. Then W, := @

converges weakly to a Gamma distribution T'(2,c;") with ¢ := %((ﬁA, DD ).

67



B N e W S R

Proof. We only have to prove that

1

P [o-OW ’
ule ] t—o0 (1 4+ ¢pB)?

6>0,ueMj.

First we consider the case when u = o, for an arbitrary x € E. To simplify notation, for all

x € E,0 >0andt > 0, we write

J(x.0.1) := (9A) )P, [ [P [ ),
Jo(x.6.1) 1= ($A)(2)Ps, [e7"™]

and

M(x,0,t) := —OWH|

L 5
A +cf)? > Le

Step 1. We will show that

Ps [V ] = Ps [e” fy du [y dp-J Eurp(1-w),1(1-10))] (3.5.26)

In fact, we have
0 . .
%Péx [e_HWt |§] = _P6x [Wle_HWt |§]’ tz 0’6 = 0.

Applying Lemma B4.6 with K(dr) = 6,(dr) and f; = 07‘[’, for each 6 > 0, we have

: Ps [W,e ™V
D togy, [ ) = Lalee K]
a0 Ps [e=W|¢]

1 [ ) s . v
- ; / (A¢)(§S)P5‘f? [e (6 ' )Wt_s]ng [e Xt_S( 4 )]ds
0

Integrating both sides of the above equation yields that

1 2]
~log Py [e ™ |¢] = /O du /0 JEunsp(1 = )11 - w)dp,

which implies (B376).
Step 2. We will show that

1 0 S
/ du / o = D& p(1 = u),1(1 = u)dp =220, 9 > 0. (3.5.27)
0 0 r—o00
To get this result, we will apply Lemma B3 with
o
F(x,u,t) := / dp - (Jo — J)(x, p(1 — u),t(1 — u)) (3.5.28)
0

0
= / dp ’ (A¢)(X)P6X [e_p(l_u)wt(l’”)]Px[l _ e_Xt(lth)(#)].
0
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Firstly note that F(x,u,t) is bounded by 6||¢All. on E X [0,1] X [0,00). Secondly note that
F(x,u,t) — 0 for each x € E and u € [0, 1], since |Jy — J| is bounded by ||¢A||., and
t—o00

|(Jo = D)(x.6.0)] = (AB)(x)Ps, [ WP, [1 — e X))

< (Ag)(x)P(X, # 0)
2a(0)Py(X; # 0) + [ y*Pys (X # 0)r(x, dy)
2a(x) + f(o,w) y2r(x,dy)

— 0, xekEk6>0.

t—0o0

= (Ag)(x)

Therefore, we can apply Lemma B35 with F(x,u,t) given by (3328), and get (B327).

Step 3. We will show that

1 . 1 a8 dp—AS)EuD)
Tegp = lmPs, | h b waantz] g >0, (3.5.29)
CO t—o00

By elementary calculus, the following map

¢ (Ag)(x) _ (Ag)(x)o
(%) = /0 Tt cop( =02’ ™ T+ bl =)

is bounded by 0||A¢|| on E X [0, 1]. According to Lemma B3, we have that

1 (2] - 1
(Ad)(Eur) L(Ps,) / 0A .
d d , d
f e eptl - ey T =y 40

1
. 0

= (49,99 >m/0 1+ cob(1 — u)du

= 21log(1 + ¢(0).

Therefore, by the bounded convergence theorem, we get (3329).

Step 4. We will show that

M(x,0) :=limsup M(x,60,t) =0, xeE,0=>0. (3.5.30)
t—o00
In fact,
M(x,@,t) <L+ 5L+, (3531)
where

0 _(Ap)(&ur)

1
— —Phout; B3 79
[ ‘/(l) du o l+eg (171”]2 dp] by (—)

b
t—00

1
1::\—-
Y

1 0 _(Ad)(&ur)
R — [ du dp - _ ! o - -
I = )Péx [e Jo du fy (reopt-u2 P — Py [e Jo du fy Jo(€uep(1-u),1(1 u))dp]
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1 0
<o [ au [ A0NEIMEp1 = 0101 = w)ap

1 2]
- / du / dp / d(uut, ) AS) )M (. p(1 = ), (1 — w)m(dy),
0 0 E
and by (B33776) and (B377),

I i= [Ps [e7h 4 urp-010-0)dp) _ P [p=0We]

X

= s, [ Jo du i o p(-w11=0)dp) _p 1oy i fy JEarp(1-u).1(1-0)dp |

<P, || /0 du /0 o= ) Ewrop = at(1 = w)dp|| — 0.

Therefore, taking lim sup,_,, in (B3331), by the reverse Fatou’s lemma, we get

1 0
M(x,0) < / du / (ASM(-, p(1 = 1)), 66"V mdp, x € E,0 > 0. (3.5.32)
0 0

Integrating with respect to the finite measure (A¢ppo*)(x)m(dx) yields that

1 0
(ABM(-0).06 ) < (40,00 [ dus [ (AOMC.p(1 = 10).06")ndp. 020,
0 0
According to [B3, Lemma 3.1], this inequality implies that (A¢pM(-,0), ¢p¢*),, = O for each
6 > 0. This and (B35337) imply (B330), which completes the proof when y = 9.
Finally, for any u € M? since

we (@)

]

(¢)
t

(1 P[] = (u, YN @[ 777 ] = N, [wi(g)e ™

_pwt(d) . _
- [ w@onidn (e = [ udoscors e
E E

we have that, by the bounded convergence theorem,

. 1 . ~ 1 d(x)u(dx)

P oW _ </ P oW1 _ 0’

Pule™ = acap) = J el - i e
as desired. O

The following lemma says that, conditional on survival up to time 7, the weighted and
normalized mass ¢! X,(¢) (weighted by ¢, and normalized by ¢) has a limit distribution which

is exponential with explicit parameter. Later we will consider limit of = X,(f) with a general

fe bp%g

Lemma 3.5.6. Suppose that Assumptions B3, and B3 hold. Let u € Mjf. Then it holds
that {t'X,(¢); P,(-|X; # 0)} converges weakly to an exponential distribution Exp(c;') with

co := (DA, PP ).
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Proof. We only have to show that

P, [e XX, £ 0] —

., 0>0,ue M2,
t—o0 1 + o K !

Notice that, by Lemma B57(6), we have

law

{7 X,(¢); P} —0.

Therefore, by Theorem B35 and Proposition B33, we have

1
t—oo (1 + ¢yf)?

Pﬁfl[e—é’t‘er(@] =P, ® pﬂ)[e—Bt‘l(XﬁYz)(qb)]

Also notice that, by elementary calculus

1 — ¢ 6
¢ :/ e dp, u>0.
0

u

From Theorem B33 and Lemma BZ3 we know that Pﬁl (X; = 0) = 0. Therefore by the

bounded convergence theorem, we have

7 0
:Pz/l[/ e—pz-lxt(gb)dp] :/ Pz/l[e—pt-'x,(tb)]dp
0 0
0 1 1
dp =c;'(1 - .
Hw/o Trapr =010

Hence, by Theorem B-T°10 we have

e e—at'xt(@]
a 171X, ()

P,[1 - e XX, 2 0] = P(X, # 0)'P,[(1 — ™ X @)10]

= B0, # 0B, (1 - et ) D)

X:(¢)
p o p 1 — 70 Xe(9)
o o S
( ﬂ( t ¢ )) <Iu ¢> 7] t_IXt(¢)
1
l - )
t—00 1+ cpb
which completes the proof. [

Now we consider limit of ! X; () with general weight f € bp%ﬁ . The main ideais to use
the following decomposition for f: f(x) = (¢*, )m®(x) + f(x),x € E. The following lemma
says that f has no contribution to the limit, and then we can easily get that the conditional limit
of t1X,(f) as t — oo is the contribution of (¢*, f),,t"'X,(¢), which is known from Lemma
BSA.

Lemma 3.5.7. Suppose that Assumptions B3, andB3 hold. If f € bﬂg satisfies {f,¢*) =
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0, then we have, for any u € M?,

{7 X P.CIX: #0)} — 0, in probability.

Proof. 1f we can show that P, [ (' X,(f ))2|X, # 0] — 0, then the desired result follows by
t—o00
the Chebyshev’s inequality

P, ("X > €| X, #0) < e°P, [(t‘lX,(f))2|Xt #0].
By Proposition B242 we have that

P [(' X (D)X # 0] = 12Pu(X, 2 0)'P, [ X, (/) Ly, 0] (3.5.33)

. t
=1 'Pu(X; ¢0)_1(M+<ﬂ,¢>ﬂy [(«zs‘lf)(a); /0 AE) - (Si-e DENs] )

Letting ¢,y > 0 be the constants in (B-1-20), we know that
5.7~ @, 2000 = | [ (attx) = 0006 ) Flpmian)] 3534

< [1HE2D 1] e )Ty

< ce¢(0)ll¢™" Fllo /E (99" )(y)m(dy)

— 0, xekfk.

t—00

Therefore, by the dominated convergence theorem,

</J’ Stf) H—oo> <¢*9f>m<:u’ ¢> =0.
Hence,

M — 0, x€kLE. (3.5.35)

l' —o0

By (B3334)) and Lemma B35, we know that

1 [ ~ ! ~
T [ A (s reds - / A (S FEur)

Za), / (A GG Y6 Fomclit = 0.

Hence, by Lemma B-41 and the bounded convergence theorem we have that
. ~ 1 [ ~
(i )TL [ P&~ /0 A - (Si-o)E)ds]| (3.5.36)
. N 3
< [ uanslitfo Ny [ A€ i)
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<107 flle- [ wawoeor || [ ac)- s east]

— 0.

t—o00

Finally, using Theorem B-T-T0 and combining (3:333), (3533) and (B:536), we have that
P, [(' X)X # 0] — 0
as required. [

Proof of Theorem BIT1. Define a function f by

F(x) = f(x) = (8", lmd(x), x € E. (3.5.37)
It is easy to see that f € b9 and (f,¢*),, = 0. It then follows from Lemma B34 that
(F X0 DudlPuCIX 2 OF 25 2% oA 06 0me, (538)
and from Lemma B377 that
(7 X,(F): P (|X, # 0)} 222 (3.5.39)

t—0o0

The desired result then follows from (B537), (3338), (3539) and Slutsky’s theorem. ]

Remark 3.5.8. In the symmetric case, i.e. when (S;) are self-adjoint operators, (3337) is

exactly an L?-orthogonal decomposition.
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Chapter 4 Spine decompositions of non-persistent

superprocesses: characteristic functions

4.1 Introduction

4.1.1 Motivation

Consider a general (£, )-superprocess {(X;),>0, P, } in alocally compact separable metric
space E. Note that, in the previous chapter, we always take a non-negative testing function f
and study the property of (X,, f). In this case, (X, f) is also non-negative, and therefore its

distribution property can be captured by its Laplace transform
Ps [e %], 1>0,0>0x€cE.

The definition of the superprocess says that the map (¢, x) = Pj_[e~X*/?] is a mild solution to a
non-linear partial differential equation, see (I"272). Therefore, several distributional properties

of (X;, f) can be obtained by taking advantage of that equations.

A natural question arises in studying the limiting theory for superprocesses is to consider
the property of (X;, f) where f is a Borel measurable function on E which may take both
positive and negative values. Note that, in this case, when f is bounded, (X;, f) is a well
defined random variable whose Laplace transform may not exists. So we can’t use the equation

(CZ2) anymore. Instead, we consider the characteristic function of (X;, f):
Ps [e %D t>0,x€E,0>0,

and ask the question: whether map (z, x) — Ps_[e!*:/] also satisfies some complex-valued

non-linear partial differential equation.

In this chapter, we give a positive answer to this question under a non-persistent assump-
tion. The precise statements of the results and the assumptions are presented in the next
subsection. We mention here that our key tool is the general spine decomposition theorem for
the superprocesses developed in Chapter 3. This is one of the evidence that the spine theory

really captures the distributional properties of the superprocesses.

75



B N e W S R

4.1.2 Main result

Let E be a locally compact separable metric space. Denote by M(E) the collection of all
the finite measures on E equipped with the topology of weak convergence. For each function

F(x,z)on E X R, and each R,-valued function f on E, we use the following convention:
F(x,f):=F(x,f(x)), x€E.

A process X = {(X;)r>0; (Pu)ueme)} is said to be a (¢, y)-superprocess if

* the spatial motion & = {(&;);>0; (Ily)xeg } is an E-valued Hunt process with its lifetime
denoted by ¢;

* the branching mechanism ¢ : E X [0,00) — R is given by

$02) = B+ a4 [ @ = e zaedy)
(0,00)

where 8 € B,(E), a € B,(E,R,) and n(x,dy) is a kernel from E to (0, c0) such that
SuprE /(‘O,oo)(y A yz)ﬂ(x’ d.’/) < o905

* X = {(X)r>0; Pu)ueme)} is an M(E)-valued Hunt process with transition probability
determined by

Pﬂ[e—X;(f)] — e—ll(sz)’ t > O,,Ll c M(E),f c BI-:(E)’

where for each f € B,(E), the function (¢,x) — V,f(x) on [0,00) X E is the unique

locally bounded positive solution to the equation

INE
v+ ] [ vV ] = @l 12 0re .

We refer our readers to [Bf] for more discussions about the definition and the existence of

superprocesses. To avoid triviality, we assume that (x, z) is not identically equal to —3(x)z.

We say X is non-persistent if Ps (|| X;|| = 0) > O for all x € E and ¢ > 0. In this chapter,
we will always assume that our superprocess X is non-persistent.

LetC, := {x+iy: x>0,y € R} and C% := {x +iy : x > 0,y € R}. The branching
mechanism ¥ can be extended into a map from E X C, to C using Lemma B2 below in the
sense that for each x € E, z — ¥/(x, z) is a holomorphic function on CY and continuous on C,.
Define

U'(x,2) = =B(x) + 2a(x)z + o )(1 —e Myn(x,dy), xe€E,zeC,.

It will be proved in Lemma &2 below that for each x € E, z — ¥(x,z) is a holomorphic
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function on C9 with derivative z > ’(x, z). Write ¢o(x,z) = ¥(x,z) + B(x)z and ¥(x,z) :=
¥'(x,2) + B(x).
Define
Li(§):={f € B(E):Vx e E,;t 20, IL[[f(&)]] <o},
Ly(é) = {f € B(E) : |/’ € Li(&)}.

The mean behavior of the superprocess is well known:
Po [(X,, /)] = PPf(x) = TL[eh PO fg)1, ] € R, f e Li(é)r20x€eE.

This also says that the random variable (X, f) is well defined under probability Ps_provided
f € Li(¢). By the branching property of the superprocess, (X;, f) is an infinitely divisible
random variable. Therefore, for fixed x € E,r > 0 and f € L(¢), there exists a unique

continuous map 6 — U,(6 f)(x) from R to C such that — U,(0 - f)(x) = 0 and

QUi ONW) — py [0,

5x[€

This map is known as the characteristic exponent of the infinitely divisible random variable
(X:, f) under probability Ps_. See the paragraph immediately after [[/2, Lemma 7.6].

The main result in this chapter is the following:
Proposition 4.1.1. If f € L,(¢), then forallt > 0 and x € E,

0 ) =11 [ 0le=Uieas)ds] =ML 17 (@) @1.1)

and

U0~ [ Pl ale=Uef) o ds = iPE ). (“.12)

4.1.3 Some words before the proofs

We can consider decomposing the general testing function f into its positive and negative

parts:

f=r-r
and prove Proposition BT for each f* using (I272). However, this strategy will not work
while proving Proposition BT for f, because the dependence between (X;, f*) and (X;, f~)
is not clear. (Note in particular, they are not independent.) so we don’t know the relation
between (U, f*,U, f~)and U, f.

Instead, our strategy is to use the general spine decomposition theory developed in
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Chapter 3. The underlying idea is very simple: since the spine decomposition theory gives a
decomposition about the superprocess X, it also gives a decomposition of (X;, f). Translating
this decomposition for random variable (X;, f) in the language of characteristic functions will

give us a complex valued identity. Using that identity we can give a proof of the desired result.

4.2 Preliminary
4.2.1 Some analytic facts
In this subsection, we collect some useful analytic facts.

Lemma 4.2.1. For z € C,, we have

k n+l 217"
) Z( Z)‘ ™2 ez 4.2.1)

n+ 1! nl

Proof. Notice that |e™?| = e"R¢Z < 1. Therefore,

1
le™> —1| = ’/ e‘gzzde‘ <zl
0

Also, notice that e — 1| < |e7?| + 1 < 2. Thus (EZZ1) is true when n = 0. Now, suppose that

(E21) is true when n = m for some m € Z,. Then

m+1 k k
\e‘z ST ST

|92|m+1 /2|92|m |Z|m+2 2|Z|m+1
d@)/\( d@): A :
e Nt m+2)! " m+ 1)

which says that (ZE’_D]) is true forn = m + 1. ]

Lemma 4.2.2. Suppose that t is a measure on (0, c0) with /(0 oo)(y A y*)n(dy) < oo. Then the
functions

h(z) = (e =1+ zy)n(dy), ze€C,
(0,00)

and
h'(z) = (1 -e*yn(dy), z€C,
(0,00)

are well defined, continuous on C, and holomorphic on C°. Moreover,

h(z) — h(zo)

Z—20 Ci3z—29
Proof. 1t follows from Lemma BTl that 4 and &’ are well defined on C,. According to [74,

h,(ZO)’ 20 € C+-

Theorems 3.2. & Proposition 3.6], A’ is continuous on C, and holomorphic on Cﬁ’r.
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It follows from Lemma BE2_Tl that, for each z, € C,, there exists C > 0 such that for z € C,

close enough to zp and any y > 0,

‘e—zy — e_ZOy + (Z — Zo)y _ 1
-2 |z —

1 1
<y [ I-e s < o) a ([ 102+ (1= 0)lde) < Cly 1)
0 0

1
‘/ (_ ye—(02+(1—9)z0)!/ + y)(z _ Zo)dg‘
Zo| 0

Using this and the dominated convergence theorem, we have

h(z) = h(zo) _ / ety — (e +20y)
T—20 (0,00) =20

(dy)

— (1 =e*")yn(dy) = h'(z),

Ci3z—20 (0,00)

which says that 4 is continuous on C, and holomorphic on CY. [

For each z € C \ (—o0,0], we define log z := log|z| + i arg z where argz € (—x,7) is
uniquely determined by z = |z|e’®¢%. Forall z € C\ (—o0,0] and y € C, we define 7 := ¢7!°8%,
Then it is known, see [[/’, Theorem 6.1] for example, that z + logz is holomorphic in
C \ (—00,0]. Therefore, for each y € C, z +— z” is holomorphic in C \ (—o0,0]. (We use the
convention that 0” := 1,.) Using the definition above we can easily show that (z;z9)” = zlyzg
provided arg(z;zo) = arg(z;) + arg(zo).

Recall that the Gamma function I is defined by

I'(x) :=/ *le7ldt, x>0.
0

It is known, see, for instance, [[/'Z, Theorem 6.1.3] and the remark following it, that the function

I" has an unique analytic extension in C \ {0,—1,-2,... } and that
I'(z+1)=2z[(z), z€C\{0,-1,-2,...}.

Using this recursively, one gets that

[ n—1 k
—t
I'(x) ::/ tx_l(e_t— E (-1) )dt, -n<x<-n+1,neN.
0 k=0

k!

Fix a B8 € (0,1). Using the uniqueness of holomorphic extension and Lemma B2, we

get that

B - ay
— Y _ - v

by showing that the both sides

« are extension of the real function x — x# defined on [0, c);
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« are holomorphic on CY;
 are continuous on C,.

Similarly, we get that
1+/3—/(e -.—1+zy) 1 ﬁ) 75 z€C,.

Lemma also says that the derivative of z'*# is (1 + 8)zf on CY.

Lemma 4.2.3. For all zy,z; € C,, we have

1 1
20 = 2] < (1 + B)(|20l + |21/P)] 20 — 21l

Proof. Since z'*# is continuous on C,, we only need to prove the lemma assuming zo,z; € CY.
Notice that
|Z’8| — |e/310g|z|+i,8argzl — Bloglzl _ |Z|ﬁ, z € C\ (—00,0].

Define a path y : [0, 1] — CY such that
y(0) = z20(1 = 0) + 0z1, 6 €[0,1].

Then, we have
1
2~ Bl < (14 B) / HOF |-y ©ldo < (1) sup [OF -1~
0 9¢€[0,

<1+ B(zlf + |z0lP)lz1 — 2ol [

Suppose that ¢(6) is a continuous function from R into C such that ¢(0) = 1 and ¢(6) # 0
for all & € R. Then according to [/2, Lemma 7.6], there is a unique continuous function
£(6) from R into C such that £(0) = 0 and e/ = ¢(6). Such a function f is called the
distinguished logarithm of the function ¢ and is denoted as Log ¢(6). In particular, when ¢
is the characteristic function of an infinitely divisible random variable Y, Log ¢(6) is called
the Lévy exponent of Y. This distinguished logarithm should not be confused with the log
function defined on C \ (—c0,0]. See the paragraph immediately after [[/2, Lemma 7.6].

4.2.2 Feynman-Kac formula with complex valued functions

In this subsection we give a version of the Feynman-Kac formula with complex valued

functions. Suppose that {(&;);e[r,c0); (ITy x)re[0,00),xe£ } 1S @ (possibly non-homogeneous) Hunt
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process in a locally compact separable metric space E. We write

t
H" = exp { / h(u,gu)du}, 0<s<theBy(0,t] X E,C).

Lemma 4.2.4. Let t > 0. Suppose that B,a € B,([0,t] X E,C) and f € B,(E,C). Then

g(r.x) =L [HETVf(E)), rel0x ek, 4.2.2)

is the unique locally bounded solution to the equation

o) = T [ f€) + 11| [ HE ose)g6.6) ds], relonxeE.

Proof. The proof is similar to that of [?3, Lemma A.1.5]. We include it here for the sake of
completeness. We first verify that (B222) is a solution. Notice that

t t
M| [ ot o H e ds| < [ e e ds < o

Also notice that

9 @ (a)
aH(S’t) = —H(S’t)a/(s,fs), s € (0,1).

Therefore, from the Markov property of & and Fubini’s theorem we get that
t t
.| / HE, (ag)(s&) ds| =11,..| / HY a(s, €)1, ¢ [HE TV f(€)] ds

=1, / HY) (s, £)HS f(&) ds| = 11, JHE, f&)HE), - D)
= g(r,x) =TI ([H") f(£)].

For uniqueness, suppose § is another solution. Put i(r) = sup, .z |g(r,x) — §(r, x)|. Then

t
h(r) < 1 lal. / W(s)ds, r<t.

r

Applying Gronwall’s inequality, we get that i(r) = O for r € [0,¢]. O

4.2.3 Kuznetsov measure

Denote by W the space of M(E)-valued cadlag paths with its canonical path denoted by
(W:):0. We say our superprocess X is non-persistent if Ps_(||X;|| = 0) > 0 for all x € E and
t > 0. Suppose that (X;),;»( is non-persistent, then according to [56, Section 8.4], there is a
unique family of measures (N, ).z on W such that

* Nu(Vr > 0,[[W,]| =0) =0;

* N.(|[Woll # 0) = 0;
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» for any u € M(E), if N is a Poisson random measure defined on some probability
space with intensity N,(-) := fENx(-),u(dx), then the superprocess {X;P,} can be
realized by Xo = u and X,(-) := N[W,()] for each ¢ > 0.

We refer to (N, ), g as the Kuznetsov measures of X.

4.2.4 Semigroups for superprocesses

Let X be a non-persistent superprocess with its Kuznetsov measure denoted by (N, ), k.

We define the mean semigroup
PPf(x) = I [eh P p(E)1, ], t>0,x € E,f € By(E,R,).

It is known from [56, Proposition 2.27] and [49, Theorem 2.7] that for all t > 0, u € M(E)
and f € B,(E,R,),
N [(We, )] = Pul{Xe, )] = (P f). (42.3)

Define

L&) :={f € B(E):Vx € E;t 20, IL[|f(&)[] < oo},
Ly(¢) = {f € BE) : |f’ € Li(§)}.

Using monotonicity and linearity, we get from (E223) that
N[(W, /)] = Ps, (X, )] = P/ f(x) R, f € Li(é).1 > 0,x € E.

This says that the random variable (X, f) is well defined under probability Ps_ provided
f € Li(¢). By the branching property of the superprocess, (X;, f) is an infinitely divisible

random variable. Therefore, we can write
Ui(0f)(x) := LogPs [¢“X], 1 >0,f e Li(¢),0 eRx €E,

as its characteristic exponent. According to Campbell’s formula, see [49, Theorem 2.7] for

example, we have
P; [e0%1] = exp(N, [e/Ve/) —1]), t>0,f € Li(¢),0 eRx € E.

Noticing that  +— N [¢"?"+() — 1] is a continuous function on R and that N, [e??W-/? — 1] = 0

if # = 0, according to [[/2, Lemma 7.6], we have
U (0f)(x) = N[V — 1], r>0,feLi(é),0 R x€eE. (4.2.4)
Lemma 4.2.5. There exists constants C > 0 such that for all f € Li(¢),x € E andt > 0, we
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have

[ (x,~U.f)| < CPPIf1(x) + C(PP| f1(x)). (4.2.5)

Proof. Noticing that
PReUL(x) |eU,f(x)| — |P6X[ei<Xt’f>]| <1,

we have

Re U, f(x) < 0. (4.2.6)

Therefore, we can speak of ¥/(x,—U, f) since z — ¥(x, z) is well defined on C,. According to

Lemma BT, we have that

U, f ()] < N[l ™ = 1]] < N [JiW,, A1) < (PFIFD()-

Notice that, for any compact K C R,
0

N [ AP,

0eK

(00— 1| | < NLIW, )T sup 6] < (PELF1)0x) sup 6] < .
0eK 0eK

Therefore, according to [20, Theorem A.5.2] and (B24), U,(6 f)(x) is differentiable in 6 € R

with
%Utwf)(x) = INL[(W, )e®MD), g e R,

Moreover, from the above, it is clear that
0
06

U0 < (PP, (42.7)

sup
OeR

It follows from the dominated convergence theorem that (0/00)U,(6f)(x) is continuous in 6.

In other words, 6 — —U,(f)(x) is a C' map from R to C,. Thus,

1
0
W(x,~U,f) = - /O V' (5, ~U0) 5= UOF)x) db. 4.2.8)
Notice that
' (x,=U, f)l (4.2.9)
|- B - 200005+ [y - e ay)
(0,00)
|- B0 = 2L <114 [ Py 1= NP ()|
(0,00)

< 1Bl + 20N (W | F)] + A P2 A (Ko ) ()
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IA

xeE xeE

I8l + 20l P71 + (sup [ yinCedn)) PEFI) + 250 | yrtedy

L Cr + C(PPIf)(),

where Cj,C, are constants independent on f,x and . Now, combining (B28), (E22717) and
(B29), we get the desired result. O

This lemma also says that if f € L*(¢) then

nx[ /0 W€ ~U,_, f)ds] €C, xeEit>0.

is well defined. In fact, using Jensen’s inequality and the Markov property, we have
t
| [ We-tas) (42.10)
0
t
<tL| [ (@ Im1E) + P I s
0

< / (Clet”mlnx [ny [lf(fl—s)l]] + CZeZIH'B”Hx [Hfs [|f(§t—s)|]2]) ds

0

= /I(Cle’”ﬁ”ﬂx[lf(ft)l] + G WPITL[| f(£)P]) ds < oo
0

4.3 Proof of the main result

To prove Proposition BET7Tl, we will need the generalized spine decomposition theorem
from [65]. Let f € B,(E,R,), T > 0 and x € E. Suppose that Ps_[(Xr, )] = N [(Wr, f)] =
Pg f(x) € (0,00), then we can define the following probability transforms:

P<XT’f> . <XT’f> d (WT,f> <WT’ f>
O P2 f(x) M T PP f(x)

Following the definition in Chapter 3, we say that {&,n; Q; ’T)} is a spine representation of

—5 - dPs;

N,.
N i

« the spine process {(£)o<i<r; Q") is a copy of {(&)o<i<r; 1Y}, where

drvn) = f(&p)eh BEMs

dlIly;
PYf(x)

o given {(&)o</<T; ng’T)}, the immigration measure

{n(f’ dS, dU)), Qg,r)['|(§l)051 ST]}
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is a Poisson random measure on [0,7'] X W with intensity

m(¢,ds, dw) = 2a(é)ds - Ng (dw) + ds - / yP,s. (X € dw)n (&, dy); (4.3.1)

y€(0,00)

* {(Y)o<i<rs ng ’T)} is an M(E)-valued process defined by

Y, = / w;_n(&,ds,dw), 0<t<T.
(0,7]xXW

According to the spine decomposition theorem in [65], we have that

o f)y fedd. -
{(X)550: PETIY = {(X + Wy)y00: Ps, @ NIVT1) (4.3.2)

and

fd.d.

{(Wy)o<s<rs N)EWT’f)} {(XYy)ss0; Qﬂf’T)}- (4.3.3)

Proof of Proposition 1. Assume that f € B,(E). Fixt > 0,r € [0,¢),x € E and a strictly
positive g € B,(E). Denote by {&,n; QS:J”)} the spine representation of N9 Conditioned
on {¢; Q;g’t)}, denote by m(&, ds, dw) the conditional intensity of n in (33-1). Denote by II, ,
the probability of Hunt process {¢&; I1} initiated at time » and position x. From Lemma BT,

(g.1)
X

we have QY"’-almost surely

/ ! @i=s ) — 1 |\m(¢, ds, dw) < / (Kwi—s, /)] A 2)m(&, ds, dw)
[0,£]xW

[0,2]xXW
< [ (pateme (wislr) + [

(0,1

| yPy(S,gS [<Xt—s’ |f|>]ﬂ(§s’dy)
+ 2/ yﬂ(fs,dy))ds
(1,00)
t
< [@irmeaer+ [ yinedn)as+asp [ yntudy)
0 (0,1] x€E J(1,00)
< (2||0/||oo + sup/ y*n(x, dy))te’”ﬁ”“’||f||oo + 2t sup/ yn(x,dy) < oo.
x€E J(0,1] X€E J(1,00)

Using this, Fubini’s theorem, (8-24)) and (2226) we have ng”t)—almost surely,

/ (e"™=T) — D)m(¢, ds, dw)

[0,2]xXN
t

= [ (pat@mia @™ =1k [ gy [~ tatedy)ds
0 (0,00) '
t

= [ (paterva@+ [ et < iatedy)ds
0 (0,00)

. /O W (E=Uno f)ds.
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Therefore, according to (B33), Campbell’s formula and above, we have that

NiWr,fﬁ[ei(an)] = Q;g,l)[exp {/ (ei<wt—s,f> ~ Dmz, ds,dw)}] Wi
[0,7]xN
= H(g,t) [e_ /Ot "[/(,)(gs’_Ut—sf)dS]
1 .
- Hx[g(ft)e_fo v (fs’_Ur—sf)ds].
Plg(x)

Let € > 0. Define f* = (fvV0)+eand f~ = (—f) VO + ¢, then f* are strictly positive and
f = f*— f~. According to (E372), we have that
i(Xi.f)
P5X[<Xz,fi>€+ | = Py [ XD NS [ Xef)
Ps [(Xi, f*)]
Using (B3.4) and the above, we have

P [(Xi, f)e' %]
de [ei<Xt ,f>]

= Py [(X, 1IN D! D] = Py [(X,, £ [ X00]
= TL[f(&)e N W/(EUrsf)ds.

Therefore, we have

Ps [i(X;, f)e' %]

= j ~ [ W (& ~Ur—s(0f )ds
Ps_[ei0)] I [if(&)e Do !

0
—SUBF)(x) =

Since {(&r41)r20: Iy} £ {(€)r50: 1}, we have

%Ut_r(ef)(x) = T [if (& )e b ¥ EUirs@is)

=0, .[i f(&)e n U EresUrrs @S] = 1, [i f(&)e” /! ¥/ (&~ Uns (O s

From (BE229), we know that for each 6 € R, (¢,x) — |¢'(x,—U, f(x))| is locally bounded
(i.e. bounded on [0, T] X E for each T > 0). Therefore, we can apply Lemma BE=2-4 and get that

0 ", d .
G5V 000+ 1] [0/ (6 -U0) U 0E) ds] = 17 (E)

and

0 Lo 0
LU ON0) + 1L | [ el ey e U 0) LU OE) ]

06 .
= I, [iek P4 £ (&)
Integrating the two displays above with respect to 6 on [0,1], using (B22R), (£229), (E221) and
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Fubini’s theorem, we get

Ur )= Th [ (e U f) ds] = 011, 1 £(60)

and

U ) =Tu| [ o g 6 U, ) ds| = T ek P )

Taking r = 0, we get that (B11l) and (1) are true if f € B,(E).
The rest of the proof is to evaluate (B-1-1l) and (B-I2) for all f € L,(£). We only do this for
(BE1T) since the argument for (B12) is similar. Let n € N. Writing f,, := (f* An) — (f~ A n),

then f, —— f pointwise. From what we have proved, we have
n—0oo

U, fn(x)—Hx[ /0 (& -Us_sf,) ds] — L[ £(&)]. (43.5)

Notice the following statements are true.

o Itis clear that IT,[ f,,(&;)] —— TL[f(&)].
* U fn(x) — U, f(x) due to (B8224), the dominated convergence theorem and the fact

that
™) 1 < (Wl f1); NL[(Wa [F1] = (PELA() < oo.

o II,[ /Ot Y&, —U,_s f)ds] — T, /Ot WU (&s,—U,_s f)ds] due to the dominated conver-
gence theorem, (22210) and the fact (see (8223)) that

(& ~Uis £)] < CIPEIFIE) + CPE I FI(E)™

Using the above arguments, letting n — co in (B33), we get the desired result. 0
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Chapter 5 Spine decomposition of critical

superprocesses: Slack type result

5.1 Introduction

5.1.1 Background

As mentioned in Chapter 1, it is well known that for a critical Galton-Watson process

{(Z,)ns0; P}, we have

2
nP(Z, > 0) — — (5.1.1)
n—co g
and
Zn law 0'2
{—;P(-lZn > 0)} = T, (5.1.2)
n n—oo

where o2 is the variance of the offspring distribution and e is an exponential random variable
with mean 1. The result (511) is due to Kolmogorov [48], and the result (812) is due
to Yaglom [KT]. For further references to these results, see [B38, 46]. Since then, lots of
analogous results have been obtained for more general critical branching processes with finite

2nd moment, see [4, B, 5, 44] for example.

Notice that (511l) and (512) are still valid when o = oo, see [46] for example. In
this case, the limits in (811) and (B12) are degenerate, and thus more appropriate scalings
are needed. Research in this direction was first conducted by Zolotarev [82] in a simplified
continuous time set-up, which is then extended by Slack [[75] to discrete time critical Galton-
Watson processes allowing infinite variance. The main result of [[75] can be stated as follows.
Consider a critical Galton-Watson process {(Z,),»o; P} with infinite variance. Assume that

the generating function f(s) of the offspring distribution is of the form
f()=s+(1 -1 -5), s>0, (5.1.3)
where a € (0, 1] and [/ is a function slowly varying at 0. Then

P(Z, > 0) = n"V/*L(n), (5.1.4)
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where L is a function slowly varying at co, and

{P(Z, > 0)Zy; P(-|Z, > 0)} ;—WJ 2@, (5.1.5)
where z(@) is a positive random variable with Laplace transform

E[e™ 1 =1-(1+u)", u>0. (5.1.6)

In [[76], Slack also considered the converse of this problem: In order for {P(Zn > 0)Z,; P(:|Z, >
O)} to have a non-degenerate weak limit, the generating function of the offspring distribution
must be of the form of (513) for some 0 < @ < 1. For shorter and more unified approaches

to these results, we refer our readers to [T, B].

Goldstein and Hoppe [35] considered the asymptotic behavior of multitype critical Galton-
Watson processes without the 2nd moment condition. Their main result can be stated as
follows. Let Z, = (Z,(ll),. . .,Z,(ld)) be a critical, d-type, nonsingular and positively regular
Galton-Watson process. Denote by F(s) = (F(s),...,F4(s)) the generating function of the
offspring distribution, and by F(”)(s), n > 1, its nth iterates. Let M be the mean matrix of Z.
Let v and u be the left and right eigenvectors of M, respectively, corresponding to the maximal
eigenvalue 1, and normalized so that v-u = 1 and 1 -u = 1, with 1 being the vector (1,...,1).

Suppose that
vG(1 - xu)u = x“I(x), x>0, (5.1.7)
where 0 < @ < 1; [ is slowly varying at 0; and the matrix G(s) is defined by
1-F(s)= (M -G(s))(1-s), seR?

Let a, := v - (1 — F™(0)), with 0 € R? being the vector (0,...,0). It was shown in [33] that,
for eachi € N¢ \ {0},

nl(a,) P(Zy, % 0|Zy = i)* —— U ';) , (5.1.8)
and for each j € N¢,
(anZn - §: PG # 0,20 = 1)} — (v - )2, (5.1.9)

where z@ is a random variable with Laplace transform given by (5.8). For the converse
of this problem, Vatutin [[Z8] showed that in order for the left side of (51.9) to have a non-
degenerate weak limit, one must have (517) for some 0 < o < 1. Vatutin [[Z8] also considered

analogous results for the continuous time multitype critical Galton-Watson processes.
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Asmussen and Hering [4, Sections 6.3 and 6.4] discussed similar questions for critical
branching Markov processes (Y;) in a general space E under some ergodicity condition (the
so-called condition (M), see [4, p. 156]) on the mean semigroup of (¥;). When the second
moment is infinite, under a condition parallel to (81-7) (the so-called condition (S) [4, p. 207]),
results parallel to (BT8) and (51-9) were proved in [4, Theorem 6.4.2] for critical branching
Markov processes.

In this chapter, we are interested in a class of measure-valued branching Markov process
known as (&, )-superprocesses: &, the spatial motion of the superprocess, is a Hunt process on
a locally compact separable metric space E; i, the branching mechanism of the superprocess,
is a function on E X [0, o) of the form

W(x,2) = —B(x)z + a(x)z* +/( )(e‘zy — 1+ zy)n(x,dy), x€E,z>0, (5.1.10)
0,00
where 8 € %, (E), a € %} (E)and n(x,dy)is akernel from E to (0, co) such that sup, . /(O’m)(y/\
y*)r(x,dy) < oo. For the precise definition and properties of superprocesses, see [56].

Results parallel to (51-1) and (5-1-2) have been obtained for some critical superprocesses
by Evans and Perkins [B1] and Ren, Song and Zhang [68]. Evans and Perkins [31] considered
critical superprocesses with branching mechanism of the form (x,z) — z> and with the
spatial motion satisfying some ergodicity conditions. Ren, Song and Zhang [6R] extended
the results of [BT] to a class of critical superprocesses with general branching mechanism
and general spatial motions. The main results of [68] are as follows. Let {(X;),>0;P,} be
a critical superprocess starting from a finite measure ¢ on E. Suppose the spatial motion &
is intrinsically ultracontractive with respect to some reference measure m, and the branching
mechanism i satisfies the following second moment condition

sup/ y*n(x,dy) < oo. (5.1.11)
x€E J(0,00)
For any finite measure u on E and any measurable function f on E, we use {u, f) to denote
the integral of f with respect to u. Put [|u|| = (i, 1). Under some other mild assumptions, it

was proved in [b&] that
(Xl # 0) — ¢ (w.9). (5.1.12)
and for a large class of testing functions f on E,
(XD PUClIX £ 0} = (", flme. (5.1.13)
Here, the constant ¢ > 0 is independent of the choice of u and f; (-,-),, denotes the inner
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product in L2(E ,m); e is an exponential random variable with mean 1; and ¢ (respectively, ¢*)
is the principal eigenfunction of (respectively, the dual of) the generator of the mean semigroup

of X. In [B5], we provided an alternative probabilistic approach to (81-12) and (E1T13).

It is natural to ask whether results parallel to (817°4) and (513) are still valid for some
critical superprocesses without the second moment condition (&T-TT). A simpler version of
this question has already been answered in the context of continuous-state branching processes
(CSBPs) which can be viewed as superprocesses without spatial movements. Kyprianou and
Pardo [50] considered CSBPs {(Y;);»0; P} with stable branching mechanism ¢(z) = c¢z”, where
¢ > 0and y € (1,2]. He showed that for all x > 0, with ¢, := (c(y — 1)1)"/0~D,

('Y PCIY: > 0,% = x)} —s 2071, (5.1.14)
t—o00

where 27! is a random variable with Laplace transform given by (5.f) (with @ = y — 1).

Recently, Ren, Yang and Zhao [[70] studied CSBPs {(Y;),»0; P} with branching mechanism
Y(z) =c'l(z), 220, (5.1.15)

where ¢ > 0, ¥ € (1,2] and [ is a function slowly varying at 0. It was proved in [Z0] that for
all x > 0, with A, := P;(Y; > 0),

(ALY PCLY, > 0,Yy = x)} —s 207D, (5.1.16)
t—o00

Later, Iyer, Leger and Pego [43] considered the converse problem: Suppose {(Y;),;s0; P} is a
CSBP with critical branching mechanism ¢ satisfying Grey’s condition. In order for the left
side of (BI_TH) to have a non-trivial weak limit for some positive constants (A, ),o, one must

have (B 113) for some 1 <y < 2.

In this chapter, we will establish a result parallel to (E114) for some critical (&,¢)-
superprocess {X; P} with spatially dependent stable branching mechanism. In particular, we
assume that the spatial motion £ is intrinsically ultracontractive with respect to some reference

measure m, and the branching mechanism takes the form
U(x,z) = —B(x)z + k(x)2™, x€E,z>0,

where € %,(E), y € B} (E), k € B,(E) with 1 < y(-) < 2, yo := essinf,,y) y(x) > 1
and essinf,,4x) k(x) > 0. Let u be an arbitrary finite initial measure on E. We will show that

P,(||X;|| # 0) converges to 0 as t — oo and is regularly varying at infinity with index y(,]_—l
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Furthermore, if m(x : y(x) = yy) > 0, we will show that

lim 777 P (|1 X, ]| # 0) = u(9).

and for a large class of non-negative testing functions f,
law « _
e X () PuCHIXN # 0} — (. ¢z, (5.1.17)

where 1, := (Cx(yo — 1)t)_ﬁ, Cx := (L, ()5 k - 9", ¢"),, and 2007V is a random variable with
Laplace transform given by (51-6) (with @ = vy, — 1). Precise statements of the assumptions
and the results are presented in the next subsection. It is interesting to mention here that,
even though the stable index y(x) is spatially dependent, the limiting behavior of the critical

superprocess {X; P} depends primarily on the lowest index 7.

5.1.2 Model and results

For any measurable space (E, &), we denote by & the collection of all real-valued mea-
surable functions on E. Define &), := {f € & : sup, g |f(x)] < o0}, & :={f € & :Vx €
E, f(x) > 0} and & := {f € & : Vx € E, f(x) > 0}. Define &' := &, N &" and
&y = &, N &, Denote by Mg the collection of all measures on (E,&’). Denote by MY,
the collection of all o-finite measures on (E, &). For simplicity, we write u( f) and sometimes
(u, ) for the integration of a function f with respect to a measure p. We also write (f,g),
for /E fgdm to emphasize that it is the inner product in the Hilbert space L?>(E,m). For any
f € &, define M,’; := {u € Mg : u(f) < oo}. In particular, M}, is the collection of all finite
measures on E. If E is a topological space, we denote by Z(E) the collection of all Borel
subsets of E.

We now give the definition of a (&, ¥ )-superprocess: Let E be a locally compact separable
metric space, the spatial motion & = {(&;);>0; (Ilc)rc£ } be an E-valued Hunt process with its
lifetime denoted by £, and the branching mechanism ¢ be a function on E X [0, c0) given by
(RII0). We say an M .-valued Hunt process X = {(X;),x0; (P#)ﬂe/\,(‘lE }isa (&, ¥)-superprocess
if for each t > 0, u € My, and f € %/ (E), we have

P, [e—Xz(f)] — e—.u(sz)’

where the function (¢, x) — V;, f(x) on [0, 00) X E is the unique locally bounded positive solution

to the equation

tAE
i@+ [ we e ds| =LA@ 1205 B G119
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(In this chapter, for any real-valued function F on E X [0, c0) and real-valued function f on E,
we write F(x, f) := F(x, f(x)) for simplicity.)

Define the Feynman-Kac semigroup
PLf(x) =T [eh PO f(EN, ], 12 0,x € E, f € By(E).

(Notice that if 8 = 0, then P; := P? is the transition semigroup of the process &.) It is known,
see [56, Proposition 2.27] for example, (Ptﬁ ) is the mean semigroup of the superprocess {X; P},

in the sense that

P.X(N)]=u(PPf), neMpt>0,feBE).

The mean semigroup plays a central role in the study of the asymptotic behavior of superpro-
cesses. As discussed in [B1], in order to have a result like (B2T-13) or (B21-17), we have to
establish the asymptotic behavior of the mean semigroup first. This can be done under the

following assumptions on the spatial motion ¢:

Assumption 5.1. There exist an m € My with full support on the state space £ and a family

of strictly positive, bounded continuous functions {p,(-,-) : t > 0} on E X E such that
U] = [ pen)fmdy). 1> 0x € E.f € BE)
/p,(y,x)m(dy) <1, t>0,x€E,
E
[ [ pcypmaomay) <o 1> 0;
EJE
and the functions x fE p:(x,y)*m(dy) and x fE p:(y, x)*m(dy) are both continuous.

Under Assumption B, it is proved in [b8, 67] that there exists a function pf (x,y) on

(0,00) x E x E which is continuous in (x, y) for each ¢ > 0 such that
e Wty (x, y) < PP(x,y) < e"p(x,y), t>0,xy€E,
and that forany 7 > 0,x € E and f € %,(E),
Pfe) = [ A fomdy)
(pf ): =0 is called the density of the semigroup (Ptﬁ ):s0. Define the dual semigroup (Pf "0 by
PP =n )= [ s, 1> 0x € Ef € BE)
It is proved in [b68, 67] that (Pf ):>0 and (Pf )0 are both strongly continuous semigroups of

94



Chapter 5 Spine decomposition of critical superprocesses: Slack type result

compact operators in L*(E,m). Let L and L* be the generators of the semigroups (Pf )20
and (Pf )0, respectively. Denote by o (L) and o-(L*) the spectra of L and L*, respectively.
According to [[73, Theorem V.6.6], A := supRe(o(L)) = sup Re(o(L*)) is a common eigen-
value of multiplicity 1 for both L and L*. Using the argument in [68], the eigenfunctions
¢ of L and ¢* of L* associated with the eigenvalue A can be chosen to be strictly positive
and continuous everywhere on E. We further normalize ¢ and ¢* by (¢, ¢),, = (d,d*)n = 1
so that they are unique. Moreover, for each ¢+ > 0 and x € E, we have Pfg ¢*(x) = eMgp(x)
and PP ¢(x) = eV ¢*(x). We refer to ¢ (resp. ¢*) and A the principal eigenfunction and the
principal eigenvalue of L (resp. L").

Now, from

P.[X:(¢)] = eV (), t>0,

we see that, if 4 > 0, the mean of X;(¢) will increase exponentially; if 4 < 0, the mean of X, (¢)
will decrease exponentially; and if A = 0, the mean of X,(¢#) will be a constant. Therefore, we
say X is supercritical, critical or subcritical, according to 4 > 0, 4 = 0 or 4 < 0, respectively.

Since we are only interested in the critical case, we assume the following:
Assumption 5.2. The superprocess X is critical, i.e., 4 = 0.

Let ¢ (resp. ¢") be the principal eigenfunction of (resp. the dual of) the transition
semigroup (P,) of the spatial process &. Our second assumption on the spatial process ¢ is the

following:

Assumption 5.3. ¢ is bounded, and (P;),¢ is intrinsically ultracontractive, that is, for each

t > 0, there is a constant ¢, > 0 such that for each x,y € E, p;(x,y) < c;(x)¢*(y).

Under Assumption B3, it is proved in [bR, B7] that the principal eigenfunction ¢ of the
Feynman-Kac semigroup (Pf )i>0 is also bounded. Moreover, (Pfg )is0 is also intrinsically
ultracontractive, in the sense that for each ¢ > 0, there is a constant ¢, > 0 such that for each
x,y€E, pf(x, y) < c;¢(x)¢*(y). In fact, it is proved in [27] that for each ¢ > 0, (pf(x, Y))x,yeE

is comparable to (¢(x)¢*(y))x, ek in the sense that there is a constant ¢, > 1 such that
e Y ¢, xy€ck. (5.1.19)
C T ey T

It is also shown in [47] that there are constants cg, c; > 0 such that

Py
$(x)¢*(y)

1‘ <coe . > 1. (5.1.20)

x,yeE
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We refer our readers to [68] for a list of examples of processes satisfying Assumption 511 and
3.

Our assumption on the branching mechanism is the following:

Assumption 5.4. The branching mechanism ¢ is of the form:

W(x.2) = ~B()z + k(x) / (€~ 1+ zy)r(_y(f)ﬁylw(x)

= —B(x)z+ k(x)2?Y, xeE,z>0,

where € B, (E),y € B (E), k € B, (E) with 1 < y(-) < 2, vy := essinf,, 4y y(x) > 1 and

Ko := essinf,, gy k(x) > 0.

Here we use the definition of the Gamma function on the negative half line:

) n-1 k

—t

[(x):= /O tx_l(e_’ ) (k') )dt, n<x<-n+lneN, (5.1.21)
k=0 :

We now present the main results of this chapter:
Theorem 5.1.1. Suppose that {(X;);>0; (P”)#EME }is a (&,¥)-superprocess satisfying Assump-
tions BI-34. Then,
(1) {X;P} is non-persistent, that is, for eacht > 0 and x € E, Ps_(|| X;|| = 0) > 0,
(2) for each u € Mg, P,(||X,]| # 0) converges to 0 as t — oo and is regularly varying at
infinity with index —(yo — 1)~\. Furthermore, if m(x : y(x) = yo) > 0, then
tim 7, P (X, # 0) = u(o):

(3) suppose m(x : y(x) = y) > 0. Let f € B*(E) be such that {f,¢*)m > 0 and
|¢7" fllo < 00. Then for each u € M,

X RPN # 0} =5 (£,97) ™",

Here, 1, := (Cx(yo — 1)t)_%, Cx := (L, ()oK - 9", ¢ )y and 2707V is a random variable with

Laplace transform given by (81°8) (with o = yy — 1).

5.1.3 Methods and overview

To establish Theorem BTT(2) and Theorem BTI(3), we use a spine decomposition
theorem for X. Roughly speaking, the spine is the trajectory of an immortal moving particle
and the spine decomposition theorem says that, after a size-biased transform, the transformed

superprocess can be decomposed in law as the sum of a copy of the original superprocess and
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an immigration process along this spine, see [25, P&, 57]. The family of functions used for
the size-biased transform is (e ™" X,(¢)),=0, which is a martingale. Therefore, this size-biased
transform can be viewed as a martingale change of measure. Under Assumptions 5.1 and B3,
the spine process {&; T1(®} is an ergodic process. We take advantage of this ergodicity to study
the asymptotic behavior of the superprocess.

Similar idea has already been used by Powell [62] to establish results parallel to (ET-12)
and (B-T13) for a class of critical branching diffusion processes. Let {(Y;),50; P} be a branching
diffusion process, in a bounded domain, with finite second moment. As have been discussed
in [62], a direct study of the partial differential equation satisfied by the survival probability
(t,x) — Ps (||Y;|| # 0) is tricky. Instead, by using a spine decomposition approach, Powell
[62] showed that the survival probability decays like a(f)@(x), where ¢(x) is the principal
eigenfunction of the mean semigroup of (¥;) and a(¢) is a function capturing the uniform speed.
Then, the problem is reduced to the study of a single ordinary differential equation satisfied
by a(t). Later, inspired by [67], we gave in [b5] a similar proof of (RT17) for a class of
general critical superprocesses with finite second moment. In this chapter, we will generalize
these arguments to a class of general critical superprocesses without finite second moment
and establish Theorem BT°1(2). For the conditional weak convergence result, i.e., Theorem
B.T.Ti(3), we use a fact that the Laplace transform given in (51-6) can be characterized by a non-
linear delay equation (see Lemma B35). Using the spine method, we show that the Laplace
transform of the one-dimensional distributions of the superprocess, after a proper rescaling,
can be characterized by a similar equation (see (8323)). Then, the desired convergence of the
distributions can be established by a comparison between the equations. Again, the ergodicity
of the spine process plays a central role in the comparison.

A similar idea of establishing weak convergence through a comparison of the equations
satisfied by the distributions has already been used by us in [63, BS]. We characterized
the exponential distribution using its double size-biased transform; and to help us make the
comparison, we investigated the double size-biased transform of the corresponding processes.
However, the double-size-biased transform of a random variable requires its second moment
being finite. Since we do not assume the second moment condition in this chapter, we can not
use the method of double size-biased transform.

In [62] (for critical branching diffusions in a bounded domain with finite variance) and
in [bY, BR] (for general critical superprocesses with finite variance), the conditional weak
convergence was proved in two steps. First, a convergence result was established for ¢, the

principal eigenfunction of the mean semigroup of the corresponding process, and then the
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second moment condition was used to extend the result to more general testing functions.
However, in the present case, since we are not assuming the second moment condition, this
type of argument does not work. Instead, we use a generalized spine decomposition theorem,
which is developed in [b3], to establish Theorem BTTI(3) for a large class of general testing
functions in one stroke.

The rest of this chapter is organized as follows: In Subsections 521, and B2 3, we
give some preliminary results about the asymptotic equivalence, regularly varying functions
and superprocesses, respectively. In Subsection 824, we present the generalized spine de-
composition theorem. In Subsection 523, we discuss the ergodicity of the spine process. In
Subsections B3 and B3 we give the poofs of Theorem BTT(1) and BTT(2), respectively.
In Subsection B33, we give the equation that characterize the one-dimensional distributions.
In Subsection B34, we give the equation that characterize the distribution with Laplace trans-
form (B1-6). Finally, in Subsection B33, we make comparison of these two equations and

give the proof of Theorem B.TTI(3).

5.2 Preliminaries

5.2.1 Asymptotic equivalence

In this subsection, we give alemma on asymptotic equivalence. Let fy € [—o0, 0]. For any

Jo, fi € B (R), we say fy and f are asymptotically equivalent at ty, if |% - 1| —— 0; and in
t—1

this case, we write fy(f) ~ fi(z). Let E be a measurable space. For any gy, g, € £ (R X E),
t—1

golt,x) 1| 5 0;

we say go and g; are uniformly asymptotically equivalent at t,, if sup, g |q1 ]
E i =1

and in this case, we write go(Z, x) *F g1(t, x).
11—l
Lemma 5.2.1. Suppose that fo, fi € Z; (R X E) and fy(t, x) *F fit,x). If m € ML, then
t—1

/Efo(t,x)m(dx) t:m/Efl(t,x)m(dx).

Proof. Since

y@ﬁ@mem_q_

| [ A0 flomid
/E fi(t, x)m(dx)

e H(tx) fE fi(t,y)m(dy)
Solt, x) fi(t, x)m(dx) folt, x)

-1 -1
S/E fit,x) ’ [ At ym(dy)  ser | fitt.x)

the assertion is valid. OJ

5
11—
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5.2.2 Regular variation

In this subsection, we give some preliminary results on regular variation. We refer the
reader to [[[0] for more results on regular variation. For f € %%*((0,)), we say f is regularly
varying at oo (resp. at 0) with index y € (—oo, 00) if for any A € (0, o),

lim w = (resp. lim w = /17).

1= f(1) =0 f(1)
In this case we write f € R? (resp. f € Rg). Further, if y = 0, then we say f is slowly
varying. According to [I0, Theorem 1.3.1], if L is a function slowly varying at oo, then it can

be written in the form

L(1) = c(t) exp { / t e(u)%}, t> 1,

o

for some 7y > 0, where (c()),»;, and (€(t)),»,, are measurable functions with ¢(t) — ¢ €

t—o0

(0,00) and €(r) —— 0. In particular, we know that, there is #, > 0 large enough such that L is
t—o00

locally bounded on [f, ).

Lemma 5.2.2 ([0, Propositions 1.5.8 and 1.5.10]). Suppose that L € R;.

o Let ty € (0,00) be large enough so that L is locally bounded on [ty, o). If @ > 0, then

/t L(u)du® o t*L(1).

)

o Ifa <0 then /too L(u)du® < oo fort large enough, and

- / Lw)du® ~ t*L(7).
t t—00

Corollary 5.2.3. Suppose that | € R).

o Let 50 € (0,00) be small enough so that l is locally bounded on (0, sy]. If @ < 0, then
S0
—/ [(u)du® ~ sYI(s).

o I[fa >0, then fos l(u)du® < oo for s small enough, and

/ I(w)du® ~ s1(s).
0 s—0

Proof. Since [ € R?, we know that, if one defines L(¢) := I(t!) for each ¢ € (0, ), then
L € R;. Therefore, there exists 1y € (0, 00) such that L is locally bounded on [#y, o). Taking

so := t;!, we then immediately get that [ is locally bounded on (0, so]. If @ < 0, then according
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to Lemma B2, we have

t
/ Lwdu™ ~ tL(1).
f t—o00

-1

Replacing ¢ with s, we have

-1

- [t = [ e < 6L = 51)

as desired. The second assertion can be proved similarly. [

Lemma 5.2.4 ([0, Theorem 1.5.12]). If f € R with @ > 0, there exists g € R‘f‘;a with

g(f0) ~ flgn) ~ .
Here g is determined uniquely up to asymptotic equivalence ast — co.

Corollary 5.2.5. If f € R® with a < 0, there exists g € RS, with

1/a
g W) ~ 15 flg) ~ . (5.2.1)
Here g is determined uniquely up to asymptotic equivalence ast — co.

Proof. Since f € R°, we know that f € R, with f(¢) := f(t"'). Noticing that —a > 0,

according to Lemma 824, there exists & € Rf’l Ja such that

Wf@) ~ o fh@) ~ t. (522)

Denoting by g := h™! € R

o the above translates to (&21).

Now, suppose that there is another g, € Rf‘;a satisfies (B21]) with g replaced by gj.
Denoting by hy := g, !, we can verify that (522) is valid with 4 replaced by hy. According to
Lemma 8274, 4 and h, are asymptotic equivalent at co. Hence, so are g and g. [

Lemma 5.2.6. Let E be a measurable space with a non-degenerate measure m € M. Let

v € By (E) with
Yo i= es?dir%fy(x) :=sup{r : m(x : y(x) <r)=0}.

Then (fE m(dx)) € R . Further, if m{x : y(x) = yo} > O, then

t€(0,00)

/ﬂ(x)m(dx) ~ m{x :y(x) = yo}1°.
E t—0
Proof. If A € (0, 1], then we have
/E DO m(d) 3 fE 2 m(dx)
fE YO m(dx) /E YO m(dx)

=1, te(0,00).
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This implies that

f DO m(dx)
limsup “£
(0,00)3t—0 /E ﬂ(x)m(dx)

Also, for any € € (0, ), we have

/E/ly(x)t“/(x)m(dx) N /y(x)5y0+e 2@ Om(dx)

fEty(x)m(dx) B /Eﬂ(x)m(dx)

> JYote '/7’(X)S70+6 'Ym(dx)

> /y(x)sy(ﬁf Om(dx) + [y(x)>70+6 Om(dx)
= 1 t € (0,00),

Y)-00 ) py(dx)

Y-00+€) i (dx)

1 + /V(X)>“/o+5

y(x)<ypte

- /1y0+€
s
(0,00)3t—0

where the last convergence is due to the monotone convergence theorem. Therefore

f OO m(dx)
liminf Z£ > A,
(0,00)3r—0 ./-E [V(X)m(dx)

Summarizing the above, we get

/E OO m(dx)
1m
(0,00)3t—0 /E ﬂ’(x)m(dx)

=, Ae(01].

If A € (1,00), taking f(x,1) := ¥, from what we have proved, we also have that

im /E fx, Anm{dx) = lim /Ef(x’ i) = ((/1_1)%)_1 = °.
(0,00)3t—0 ‘/;Ef(x’t)m(dx) (0,00)91‘—’0/Ef(x,/1_1t)m(dx)

This proved the first part of the lemma. If further we have m(x : y(x) = yy) > 0, then by the
monotone convergence theorem it is easy to see that

fE " Om(dx)

1 (0,00)3t—0

m(x :y(x) = yo) € (0, 00).

5.2.3 Superprocesses

In this subsection, we recall some known results on the (&£, )-superprocess {X; P}. It is

known, see [56, Theorem 2.23] for example, that (5.1.T8) can be written as

V, f(x) + / PP wo(x,V,fdr = PPf(x), feBi(E).t>0,x€E, (5.2.3)
0
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where

Yo(x,z) = a(x)z* + (e =1+ zy)n(x,dy), x€E,z>0.
(0,00)

Suppose that Assumptions BI85 hold. Integrating both sides of (823) with respect to ¢*dm,
we get that

Vifo 0+ [ Vo0 = Vfo 8 1252 0.F € BE). (524)

Let W be the collection of all M}.-valued cadlag paths on [0,c0). We refer to W as the
canonical space of (X;);s0. In fact, (X;) can be viewed as a W-valued random variable. We

denote the coordinate process of W by (W;);s¢.

We say that (X;);»o is non-persistent if Ps_(||X;|| = 0) > O for all x € E and ¢t > 0.
Suppose that (X;), o is non-persistent, then according to [56, Section 8.4], there is a family of

measures (N, )<z on W such that

* Nu(Vz 2 0,[[W,[| = 0) = 0;

* Ni(|[Woll # 0) = 0;

e forany u € ML, if N is a Poisson random measure defined on some probability space
with intensity N,(-) := fE N, (-)u(dx), then the superprocess {X;P,} can be realized
by X, := p and X,(-) := N[W,(-)] for each 7 > 0.

We refer to (N, ) cg as the Kuznetsov measures of X. For the existence and further properties

of such measures, we refer our readers to [56].
From Campbell’s formula, see the proof of [49, Theorem 2.7] for example, we have
~logP, eV =N, [1 -], ue MLt >0,f e B E). (5.2.5)

For each x € E and r > 0, taking u = 6, and f = Al with 4 > 0 in the above equation, and

letting A — oo, we get
v (x) = lim V,(A1g)(x) = ~log Ps, (|| X;[| = 0) = N ([[W,[| # 0). (5.2.6)

For each u € M}f and ¢ > 0, by (B239), (8226) and the monotone convergence theorem, we

have
N, (IW:]l # 0) = —log P, (|| X;]| = 0) = llingo(— log P, [e~ ¥ (1=)])

= lim (1, V(A1) = pu(vr). (5.2.7)

102



Chapter 5 Spine decomposition of critical superprocesses: Slack type result

It is know that for any f € %} (E),

NLW.(N)] = PuIX ()] = w(PPf), =0, (5.2.8)

see [bS, Lemma 3.3] for example.

5.2.4 Spine decompositions

Let (Q,.7) be a measurable space with a o-finite measure y. For any F € .%, we say
u can be size-biased by F if u(F < 0) = 0 and u(F) € (0,00). In this case, we define the
F-transform of u as the probability u? on (Q,.%) such that

F F
du” = md,u.

Let {X;P} be a non-persistent superprocess. Let u € M} and T > 0. Suppose that
g € $*(E) satisfies that ,u(ng) € (0,00). Then, according to (822R), P, (resp. N,) can be
size-biased by X7(g) (resp. Wr(g)). Denote by PZT(g) (resp. NXVT(g)) the Xr(g)-transform of
P, (resp. the Wr(g)-transform of N,). The spine decomposition theorem characterizes the
law of {(X;);s0; Pf,(T(g)} in two steps. The first step of the theorem says that {(X,);>0; Pffr(g) }

can be decomposed in law as the sum of two independent measure-valued processes:

Theorem 5.2.7 (Size-biased decomposition, [63]).
{(X)e>05 P,L),(T(g) e {(Xi + W20 Py ® NZVT(Q)}.

The second step of the spine decomposition theorem says that {(W,)o<,<r; NXVT(g)} has
a spine representation: We say {(&;)o<;<7» nT,(K)OStg;P,{,g’T)} is a spine representation of
NXVT(Q) if,
: .ple.T)y ; .1749.7) (9.T) ;
* the spine process {(&:)o<i<r; Py "'} is a copy of {(&)o<r<r;IL;" '}, where I1;"" is the
g(&r) exp{ fOT B(&;)ds}-transform of the measure IT,(-) := fE u(dx)I(+);

o given {(¢)o<i<r: P}, the immigration measure {ng; PO [-|(&)0<i<r]} is a Poisson

random measure on [0,7] X W with intensity

m.(ds, dw) := 2a(&,)ds - N (dw) + ds - /

(0,00 yPyégs (X € dw)n(é:s’dy);
0,00

* {(Y;)o<s<ts PY)Y is an M! -valued process defined b
u E p y

Y, .= / w;_sny(ds,dw), 0<t<T.
(0,7]xW
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Theorem 5.2.8 (Spine representation, [65]). Let {(Y;)o<; <73 Pi,g’T) } be the spine representation
of NXVT(g) defined above. Then we have

- f.dd.
{(Fosr<rs PLg’T)} = {(Wosi<rs NXVT(Q)}.

Notice that PffT(g)(Xo = ) = 1. Also notice that N, is not a probability measure, but

after the transform, NXVT(g)

is a probability measure. Since N, (||Wy|| # 0) = 0, we have
N,‘YT("’)(HWOH = 0) = 1. Similarly, I1, is not typically a probability measure, but after the

transform, HLT’g) is a probability measure. We note that

(T.g9) !
Mot =~ tloenen | e} i)
1 5 _
= /E (Pg)(x) - F(x)uld).
which says that
Hl(lT’g)(fo € dx) = @(Plrgg)(x)u(dx), xeE. (5.2.9)

Now, suppose that {&; 1} satisfies Assumption B7l. Recall that ¢ is the principal eigen-
function of the mean semigroup of X. The classical spine decomposition theorem, see [?5],
[28] and [57] for example, considered the case when g = ¢ only. In this case, the family
of probabilities (Hl(f”T) )rso is consistent in the sense of Kolmogorov’s extension theorem,
that is, the process {(&;)o<s<7; Hfj’”T)} can be realized as the restriction of some process, say
{(&)is05 Hf,@}, on the finite time interval [0,7]. In fact, one can also check that this consis-
tency property is satisfied by (PZ(T(‘Z’))TZO, (NXVT(‘M)TZO and (P/(f’T))T >0- Therefore, the actual
statement of the classical spine decomposition theorem is different from merely replacing g
with ¢ in Theorem 6271 and B2.8: There is no need to restrict the corresponding processes
on the finite time interval [0,7]. Because of its theoretical importance, we state the classical

spine decomposition theorem explicitly here:

Corollary 5.2.9. For each u € Mf; N M., we have

f.dd.
{(X)i20: PP =7 {(Xe + Wo)iz0; Py @ NIPYL

Here, the probability Pif” is Doob’s h-transform of P, whose restriction on the natural filtration
(FX) of the process (X;):s0 is

X(¢)
u(e)

and Nﬁfﬁ) is a probability measure on W whose restriction on the natural filtration (V) of the

d(PL@LZX) = d(Pp|,3Z,X), t>0;
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process (W,);»¢ is

A
(o)

A7 5) ANyl zw), 12 0.

Letu e M,(f), we say {(&)r0.1, (Y;)s50; P,(f)} is a spine representation of N,(f’) if:

o the spine process {(&;);s0; PL¢)} is a copy of {(&/):>0; H,(,¢)} where the probability Hff)
is Doob’s h-transform of II, whose restriction on the natural filtration (ﬁf) of the
process (&;); o is

B(&,)eh BEds
u(e)

« conditioned on {(&),20; P\"'}, the immigration measure {n; P'[-|(&),50]} is a Poisson

(Y] 5¢) = d(TL| 7). 12 0;

random measure on [0, c0) X W with intensity

m® (ds, dw) := 2a(&,)ds - N, (dw) + ds - /

(0,00 yPyégs (X € dw)n(é:s’dy);
0,00

* {(Y}):s0; I",(f) } is an M-valued process defined by

Y, = / w;_n(ds,dw), t>0.
(0,¢]xW

Corollary 5.2.10. Let {(Y;);>0; P,(f)} be the spine representation of N,(f) defined above. Then
we have
. f.d.d.
{(V)rs0: PP} =7 {(Wh)is0: N}
For the sake of generality, the spine decomposition theorems above are all stated with
respect to a general initial configuration u. If i = J, for some x € E, then by (5229), we have

Hg’g)(go = x) = 1, so sometimes we write 79 for Hg’g). Similarly, we write Y for Hgi).

5.2.5 Ergodicity of the spine process

In this subsection, we discuss the ergodicity of the spine process {(&;);s0; (H,(:”))xE £+ under
Assumptions BT1-573. According to [47], {&; H)(f)} is a time homogeneous Hunt process and

its transition density with respect to the measure m is

q:(x,y) := Mpf(x, y), x,y€E;t>0.
B(x)

Let ¢ > 0 and ¢; > 0 be the constants in (21-20), then we have

q:(x, y)

sup |20 Y) 1( <coe ', 1> 1, (5.2.10)
vt | 9 (1) ’
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This implies that the process {f;HfC¢)} is ergodic. One can easily get from (52210) that
(p¢p*)(x)m(dx) is the unique invariant probability measure of {¢; Hﬁf’)}. The following two
lemmas are also simple consequences of (522.10]). They will be needed in the proof of Theorem
BTT(3).

Lemma 5.2.11 ([65, Lemma 5.6]). If F' is a bounded Borel function on E X [0, 1] X [0, 00) such
that F(y,u) := lim,_,, F(y,u,t) exists for each y € E and u € [0, 1], then

: ca?) [
/ F(&q-wy u, t)du —— / (F(,u),p¢")ndu, x € E.
0 1—0e0 0

Lemma 5.2.12. Let F be a non-negative bounded Borel function on E X [0, 1] X [0, 00). Define
F(y,u) :=limsup,_,, F(y,u,t)foreachy € E andu € [0,1]. Then, foreach x € E andp > 1,

1
® S/ (F(su), ¢ )du, x€E.
\LP 0

n

1
limsupH/ F(&q—uyu,t)du
0

t—o0

Proof. For each (y,u,t) € E X [0,1] X [0, 00), define F(y,u,t) := sup,.,,, F(y,u,s). Then F is
a bounded Borel function on E X [0, 1] X [0, c0) such that

F(x,u) = lim F(x,u,t), x € E,uc]0,1].
t—0o0
From Lemma B2_TT], we know that

- ca?) [ .
/ F(&q—uy,u,t)du —>t / (F(-,u),¢d*),ndu, x € E,
0 — 0

which implies convergence in probability. The bounded convergence theorem then gives that,

foreach p > 1,

- rra®y [
/ F(f(l—u)t’ u, t)du t—) / <F(7 u)7 ¢¢>mdua X € E
0 - 0

Finally, noting that 0 < F < F, we get

1
Slimsup”/ F(f(l,u),,u,t)du
0

H?);LP t—o0

1
:/ (F(,u), " )mdu, x € E
0

1
limsupH/ F(&q—uwyu,t)du
0

r—o00

H§C¢);LP

106



Chapter 5 Spine decomposition of critical superprocesses: Slack type result

5.3 Proofs

5.3.1 Proof of Theorem 5.1.7i(1)

Let {X; P} be a (&,¢)-superprocess satisfying Assumptions B1-54. In this subsection,

we will prove the following result stronger than non-persistency:
Proposition 5.3.1. For eacht > 0, inf,cg Ps (|| X;|| = 0) > 0.

Proof. Recall that ky = essinf,, v k(x) and yy = essinf,,x) y(x). For each x € E, let
R(x) = k(x)le(n)zxy + Kodi(x)<, and ¥(x) 1= ¥(X)1yx)5y, + Yoly(x)<y- Then, we know that
m(k # k) = 0 and m(y # y) = 0. Define y(x,z) := —B(x)z + kK(x)z"™ for each x € E and
z > 0, then for each z > 0, ¥/(-,z) = ¥(-, z), m-almost everywhere.

If we replace ¢ with ¢ in (51IR), the solution V; f(x) of equation (51IR) is also the

solution of
N
Vif(x) + 11, [/ Y(&s, Vt—sf)ds] = I, [f(ft)lt<§] .
0
So, we can consider {X; P} as a superprocess with branching mechanism . Define
U(2) = =(IBlls + K0)z + k2%, 22 0.
Using the fact that yy > 1 and «, > 0, it is easy to verify that

inf §(x,2) > (), 22 0; / L <oor f(4oo) = 4oo,
xeE 1 w(Z)

Therefore J satisfies the condition of [68, Lemma 2.3]. As a consequence, we have the desired

result. O]

5.3.2 Proof of Theorem 5.1.7(2)

Let {X; P} be a (&, y)-superprocess satisfying Assumptions B1-54. From Proposition

B3, we know that our superprocess { X; P} is non-persistent, that is,
Ps (|IX:]| =0)>0, t>0,x€ekE.
Notice that Ps_[X;(¢)] = ¢(x) > 0, so we have

Ps (IX]=0)<1, t>0x¢€E.
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From these and (B226), we have that v, € %,"(E) for each t > 0. According to (5226) and

(B223), by monotonicity, we see that (v,),~( satisfies the equation
t
Us1r(X) + / Pf_,t,//o(x, User)dr = ngvs(x) €[0,00), s>0,>0,x€E.
0

Notice that, under Assumption 51, according to (&1-19), dv := ¢*dm defines a finite
measure on E. Therefore, (v;, ¢*),, < oo for each t > 0.
According to (5822.4)), (5226) and the monotone convergence theorem, (v, ), also satisfies

the equation

t
Gt In+ [ G0 e = I 10,000 5050, ($31)
One of the consequences of this equation is that, see [63, Lemma 5.1] for example,
16~ vrlls — 0. (5.32)

Therefore, to prove Theorem 5.1.1I(2), we only need to consider the speed of this convergence.
This is answered in two steps. The first step says that (¢~'v,)(x) will converge to 0 in the same

speed as (v;, ¢* ), uniformly in x € E:

xeE

Proposition 5.3.2. (¢~'v,)(x) "~ (v, ")
r—o00
The second step characterizes this speed:

Proposition 5.3.3. ((v;, ¢*),,.)i>0 is regularly varying at co with index — yOl—_l Furthermore, if

m(x : y(x) =vyp) > 0, then

008~ (Cx(ro = D) 7,

—00

where Cx = (1, k", §* ).

Proof of Proposition 532. We use an argument similar to that used in [63] for critical super-
processes with finite 2nd moment. For each u € M, denote by {(¥,), (&), n; PL"S)} the spine
representation of N,(f’). According to (8277), (82-8) and Theorem 628, we have that for each
t >0,

(1 )PPV (0) '] = N [W(@)IN) P [W, ()] = Nu(Wi(8) > 0) = p(v,).  (5.3.3)

Taking u = 6, in (833), we get (¢~'v,)(x) = Pg‘i)[Yt(@‘l]. Taking p = v in (833), we get
(Vs @V = [Y;(¢)~']. Therefore, to complete the proof, we only need to show that

PN (¢) Y PPN (9)7'].
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Chapter 5 Spine decomposition of critical superprocesses: Slack type result

For any ¢ > 0 and any G € %4((0,1]), define
Y© = / w;_yn(ds, dw).
GxXW

Then for any 0 < #, < ¢, we can decompose Y; into

Yt — Y(OJO] + Y(IOJ]

t t :
Using this decomposition, for each 0 < fy <t < co and x € E, we have
P ()] = PO @) ]+ €llto 1) + €2t 1), (534)

where

er(to, 1) == POV ()] - O[T (9)];

e, 1) = PY[Y, () = ¥ (9)]

By the construction and the Markov property of {Y,&;P?}, we have that

PO @) .75 = P V(@)1 = (7 v ) (60):
PO @)™ = TIPS 0r-)(E)] = (0ot 8 Vo (53.5)

POTY ()™ = TP U vy )] = / G (6 )@ Vi) )m(dy).  (5.3.6)

Let ¢y, c; > 0 be the constants in (&1-20). We claim that
|ed(to.1)] < Co€™ (V1§ In 10 > 1. (5.3.7)
In fact,
X (t0, )] = [P [y, (9)™'] = B[y ()]
| [ a6 v Ym(d) = (0108
< /y . |900(x. y) = (") (W)|(@ ™" 01—, )(y)m(dy)

< COe_Cllo <Ut—l‘07 ¢*>m

We now claim that, if , > 1 and t — 1, is large enough, then
€20, )] < 10llkY "l - 167" 001, 18 (1 + Coe™ ) (010> ¢ om. (5.3.8)
In fact, using the Markov property of the spine process and the property of Poisson random
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measures, we have

|e2(to, )] = [PY[Y(9)™" = ¥, ()| (5.3.9)
= POy g - ()" - v ()]
<P Esﬁ)[lyfo,tol(q)#o )]
=Py [P

o gl ZET- PO 9) 1 7E]).

On one hand, according to (52-10) and (53-6), we know that
P (@)™ < (14 coe™ )01 ¢ (5.3.10)

On the other hand, since ¢~'v; converges to 0 uniformly when s — oo, we can choose sy > 0
such that for any s > 59, we have ||¢ 'vg|lo < 1. Then, if t —s > ¢ — ty > s, using the fact that

v, is non-increasing in ¢, we get

- - - -1 - - -1
Ky (v ()7 < Nlky @ o - 1197 0 I8 < My e Moo - 197" 0, |17

Therefore, using Campbell’s formula, (ET-2T) and the fact that e > 1 — x, we have, for

t—1ty = So,

Pisi)[lllY,(O’to]ll#&Oly’f] < —log (1 - Pgt)[lm(o,ro] ”¢0|ft§])

= —log }1_r£10 P(é‘i)[e_’lyf(o’IO](lE)|9’tf]
= —log lim exp { — / (1- exp{—lsgowt_s(/llE)})mf(ds,dw)}
A—00 [0,¢]xW

Iy
=/ 1s<t01|w,_s||¢0m§(dS,dw)=/ dS/ yPys. [Lx,_, 0l (&5, dy)
[0,2]xXW 0 (0,00)

= tod 1 — e o5& kE)dy /’0 1) ()
A > /(;)’Oo) y( ¢ )F(_fy(fs))ylﬂ/(x) 0 (Kyvt—s )(f) s

-1 -1 -1
< tollkyd oo - 187 0 15

Combining this with (839) and (6310), we get (53°R).

Now, for 0 < fp <t < ocoand x € E, if fy > 1 and ¢ — 1, is large enough, according to

(B33), (B33), (B36), (6371) and (R310), we have

(¢lo)®) 1 a0l | &)
<Ut—t0’ &*)m B <Ut—t0a &) <Ut—t0a &)

_c _ _ -1 e
< o™ + 10| k() () (X)) leo - 167 0 10T (1 + coe™ ™).

(5.3.11)
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Chapter 5 Spine decomposition of critical superprocesses: Slack type result

According to (537), there exists a map ¢ + fy(¢) such that,
- -1
to(1) PRt 1o(2)l| ¢ 1Uz—t0(t)||Z<? s 0.

Plugging this choice of #y(¢) back into (53-11l), we have that
(¢~'v)(x)

-1 0.
ver (Vr=t5(1)» 9 Im t—00
Notice that
{004 / @)@ |
- d
<Ut l‘o(l‘)a¢ >m ‘(vtto(z)’ ¢*> ‘(p(p ('x)m( -x)
(¢_1U,)(x)
< -1 0.
veb 0 t—oo

Now, by (63.17), (8313) and the property of uniform convergence, we get

(¢~ o))

0,
<Uta ¢*>m

sup
xeE

t—o00

as desired.

(5.3.12)

(5.3.13)

Proof of Proposition 533. From (B31) we know that (v, ¢*),, is continuous and strictly

decreasing in t € (0,00). Since the superprocess (X;);o is right continuous in the weak

topology with the null measure as an absorbing state, we have that, for each u € M.,

P.(||X:]| # 0) 7 1. Taking u = v, according to (B2217), we have that (v, ¢*),, — T On
11— t—

the other hand, according to (832), we have (v;, ¢*),, —— 0. Therefore, the map ¢ — (v,, ¢*)
t—o00

has an inverse on (0, co) which is denoted by
R : (0,00) — (0, 00).

Now, if we denote by

v (x)

) = e

-1, t>0,xeE.
Then, we have

v (x) = (1 + eR(<U,,¢*>)(x))(vt,¢*>¢(x), t>0,xeLE.

Further, by Proposition and the fact that R(u) —O> oo, we have

sup [ € (x)| — 0.
xeE -0
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Now, by (631l), we have

A0y, ¢")m

dr = _<lﬁ0(" Ur)a ¢*>m > O a.e..

Therefore,

s—1= / dr = / <¢O('a Ur)’¢*>r_nld<vr’¢*>m
= / (o~ (1 + (o, 51, (0r: 6)9). 87, 0. 8 )

(") |
= /< (Wo(-(1+ ER(u))u¢)’¢*>m du.

vs.¢*)
Letting t — 0, we get

<) -l
s = / <zﬁ0(-,(1 + €r@)UP), P >m du, s € (0,00).
<US’¢*>
Since R is the inverse of t — (v;, ¢*), the above implies that

R(r) = / <¢/0(-,(1 + ER(M))ugb),(/)*);du, r € (0, 00). (5.3.16)

We now check the regularly varying property of R(r) at r = 0. This can be done by

considering the regularly varying property of u — <z//0(-, (1 + €rguy)ug), ¢*>m at 0. According
)7(x) x,EVE 1

to (B313), 1 + €rq(x) xib(; 1. Since y(-) is bounded, we have (1 + egq,)(x) .

Therefore, from Lemma 6211, we have that
(Wo((1 + eru)ug). ¢°),, (5.3.17)
= (K()(1 + €rao(0))" 0P, ¢ (%)), )
KGO ()
According to Lemma 5228, and using the fact that x(x)¢(x)"™ is bounded and the measure
¢*dm is finite, we have that (Yo (-, (1 + €r())ug), ¢*)n is regularly varying at u = 0 with index
vo- Noticing that —(yy — 1) < 0, according to Corollary and (B3T6), R is regularly

varying at O with index —(yy — 1). Therefore, from R({vy, ¢*),,) = s and Corollary B3, we
have that ((vy, &* ) )sc(0.c0) is Tegularly varying at co with index —(yo — 1)7".

Further, if m{x : y(x) = yo} > 0, then according to Lemma B8 and (8317), we know
that

(Yo~ (1+ fR(u))W’),fﬁ*)m ) W, k() () B (X))

u:O <1y(x):707 K(-x)¢(x)y0¢*(x)>m(dx)uyo =: CXMYO-
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Chapter 5 Spine decomposition of critical superprocesses: Slack type result

1
m

Cx' when u — 0. Now according to Corollary and (B3-16) we have that

Therefore, we have <:,bo(-, (1 + €rqu))ud), ¢*>_ = u[(u), where [(u) converges to the constant

R(r) :/ <W0(',(1 +ER(u))M¢),¢*>,:du =/ ul(u)du

1 [Se]
= - / l(u)du‘(“/"‘l)
Yo — 1 r

~ Gl = 1),

Now since r +— (v,,$*),, is the inverse of r +— R(r), from [10, Proposition 1.5.15.] and the

above, we have

08 )~ (Cxlyo = 1)r) 7.

Proof of Theorem BI1(2). According to (5277) and (5322),

—log P, (X[l = 0) = p(v,) < p(@)ll¢” vellec — 0.

Therefore, P, (|| X;|| # 0) — 0.
t—00
Noticing that x ~o log(1 - x), according to (5227), Lemma B2 and Proposition 5372,

we have
P #0) ~ ~logP(IX,]| = 0) = u(@¢™'0)) ~ (@)vi¢ )
Therefore, according to Proposition 5373, we get the desired result. [

5.3.3 Characterization of the one dimensional distribution

Let {(X;);s0;P} be a (&, y)-superprocess satisfying Assumptions BE1-54. Suppose
m(x : y(x) = y9) > 0. Recall that we want to find a proper normalization (7;);s0 such
that {(ntX[( Nez0s PuClIIX | # O)} converges weakly to a non-degenerate distribution for a

large class of functions f and initial configurations u. Our guess of (7,) is
mi= (Cxlyo = D T, 120, (53.18)

because in this case

Ps [1:X:(f)1)x, 0] Ul

Ps, [n: X (OIIX || # 0] = P, (|X ]| # 0) B Ps (|| X:]| #0)

PLA(x) ~ {f.4")m:
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Here we have used Theorem B.1.1I(2) and the fact that (see (1.20))

P = [ P 0y — 60F 0

From the point of view of Laplace transforms, the desired result that, for any f € %, (E)
and u € ML, {(U,X,( ) 150 PuCIIX || # O)} converge weakly to some probability distribution
Fy is equivalent to the following convergence:

1 — exp{-u(V;(6n. 1))}
P, (X # 0) 1= Jj0,00)

P,[1 — e /X D) x,|| £ 0] = (1 — e ")Fs(du).

According to Theorem BET1(2) and 1 —e™ ~ x, this is equivalent to

x—0

#(Vt(me))
n:

— (o) [ )(1—e-9”)Ff(du). (5.3.19)

0,00
Therefore, to establish the weak convergence of {(U;X;( 1), o0s PuClI Xl # O)}, one only
needs to verify (E319).

In order to investigate the convergence of ,u(V,(Qn, f )) /n:, we need to investigate the

properties of 6 — V,(6 f). (Note that (5273) only gives the the dynamics of t — V,(6 f).) This

t>0°

is done in the following proposition:

Proposition 5.3.4. For any f € #,(E),0 > 0,x € E and T > 0, we have

0 T
w00 = o0 [ 1O 2 exp = [ (epviesrpy ) es}far. (5320

Proof. 1t follows from Theorem 5277 and 5278 that

Ps [Xr(f)e %]
Ps [Xr(f)]

where {(£)o<;<7,07, (Y )OS,ST;PEZ’T)} is a spine representation of N)‘;VT(’C) with mi being the

intensity of the immigration measure ny conditioned on {(&)o<;<7; PSZ"’T)}. From this, we have

P;s [Xr(f)e Xr]
P(SX [e—HXT(f)]
On the other hand, if we write F(s,w) := 1;crwr_(f), then by Assumption 54, Campbell’s

formula and (B21-2ZT1), we have

— Pfsfxr(f)[e—BXT(f)] =P, [e_HXT(f)]PECT’f)[e_HYT(f)]’

= PLFO)PTD[e D], (53.21)

0 _
%(— log P(sx [e HXT(f)]) =

~1log PU e P ms] = ms(1 — %) (5.3.22)
T
[T [Pl -y
0 (0,00)

T
= / ds - k(&) (1- e—erfs(Of)(fs)) dy
0 (0,00)

L(=y(€))yr&)
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Chapter 5 Spine decomposition of critical superprocesses: Slack type result

T
. /0 (kyVry(0F)) (E,)ds.

Note that, since ny(F) = Y7 (f), we can derive from (8321]) and (5322) that

0
Vr(0f)(x) = —logPs [e7*T)] = /O P F(x)PTH e D) dr

= b [ ep| = [ Gty asf

<ot [ O[EED exp{ - [ i ey s ar

as required. 0

Replacing 6 with Oy in (B320), we have

Vr(0nr f)(x)

nr 6:3:23)
=g [ 2D ep - [ v ey eis|
- o) / [ g (- [ (onveestonnry ) eras}|ar
=00 [ OB exp | =7 [ (eptiroms 177N | ar

5.3.4 Distribution with Laplace transform (5.1.6)

The distribution with Laplace transform (51-6) can be characterized by the following

result.

Lemma 5.3.5. The non-linear delay equation

0 1

L d

G(0) = / exp{— % / G(rmol-l)"’_l—u}dr, 6>0, (5.3.24)
0 Yo—1Jo u

has a unique solution:

1 w1
GO) = ()" - €20. (5.3.25)

We first introduce some notation: If f is a measurable function which is L? integrable on

the measure space (S,., u) with p > 0, then we write

T / f1du)”.

Notice that, when p > 1, || f||,.;» is simply the L” norm of f with respect to the measure y. In

order to prove the above lemma, we will need the following:
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Lemma 5.3.6. Suppose that F is a non-negative function on [0, o) satisfying the property that
there exists a constant C > 0 such that F(0) < C6 for all 0 > 0 and

F(0) < c/ IFGun )., ausydr, 620,

Then F = Q.

Proof. We prove this lemma by contradiction. Assume that
p:=sup{x: F(0)=0,6 € [0,x)} < oo. (5.3.26)

Write F,(0) := F(a + 0) for each @,0 > 0. We first claim that

F,(0) < C(pC+1)0, 6< é,a <p.

In fact, if 0 < % and a < p, then
a+6 . a+6 .
F0) < C [ IFGuT gy <€ [ 10Ty
< C¥a + 0)0)junoT gz iyt < C(PC + 1)8.

We then claim that, if

F,(0) < CK(pC + 1)o*, o< é,a <p, (5.3.27)
for some k € N, then

F,(0) < C*Y(pC + 1)o*™!, 0 < é < p.

In fact, if (83727) is true, then for each 8 < é and a < p,
a+6
F,(0) < C/ ||F(ru70 1)||10<M<1770 \dr

(1’0 l

= C/ ||F((a + r)uVT-l)|
0

- C/ ”F 1/(ro- 1>("”7° l)||lo<u<1 0= 1dl”
0

dr

du.
To<u<1 95701

[
_k
S C/ ||Ck(pC + 1);/-"”70*1 ||10<u<1ﬂ.70_]dr
0 .

k+1 kL1 50T
< C(pC + 1)F* " |uro ]||10<u<1‘f7“;70—1

< CH*(pC + 1)6".
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Chapter 5 Spine decomposition of critical superprocesses: Slack type result

Therefore, by induction, we have
1
F,(0) < CX(pC + 1)o*, 6 < oS p,k € N.
As aconsequence, we must have F(0) = 0if 0 < p+é. This, however, contradicts (83.26). [

Proof of Lemma B33, We first verify that (83729) is a solution of (8324)). In fact, if G(0) =

(—1+9 5o) 70" 7T , then

’ Y
/ exp{— 0 / G(rmo rye” 4 }dr
0 Yo—1Jo
0 1 0 —(yo—
d 1+ 700D
:/ exp{— %0 / - }dr:/ exp{— % log r }dr
0 Yo — 1 0o U+ -1 0 Yo — 1 r—0o-1)
0 1 + r_(')/O_l) Y0

0 Y
- [ = [ R = 6o,
0 0
The last equality is due to G(0) = 0 and

(1 + 9 00~ 1)) )/0 o1~ 1 d — 9 =D
Yo — 1 do

— (1 + 9—(70—1))‘%6)—70_

d
EG(Q) = -

Now assume that G is another solution to the equation (53.24)), we then only have to

show that Gy = G. This can be done by showing that F(¢) = 0 where
F(8) := |G(0)"™! = Go(0) "%, 6> 0.
We claim that the non-negative function F satisfies the following inequality:
F(0) < Cy /0 ' IEGum )y, dugydr, 020, (5.3.28)
for some constant Cy > 0. In fact, by the L” Minkowski inequality with p = ﬁ > 1, we have

GOy ~ Go(6)™|

||e_70/0 G(ru)’() )0~ ldu _ ||e 70‘/0 Go(ru70 Y0~ ldu

||10<r<9dr Pypeny ) ||10<r<€dr yo-1

. 1
_ G 7071 vo—1du du _ G 70 Y01 yvo- ldu
<le Yo fy Gruvo™h) *yof0 o(ru?o7l) ||10<r<0dr o

1 1
d d

< H)’o/ G(rum]l)yo_l;u—)’o/ Go(rum*l)yo_l—u

0 0

L1
u 10<r<9d7,m

Yo—1
dieys
< '}/0(/ / |G(ru70 1)70 1 -G (I"MVO 1)70 1| I/t) o 1 ) .

_1
In other words, there is a constant Cy := 707071 > 0 such that (5328) is true. On the other
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hand, according to (83724)), we have that G(6) < 6 and G((6) < 6. Therefore, we also have
that there is a constant C; > 0 such that F(6) < C;0. Therefore, according to Lemma 536
and (8372R), we have F' = 0 as desired. Il

5.3.5 Proof of Theorem 5.1.1(3)

Consider the (£,y)-superprocess {X; P} which satisfies Assumptions &I-54. Suppose
that m(x : y(x) = yo) > 0. Let f € #*(E) be such that (f,$*),, > 0and ¢ := ||¢™" f|le < c0.

Without loss of generality, we assume that (f,¢*),, = 1. We claim that, in order to prove
Theorem BTTI(3), we only need to show that

V(0. f)(x) __ 7o T
nd(x) oo G() := (1 +6—<70—1>) ’

g(1,0,x) := xeE0>0. (53.29)

In fact, by (8323), we have ||V,(81,£)/1:|lo < 6]|®leoll¢™" f |leo. Therefore, if (5329) is true,

then by the bounded convergence theorem, for each u € M},

M(Vt((?mf))

t

which, by the discussion in Subsection 5373, is equivalent to Theorem BTTI(3).

— U($)GO),

From Lemma B33, we have that G satisfies
G(6) = /O ’ e g g >0, (5.3.30)
where
Jo(r) = 70/01 G(rmol‘)m‘l%, r>0. (5.3.31)
According to (58323), we know that g satisfies
g(,0,x) = /0 ’ O9[(¢7 F)E)e 07" dr, 1>0,0>0,x€E,  (53.32)
where, foreachr > Oand r > 0,
Jo(t,r,8) == (yo — 1)t/01 (ky - (f/)nm)y_lg(ut,ru’o%l,')7_1)(§<1_u)t)du. (5.3.33)

For eacht > 0 and r > 0, define

1 : B
JG(t,1,€) i= yolyo = i /0 (Lyymyok - (@)™ G (run ™) (g )du (5.3.34)

and
1
1 _
J(t,1,8) = 70(70—1)t/ (L, 0)m0k * (@17 g (ut, runoT, )" ])(§<1_u>t)du- (5.3.35)
0
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The underlying idea of the proof is to show that Jg, J;, J, and J are approximately equal in

some sense when ¢t — oo.

Step 1: We will give upper bounds for G, g, Jg, J;. J, and J; respectively. From (B330)

we have
Grysr, r=0. (5.3.36)
From (BE331) and (BE336), we have
Jo(r) < yor™™ ', r>0. (5.3.37)
From (B2332), we have
g(t,r,x) <cer, t20,r>0,x€E. (5.3.38)

From (B31R), (58333), (533R) and the fact that y(-) — 1 < 1, we have
1 o
(e < - oy e [ (0027 a7 ) 6

1 » o
= k- (el /0 (71 (e = 1) 70 ) (€

’OO

y-1

< max{Lr} - [l (el | (Cxro = 1)

:=c,-max{l,r}, t>1,r>0.

From (B31R8), (53339) and (B33R), we have
1 1
Jo(t,r,&) < yo(yo - 1)l/0 (1)=& - (@17 (cpruroT V) (Emye)du

1
< 000 = DA P 0k / {(Cx(yo = Dur) ™ udu
0

From (B31X), (5334)) and (338), we have
1 1
J(,;(t’ r, f) < 70(70 - l)t./O (17('):70K ' (¢nut)yo_l(rum)yo_l)(‘f(l—u)t)du (5339)

1
< yo(yo = D™ |1, 0)med ™|, /0 t(Cx(yo = Dut) ™ udu

Step 2: We will show that, foreachz > 0,0 > 0,and x € E
G0~ = g(1,6,x)"7"|
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< L(1,60,%)+ ' L(1,0,x) + T (1,0, x) + ¢ (1,0, x),
f f f

where
L(1,6,x) := e — |I(¢7' )& e |y, L ;
lo<,r<odr; 71
L(1,0,x) := |1V (r) = Jg (6, )y, ;
01 10<r<gdr 01
(2,6, %) = 1V (#,7,€) = Jo (6.1, E)llyor, L ;
10<r<9dr Yo—1
and

14(1.6.%) = [10.r.) = Jyfe.r Ol

lo<r<odr; 71

In fact, we can rewrite (523300) and (53-37) as:

Gy ! = 6 >0,

and

9(1,6," = |6~ &P o,

701

, t>200>0,x€kE.

1
IOSrSHdF,W

Therefore, by Minkowski’s inequality we have that, for eachz > 0,0 > 0 and x € E,

GO~ — g(2,6, x|
e — (@7 )&V e,y

*yo-1

< 1(6,0.) + @7 PEP e o~

0-1

(¢~ )&y ey, .

<

1
IOSrSGdr7W

10<r <€1dr Jo—1

< 1(1,0,0) + @7 P&y (700 - e,

701

1
lo<r<odr;y—

< 1(1,6,%) + 1 ‘HHJG(r) It )l

lo<r<odr; 71

< L(1,0,%) + 7 (1, 0,x) + ¢ 1(1,60, %) + c}/o "1(1,0,%).

Step 3: We will show that, for each § > 0 and x € E, [,(t,6,x) — 0. Notice that, by
t—00
(RT20),

(67 NE] = 60 ILLFE)e b PE"] = g(0) PP f(x) —> 1, x € E.
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Therefore,

e’ —l(¢7' f )(fr)”)_le_JG(r)llnwﬂ.#1
X "}/0,
= OO (1= (@ NEN) — 0, xeEr 20,
—o0

We also have the following bound:

[e7o0 — g™ per e e, 1 | < 14

vo-1
Therefore, by the bounded convergence theorem, we have that, for each § > 0 and x € E,

I,(t,0,x) — 0.
t—00

Step 4: We will show that, for each § > 0 and x € E, L(t,6,x) —— 0. Notice that,
r—00
according to (5833T]) and (8334)), foreach# > O and r > 0,

JG(r) - J(/;(l',l",g)

1
IOV _ _ du
:/ YoG (runn ) ™ (1 = (yo = D)y )mpok ™ tun’ 1)(§(l—u>1)7
0

1
L B B du
= / YoG (ruro )™ (1 = Cx Ly oy kg™ 1)(§<1—u>z)7-
0
Also notice that, according to (E37386), foreach r > 0, u € [0,1] and x € E,

IR _ B 1
|70G(””°_l )VO 1(1 - Cxlly(')=yo’<¢yo 1)(x);|

< %G(MWL‘)WWU = Cx' Lok ™) ()]
< 70’”7071(1 + ||C)}117('):70K¢7071||00)'

Therefore, according to Lemma 5211 and the definition of Cx, we have that, for each r > 0

and x € E,
, m?) [y e . ol 5 g
JG(r) - JG(t’ r’{-:) z—>—oo> o IG(”MYO_I) <1 - CX 17(‘):)’0K¢ ’¢¢ >mdu =0.
According to (B337) and (5339), we have that, foreach r > 0 and ¢ > 0,
[T (r) = JG(t,1,6)| < (yo + co)r”™". (5.3.40)

Therefore, according to the bounded convergence theorem, we have that, for each » > 0 and

x €E,

||JG(r) - Jé}(t’ r’é:)”H;‘/’); . — 0.

yo-1 I1—00
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According to (53-40), we have that, for each 8 > 0, r € [0,0] and x € E,

||JG(r) - J5(t, r,f)”ng?); L < (Yo + )0

Yo-1
Finally, according to the bounded convergence theorem, we have that, for each 6 > 0 and

x €E, L(t0,x) —> 0.
t—00

Step 5: We will show that, for each 8 > 0 and x € E, I,(t,0,x) —— 0. We first note that,
t—o00

foreacht > 0 and r > 0, we have

! 1
Jg(t, I",f) - ']_(;(ta r, é:) = (70 - 1)t/0 (17(-)>70K7 ’ (¢7]uz)7_1g(ut,rum’ ')7_1) (é‘:(]—u)tqﬂ]z-“'l)

We then note that, according (833R) and the definition of n,, for each » > 0, u € (0,1) and

x € E, we have

(Y0 = DLy sy k(Y ($C00) ™ g (1, ruro T, )77 (53.42)

y(x)-1
u 0!

< (yo = Dy - (crred) Y| Lyompotmis™ ™

_Y)-T y(x)-l

= (v = Dllky - (eprgy || Lyt (Cx (o = Dut) 70T 07

Lyt _
< (¥0 = Dyt 0 &y - (crrey || SUEP (Cx(yo— 1))

y(x)-1
701

— 0.
t—oo

This also gives an upper bound: Foreachr > 0,u € (0,1), x € E and t > 1, we have
(0 = Dy oy k()Y (@C00) ™" g 1t ot )7 (5.3.43)

yx)-1

< (0= Dllxy - (eprey™[| sup (Cx(yo = )0

Now, with (834T), (83°42) and (53744), we can apply Lemma B2TTl to the function

-1 1 —1
(4, 16,1) = (Y0 = DLy k(¥ () (¢()0e) ™" g (ut, ruso s, y) "™

which says that, for each r > 0,

L2 H;(/))
Jy(t,1,8) = Tt 1, 8) —=5 0,
- t—o00

According to (5341)) and (53743), for each r > 0 and ¢ > 1, we have that

_yo)-1

[ot.r.&) = Jy(t.r. 6] < o = Dy - (cr¢) | sup (Cxlyo = D) (5.3.44)
Xe

Therefore, according to the bounded convergence theorem, for each r > 0 and x € E, we have
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that

According to (83.44)), foreach § > 0,r € [0,6] ,¢ > 1 and x € E, we have that

Therefore, according to the bounded convergence theorem, for each 8 > 0 and x € E, we have

Jo(t,1,8) = Iy (1,1, €)|| 1. —0.

Y01

y(x)-1
701

Jyt.r.8) = Iyt ) oo < o = iy - (s 887" sup (Cxlyo = D)

Y0~

that I,(¢,0, x) — O.
t—00

Step 6: We will show that

o Yo—1
limsup I5(¢,6, x) < 70(/ ||M(ru’0%])||1o<u<1di.yO_ldr) , 8>0,x€E,
0 e

t—00
where
M(t,r,x) = |G = g(t.r, x)" [, 20,5 20,x€E,
and
M(r,x) :=limsup M(t,r,x); M(r):= sugM(r,x), r>0,x € E.

t—00 xe
Notice that, according to (8336) and (5338), we have the following bound:

M(t,r,x) < |77 + c}O‘lﬂo—lm%l =: cqr, (5.3.45)
where the constant c¢ is independent of ¢ and x. Therefore, we have

M(r,x) < M(r)<cer, r=0,x€kE.

From the definition of J/, Jé and 7,, we have foreach ¢t > O and r > 0,

I (1,1, &) = I (1,1, (5.3.46)

1
1 _
< volyo — 1)f/ (1, 0)=yok * (D7) M (uat, o, Y0 ) (€1 )du
0

= ¥Cx' /1 (lﬂ.):yokrﬁyo_lu_lM(ut,ruﬁ,-)70_1)(§(l_u>t)du.
0
According to (B3745), we have the following upper bound:
u_]M(ut,ruﬁ,x) < c(,ru% <cer, ue(0,1),r>01>0,x€ekE.
Therefore, fixing an r > 0, we can apply Lemma to the function

L _
(y’ M’t) = )/OC)_(Ily(y):)’ok(y)(ﬁ(y)yo_]u_lM(ut’rumil7y)yo :
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since it is a bounded Borel function on E X (0, 1) X [0, c0). Now, according to Lemma BE22T17,
(B348) and the definitions of M(r, x), M(r) and Cx, we have

lim sup ”‘](,;(ta r,f) - Jg,(t’r’f)HH‘ﬁ-L (5347)
t—o0 Xyl
-1 1 yo—1 L Yo—1 * dl/t
< 7Cx <17(-)=70K¢ M (runT, )0 ¢ >m7
0

1
1 d
N
0 u

We now recall the reverse Fatou’s lemma in L” with p > 1: Let (f,).en be a sequence of
non-negative measurable functions defined on a measure space S with o-finite measure u. If
there exists a non-negative L”(u)-integrable function g on S such that f, < g for all n, then

according to the classical reverse Fatou’s lemma, we have
1 1
lim sup||fn||ﬂ_P = (lim sup/f,{’du)' < (/lim sup f,f’d,u)' = ||lim sup f"”#-p'
n—0oo k n—0oo n—oo n—0o >
Now, use this version of the revers Fatou’s lemma and (523-47), we have that

lim sup I5(2,60, x) < ||lim sup ||J5(t,r, &) — J;(t,r,§)||H;¢>;L|

t—o0 t—o0 v0-!

1
IOsrssd”,W

du

u logrsgd}”;%

1
1
= Hvo / M(ru Tyt
0 0-1

2] 1 1 d y% yo—1
= 7’0(/ (/ M(W’O")Wl_u) 0 1dr)
0 0 u

-1

o 0
= )’o(/ ||M(ruﬁ)||1o<u<]Q.YO_ldr) , #>0,x€E.
0 susl

Step 7. We will show that M(8) = 0 for each 6 > 0. We first claim that

du di’ 9 Z 0,

To<u<1 §f5v0—1777

o 1
M) < cM/O [|M (ruroT))|

for some constant ¢y, > 0. In fact, a direct application of Steps 2-6 gives that, for each ¢t > 0
and x € E:

M(r, x)“y“_1 = limsup M(t,r, x)“y"_1 = lim sup |G(1’)‘V°_1 —g(t,r, x)7°_1|

t—00 t—oo

< limsup (11(t,6,x) + ¢~ L(1,60, %) + '~ I5(t,0,x) + ¢ 14(1,6, x))

t—00

y Yo—1
r .
To<u<i 4 y0-1 )

0
= c;‘)_l lim sup I3(2,0, x) < C«;o—ly()(/ ||M(ruﬁ)|
: . o

r—00
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Therefore, for each 6 > 0,

r.

L pe
M(6) = sup M(r,x) < cpy)™" / ||M(ru¥o%1)|
0

d
YeE To<u<t L y9-1

According to that M(0) < c¢0 for each 6, we can apply Lemma 538 to the above inequality
to get the desired result. Finally, by the definition of M, M = 0 implies the desired assertion
(5329).
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